盘式制动器建模及制动盘的有限元分析
- 格式:doc
- 大小:615.50 KB
- 文档页数:16
ABAQUS有限元法的动车组盘形制动的模拟仿真研究4.4.2 环境温度对应力场的影响 275 结论与展望 305.1 结论 305.2 展望 30致谢 31参考文献 321 绪论1.1 课题研究的目的和意义随着我国铁路高速化、重载化的发展,列车安全停车制动问题将会更加的严峻,机车车辆的制动距离会随列车行驶速度的提高而呈现出非线性增长,如对于我国国产CRH系列的动车组,当制动初速为时,规定紧急制动距离为;当制动初速度为,紧急制动距离为;当紧急制动初速度为及以上时,紧急制动距离超过。
在我国CRH型高速动车组基础制动方式多半运用盘形制动装置,盘形制动盘在制动过程中负责列车的运行安全,在紧急情况下都要保证列车能够安全停止。
由于高速动车组运行时的动能非常的大,想要列车能够在规定的安全制动距离内实现安全的停车,则制动盘和闸片必须具有很高的热应力性能、制动盘与闸片摩擦系数稳定性高、疲劳强度高、机械强度高等特征,即高速列车的制动装置需要有良好的性能[1]。
从国内外盘行制动盘的实际使用情况来看,只有某些类型的制动盘会因其结构强度低而导致制动盘失效,大多数制动盘的失效方式都是热应力过大而导致裂纹损伤、过度磨损、变形和机械断裂。
制动时,列车的动能通过制动盘与闸片摩擦转化为摩擦热,来不及散失大大气中,导致制动盘达到很高的温度,产生温度梯度,那么在制动盘内部将产生很大的热应力,在紧急制动情况下,当热应力大小超过其材料的屈服极限时制动盘很可能出现热裂纹,造成制动盘失效严重影响行车安全[2]。
由于制动时产生的摩擦热会引起制动盘热龟裂或热疲劳,所以在达到其规定的磨损极限前有必要更换制动盘。
为此,需要对制动盘在制动过程中制动盘盘体的温度分布情况和产生的热应力进行分析,确定制动盘盘体的最高温度和热应力大小,是否在制动盘材料的屈服极限之内,给制动盘构造的设计和盘体材料的研发提供依据。
在制动装置的设计和制造过程中,都需要进行多次的实验模拟检验和结构、材料的改进,以保证制动盘制动性能和质量,而且制动盘是列车制动装置中技术含量最高的组件之一,也是我国进行国产化、自主创新的重点项目。
摘要轿车的设计与生产涉及到了很多的领域,其安全性、经济性、动力性的相关指标,对设计提出了较高要求。
轿车制动系统是轿车正常行驶的重要主动安全系统,其性能的好坏对轿车的正常行驶安全有着重要影响。
伴随着轿车行驶速度和路面复杂程度的变化,迫切需要更高性能的制动器。
由于制动系统的重要性,本次设计的主要目的是轿车制动器的结构类型设计。
本文从制动系统的作用和设计的要求出发,对各种样式制动器的优缺点进行了比较,并依据已给的设计参数,进行方案分析验证及校核。
得出,轿车的前后轮均采用浮钳盘式制动器。
在此基础上,选择了真空助力式伺服制动系统和双管路系统,选用了间隙自动调节装置。
依据设计和计算出的数据,分别用AUTO CAD和CATIA软件绘制出了该制动器的二维图和三维建模。
关键词:制动器;设计;建模ABSTRACTThe design and production of cars involved a lot of fields, the safety, economy and power of the relevant indicators, the design of a higher demand. Car braking system is an important active safety system, and its performance has important influence on the normal running safety of the car. Along with the change of the speed of the car and the complexity of the road surface, it is urgent to need a better performance of the brake.Due to the importance of the braking system, the main purpose of this design is to design the structure type of the car brake. In this paper, the advantages and disadvantages of various styles of brake are compared, based on the function and design requirements of the braking system, and the design parameters are given. It is concluded that the floating caliper disc brake is used in the front and back wheels of the car. On this basis, the selection of vacuum assisted brake servo system and dual system, use the automatic clearance adjustment device. According to the design and calculation of the data, respectively, using CAD AUTO and CATIA software to draw the two-dimensional map and three-dimensional modeling of the brake.Key words: brake; design; modeling目录摘要 (I)1 绪论 (1)1.1课题研究的目的及意义 (1)1.2轿车制动器的发展状况 (1)2 研究课题简介 (3)2.1课题主要内容 (3)2.2课题研究方案 (3)2.3本章小结 (4)3 制动器的结构形式 (5)3.1制动系统的基本概念 (5)3.2鼓式制动器结构形式简介 (6)3.3盘式制动器结构形式简介 (8)3.4盘式制动器的优缺点 (9)3.5该轿车制动器结构的最终选择 (9)3.6本章小结 (10)4 制动器主要参数及其选择 (11)4.1制动力与制动力分配系数 (11)4.2同步附着系数 (15)4.3制动强度和附着系数利用率 (16)4.4制动器最大制动力矩 (17)4.5制动器因数 (19)4.6盘式制动器主要参数的确定 (19)4.7本章小结 (20)5 制动器的设计计算 (21)5.1摩擦衬块的磨损特性计算 (21)5.2制动器的热容量和温升核算 (22)5.3盘式制动器制动力矩的计算 (23)5.4驻车制动计算 (24)5.5本章小结 (25)6 制动器主要零部件的结构设计 (26)6.1制动盘 (26)6.2制动钳 (26)6.3制动块 (27)6.4摩擦材料 (27)6.5制动轮缸 (28)6.6制动器间隙 (28)6.7本章小结 (29)7 制动驱动机构的结构形式选择与设计计算 (30)7.1 制动驱动机构的结构型式选择 (30)7.2 制动管路的多回路系统 (32)7.3 液压制动驱动机构的设计计算 (33)7.3.1制动轮缸直径与工作容积 (33)7.3.2制动主缸直径与工作容积 (35)7.3.3制动踏板力与踏板行程 (35)7.3.4制动主缸 (36)7.4 本章小结 (36)8 CATIA建模 (37)8.1CATIA软件 (37)8.2绘制的主要CATIA零件图 (38)结论 (40)参考文献 (41)致谢 (43)附录A (44)附录B (53)1绪论1.1课题研究的目的及意义轿车的构设和产出涉及到许多范围,对构设提出了更高的要求。
本科毕业设计SQR6468轻型客车前制动器设计某某某燕山大学2015年 6 月22日本科毕业设计SQR6468轻型客车前制动器设计学院:专业:车辆工程学生:某某某学号: 3指导教师:某某某答辩日期: 2015.6.22燕山大学毕业设计任务书摘要本文首先对汽车制动器原理和对各种各样的制动器进行分析,详细地阐述了各类制动器的结构,工作原理和优缺点.再根据轻型客车的车型和结构选择了适合的方案.根据市场上同系列车型的车大多数是滑钳盘式制动器,而且滑动钳式盘式制动器结构简单,性能居中,设计规,所以我选择滑动钳式盘式制动器.本文探讨的是一种结构简单的滑动钳式盘式制动器,对这种制动器的制动力,制动力分配系数,制动器因数等进行计算.对制动器的主要零件如制动盘、制动钳、支架、摩擦衬片、活塞等进行结构设计和设计计算,从而比较设计出一种比较精确的制动器.本文所采用的设计计算公式均来自参考资料。
本设计主要针对轻型客车前制动器设计,首先计算数据,完成二维装配图和二维零件图绘制,然后利用CATIA软件进行三维建模。
以更清楚的表达盘式制动器结构。
关键词盘式制动器;制动力;制动力分配系数;制动器因数;CATIA软件AbstractThis paper first principle of the car brake and brake on a wide range of analysis,a detailed exposition of the structure of various types of brake, and the advantages and disadvantages of working principle. Accordance with Minibus models and structure chosen for the program Under series models on the market with most of the cars leading trailing, and leading trailing simple structure, performance, middling, design specifications, so I chose to receive from the Sliding Disc brake. This paper is a simple structure recipients from the Disc brake, the brake system of this power, braking force distribution coefficient, such as brake factor calculation. brake on the main parts such as brake pan, brake caliper, bracket, friction linings, piston for structural design and design, design and comparison A more precise brake used in the design of this formula are calculated from the reference.This design mainly in view of the light bus front brake design, calculation data first, finish 2 d assembly drawing and 2 d part drawing, And then using CATIA software for 3 d modeling, to more clearly express the structure of disc brake.Key words Disc brakes;Power system;Power distribution coefficient systemBrake factor CATIA software目录摘要 (II)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.2 研究目的及意义 (1)1.3 盘式制动器结构形式及其选择 (3)1.3.1 盘式制动器的结构形式 (3)1.3.2 盘式制动器的优缺点 (4)1.3.3 本设计盘式制动器的选择 (5)1.4 浮钳盘式制动器 (5)1.4.1 浮钳盘式制动器的结构 (5)1.4.2 浮钳盘式制动器的工作原理 (6)1.4.3 制动间隙调整原理 (7)1.5 本文研究容 (8)第2章制动系的主要参数及其选择 (9)2.1 任务书给定设计基本参数 (9)2.2 受力分析 (9)2.3 同步附着系数的确定及计算 (13)2.4 制动力、制动强度、附着系数利用率的计算 (15)2.4.1 满载时的情况 (15)2.4.2 空载的情况 (17)2.5 制动器最大制动力矩的计算 (19)2.6 本章小结 (19)第3章盘式制动器的结构设计 (20)3.1 盘式制动器结构设计的任务和步骤 (20)3.2 盘式制动器的主要零部件设计和三维造型 (20)3.2.1 制动盘 (21)3.2.2 制动衬块 (22)3.2.3 制动钳 (23)3.2.4 制动钳支架 (24)3.2.5 盘式制动器总成装配图 (26)3.3 本章小结 (26)第4章盘式制动器的校核计算 (27)4.1 摩擦衬块的磨损特性计算 (27)4.2制动器的热容量和温升的核算 (28)4.3 盘式制动器制动力矩的校核 (29)4.4 本章小结 (32)结论 (33)参考文献 (34)致 (36)附录1 (38)附录2 (364)附录3 (48)第1章绪论1.1 课题背景对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载盘式制动器仿真分析地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容《制动器的动力学仿真》专业:机械设计制造学号:姓名:2015年1月12日目录TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc409026736" 第一章、概述 PAGEREF _Toc409026736 \h 1HYPERLINK \l "_Toc409026737" 1.1 制动器的分类 PAGEREF_Toc409026737 \h 1HYPERLINK \l "_Toc409026738" 1.2 国内外针对盘式制动器的研究 PAGEREF _Toc409026738 \h 2HYPERLINK \l "_Toc409026739" 1.2.1 国外研究现状 PAGEREF _Toc409026739 \h 2HYPERLINK \l "_Toc409026740" 1.2.2 国内研究现状 PAGEREF _Toc409026740 \h 2HYPERLINK \l "_Toc409026741" 第二章基于ADAMS 建模的理论基础 PAGEREF _Toc409026741 \h 3HYPERLINK \l "_Toc409026742" 2.1 系统动力学 PAGEREF_Toc409026742 \h 3HYPERLINK \l "_Toc409026743" 第三章动力学仿真 PAGEREF_Toc409026743 \h 3HYPERLINK \l "_Toc409026744" 3.1 刚柔体混合动力学模型PAGEREF _Toc409026744 \h 3HYPERLINK \l "_Toc409026745" 3.2 改变弹簧弹性系数的仿真分析 PAGEREF _Toc409026745 \h 6HYPERLINK \l "_Toc409026746" 3.3 结果分析 PAGEREF_Toc409026746 \h 9第一章、概述1.1 制动器的分类制动器即为刹车,通常称之为刹车、闸,它能使机械系统中的执行构件运动运动或减速慢行。
基于Ansys Workbench的盘式制动器关键件的结构设计与
模态分析
孔田增;潘宗友
【期刊名称】《汽车实用技术》
【年(卷),期】2024(49)2
【摘要】制动系统是汽车安全行车中非常重要的组成部分,确保驾驶员能够安全控制汽车在行驶中的减速和停车。
盘式制动器是汽车制动系统中常见的一种类型,其工作特点是高速、高温和振动影响。
盘式制动器工作中的高温、振动对其工作性能有较大的影响,直接影响着制动器的安全性。
文章通过对盘式制动器关键件进行有限元仿真分析,得到了关键件的前6阶固有频率和振型,以此准确掌握其振动特性,并对摩擦衬垫结构进行相应的设计和分析,研究结果为盘式制动器关键件的设计提供一定的理论参考依据。
【总页数】6页(P74-79)
【作者】孔田增;潘宗友
【作者单位】兰州石化职业技术大学汽车工程学院
【正文语种】中文
【中图分类】U463.5
【相关文献】
1.基于ANSYS Workbench的盘式制动器主要零件静力分析
2.基于ANSYS Workbench的新型盘式制动器的强度分析和模态分析
3.基于ANSYS
Workbench的盘式制动器动力学分析4.基于ANSYS Workbench的盘式制动器热-机耦合分析5.基于ANSYS Workbench的一种盘式制动器设计与分析
因版权原因,仅展示原文概要,查看原文内容请购买。
驱动轮盘式制动器的热仿真分析驱动轮盘式制动器是车辆制动系统中不可或缺的部分,它承担着制动任务,将动能转化为热能,并将车辆停下来。
在制动过程中,摩擦磨损、摩擦热和热膨胀是制动器系统中的重要问题。
为了更好地了解驱动轮盘式制动器的工作原理和性能,进行热仿真分析是非常必要的。
首先,热仿真分析需要建立合适的模型。
模型的建立是保证分析结果准确性的基础。
在驱动轮盘式制动器的热仿真中,需要考虑制动盘、刹车衬片、制动鼓和制动器外壳等各个部件的热传导、热辐射和热对流。
同时,还需要考虑制动盘和刹车衬片的磨损与摩擦等相关因素。
其次,在模型建立完成后,需要选择合适的仿真软件进行热仿真分析。
目前市场上有许多专业的仿真软件可供选择,例如ANSYS、ABAQUS等。
根据实际需求和预算情况来选择合适的软件。
软件的选择与制动器模型之间的匹配是保证热仿真分析精度的关键。
热仿真分析的一个重要指标是温度分布。
通过热仿真分析,可以直观地观察到各个部件的温度分布情况,找出温度高的热点位置。
通过对热点位置的分析,可以进一步优化制动器的设计,提高制动器的散热性能。
同时,通过热仿真分析还可以预测制动盘和刹车衬片等部件的寿命,为制动器的维护和更换提供依据。
除了温度分布,热仿真分析还可以得出其他相关参数,例如热应力和热膨胀等。
这些参数对制动器的设计和优化也起到了重要作用。
通过分析这些参数,可以评估制动器在持续制动过程中的工作稳定性和可靠性,并根据仿真结果进行结构改进和优化。
另外,热仿真分析还可以用于比较不同制动材料的性能。
制动系统中的刹车衬片材料种类繁多,每种材料的热传导性能和摩擦特性都不同。
通过热仿真分析,可以评估不同材料的制动性能,并选择最合适的刹车衬片材料。
综上所述,驱动轮盘式制动器的热仿真分析在提高制动器性能和性价比方面具有重要意义。
通过建立合适的模型、选择合适的仿真软件,进行温度分布、热应力、热膨胀等仿真分析,可以提前发现潜在问题并进行设计优化。
盘式制动器毕业设计一、选题背景盘式制动器是现代汽车制动系统中最常用的一种制动器,其优点包括制动效果好、散热能力强、使用寿命长等。
因此,本人选择盘式制动器作为毕业设计的研究对象。
二、研究目的本次毕业设计旨在通过对盘式制动器的设计和分析,掌握盘式制动器的工作原理和设计方法,并进一步提高自己的工程实践能力。
三、研究内容1. 盘式制动器原理分析通过对盘式制动器的结构和工作原理进行分析,了解盘式制动器的基本工作原理和特点。
2. 盘式制动器设计要点根据盘式制动器的工作原理和特点,探讨盘式制动器设计中需要考虑的因素,包括材料选择、摩擦系数计算、刹车片形状等。
3. 盘式制动器性能测试与优化通过对已经设计好的盘式制动器进行性能测试,了解其刹车效果和散热情况,并根据测试结果进行优化。
四、研究方法1. 理论分析法:通过文献资料和相关标准,了解盘式制动器的基本原理和设计要点。
2. 数值模拟法:通过使用有限元分析软件对盘式制动器进行模拟分析,了解其在不同工况下的受力情况和散热情况。
3. 实验测试法:通过对已经设计好的盘式制动器进行实验测试,了解其刹车效果和散热情况,并根据测试结果进行优化。
五、研究成果1. 盘式制动器设计图纸和材料清单根据所学知识和研究结果,完成盘式制动器的设计图纸,并列出所需材料清单。
2. 盘式制动器性能测试报告根据实验测试结果,撰写盘式制动器性能测试报告,包括刹车效果、散热情况等方面的数据分析和优化建议。
3. 相关论文发表将研究成果整理成论文,并提交相关期刊或会议进行发表。
六、进度安排1. 第一阶段(1周):文献资料查找和整理。
2. 第二阶段(2周):盘式制动器原理分析。
3. 第三阶段(3周):盘式制动器设计要点探讨。
4. 第四阶段(4周):盘式制动器数值模拟分析。
5. 第五阶段(5周):盘式制动器实验测试和性能优化。
6. 第六阶段(2周):论文撰写和修改。
七、预期效果通过本次毕业设计,我将深入了解盘式制动器的工作原理和设计方法,掌握有限元分析软件的使用技巧,提高自己的工程实践能力。
前言 (2)1 制动系概述 (3)1.1 制动系的功能 (3)1.2车轮制动时的工作原理 (3)1.3 制动系的要求 (4)1.4 车轮制动器类型 (4)置等组成。
(4)③鼓式制动器的带式制动器只用作中央制动器。
(5)1.5 盘式制动器 (5)加速通风散热提高制动效率。
(5)1.5.2盘式制动器的主要类型 (6)( 1 ) 固定钳式盘式制动器 (6)( 2 ) 浮动钳式盘式制动器 (7)( 3 ) 全盘式制动器 (7)1.5.3盘式制动器的优缺点 (8)( 1 )盘式制动器的优点 (8)2 基于Pro/E设计方法 (11)3 制动器参数化设计计算 (14)3.2 主要零部件的结构设计 (15)3.2.1制动盘 (15)图3.2 制动盘尺寸 (17)(2)参数输入 (17)3.2.2制动块 (18)(1)尺寸设计 (18)(2)参数输入 (19)结论 (27)致谢 (28)参考文献 (28)前言国内汽车市场迅速发展,随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。
因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。
另外,随着汽车市场竞争的加剧,如何缩短产品开发周期,提高设计效率,降低成本,提高产品的市场竞争力,已经成为企业成功的关键。
制动器是车辆的关键部件之一, 其性能的好坏直接影响整车性能的优劣, 因此, 制动器的设计在整车设计中显得相当重要。
本文详细地阐述了各类制动器的结构、工作原理、优缺点和发展前景,探讨了一种结构简单的盘式制动器。
对制动器的主要零件如制动盘、制动钳、制动块、摩擦衬片、活塞等进行了结构设计和计算,从而设计出一种比较精确的制动器。
根据设计与计算用Pro/E绘制出了该制动器的制动盘、制动钳、活塞、摩擦衬块等零件图和装配图。
本课题主要完成基于Pro/E三维造型技术进行盘式制动器参数化设计。
通过引入基于Pro/E特征的参数化造型思想,建立制动器典型的零部件模板库,模型设计计算完成后,通过参数化驱动从而得到所需的制动器模型。
沈阳理工大学课程设计论文 1 课程设计任务书 学 院 汽车与交通学院 专 业 车辆工程 学生姓名 姜 键 学 号 0802020611 设计题目:盘式制动器建模及制动盘的有限元分析 设计内容: 1、使用CATIA建立盘式制动器主要零部件的三维实体模型并装配。 2、 将制动盘的实体模型导入到ANSYS中,进行划分网格、添加材料属性等前处理。 3、根据制动盘的特点确定模态分析的阶数,计算制动盘的固有频率和振型。
技术要求: 1、实体建模结构尺寸和形式正确。并能进行运动模拟 2、设计说明书。其中包括: (1) 写出实体建模步骤。 (2)写出模型导入导出过程。 (3) 写出有限元分析的过程。 (4)结论(结果分析及问题讨论)。 (5) 参考文献 3、提交CATIA和有限元分析的模型文件及相关文件的电子文档。 进度安排: 1、理解题目要求,查阅资料,学习软件,确定设计方案 1天 2、实体建模 4天 3、有限元分析3天 4、说明书撰写 1天 5、答辩 1天
指导教师(签字): 年 月 日 专业负责人(签字): 年 月 日 沈阳理工大学课程设计论文 2 目录 1.实体建模步骤.......................................................3 1.1制动盘建模....................................................3 1.2摩擦片建模....................................................4 1.3制动活塞建模..................................................6 1.4制动钳建模....................................................6 1.5整体装配......................................................8 2.导入过程...........................................................9 3.有限元分析的过程分析的过程........................................10 3.1对导入的模型进行单元属性定义.................................10 3.2网格划分及添加约束...........................................10 3.3进行模态分析.................................................11 3.4制动盘的振型分析.............................................12 3.5结论.........................................................15 参考文件............................................................16 沈阳理工大学课程设计论文
3 1 实体建模步骤
建模选用catia三维操作软件,建模步骤如下。 1.1制动盘建模 (1)打开catia软件,进入零件设计界面,在xy平面分别做r71和r127的圆,退出草图平面,拉伸出圆柱体,分别拉伸长度为51mm和6mm,如图1.1所示。
图1.1拉伸后实体 (2)凹槽打孔等处理后如图1.2所示。 沈阳理工大学课程设计论文
4 图1.2凹槽打孔等处理后实体 1.2摩擦片建模 (1)用轮廓线画如图1.3所示草图。
图1.3摩擦片草图轮廓线 (2)退出草图平面,拉伸4mm如图1.4所示。 沈阳理工大学课程设计论文
5 图1.4拉伸后实体 (3)经打孔倒角等处理后如图1.5所示。
图1.5打孔倒角处理后实体 1.3制动活塞建模 沈阳理工大学课程设计论文 6 建模成型后如图1.6所示。
图1.6制动活塞 1.4制动钳建模 (1)用轮廓线画如图1.7所示草图。
图1.7制动钳草图轮廓线 (2)退出草图平面,拉伸91mm且部分倒角后如图1.8所示。 沈阳理工大学课程设计论文
7 图1.8拉伸倒角后实体 (3)新建一个面距yz面62mm,在此面上画r50,r54的圆,退出草图平面,分别拉伸32mm和-15mm,且进行部分凹槽倒角后如图1.9所示。
图1.9拉伸凹槽后实体 (4)做端耳,半径分别为4mm和10mm,端耳中心距坐标系中心为60mm,端耳厚度为10mm;做液压缸,半径为16mm,深度为40,输油孔,半径为3,且沈阳理工大学课程设计论文 8 进行局部凹槽倒角如图1.10所示。
图1.10制动钳实体 1.5整体装配 装配后如图1.11所示。
图1.11装配模型 沈阳理工大学课程设计论文
9 2 导入过程
将零件保存为modle格式,在运行ANSYS之前,将系统的时间改为2010年。点击File>Import>CATIA,选择model文件,打开,依次选PlotCtrls>Style>SolidModelFacets>Fine选择Plot>Volumes,生成实体如图2.1所示。
图2.1用于网格划分的实体模型 沈阳理工大学课程设计论文
10 3 有限元分析的过程 3.1对导入的模型进行单元属性定义 依次选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete,定义SOLID187单元类型,打开如图3.1所示对话框。
图3.1“单元类型库”对话框 依次选择Main Menu>Preprocessor>Material Props>Material Modles,打开如图3.2所示对话框,分别填写弹性模量1.13e5,泊松比0.23,密度7e3。
图3.2材料类型的定义 3.2网格划分及添加约束 (1)网格划分 沈阳理工大学课程设计论文 11 依次选择Main Menu>Preprocessor>Meshing>Mesh Tool,打开网格划分工具对话框。在单元分配属性部分,选择“Volums”.单击“set”按钮,弹出体拾取对话框,拾取实体,单击“OK”,将材料分配给体。依次选择Main Menu>Preprocessor>Meshing>Mesh Tool,打开网格划分工具对话框,点击Smart Size,点击Mash,选择体,单击OK.如图3.3所示。
图3.3有限元网格模型 (2)添加约束
依次选择Main Menu>Slolution>Define Loads>Apply>Structrual>Displacement>on Areas选择制动盘内圆柱面,加载全约束。 3.3进行模态分析 (1)模态分析前处理 Solution>Analysis Type>New Analysis>Model,在Analysis Option 中,选择算法,选择“Block Lanzcons”,选择8阶矩阵运算,在算法选项中选择截止频率为“100000”。 (2)计算制动盘的固有频率 依次选择“Solution>solve>Current LS。跳过步骤中警告,观察运行代码,并等待运算结束。待出现“Solution done”提示,点击“Close”。依次点击“General Postproc>Results Summary”出现计算的结果,即制动盘的固有频率如图3.4所示。 沈阳理工大学课程设计论文
12 图3.4制动盘的固有频率及阶数 3.4制动盘的振型分析 (1)依次选择“Solution>>Load step opts>>ExpansionPass>>Single Expand>>Expand Model”进行设置。再次进行运算,步骤同第一次运算。
图3.5计算结果列表 (2)依次选择“General Postproc>>Read Result>>First Set”>>Plot Result>>Contour Plot>>Nodal Solu。振型如下图,每查看一种振型,要选择“Next Set”。 沈阳理工大学课程设计论文
13 图3.6 1阶振型 图3.7 3阶振型 沈阳理工大学课程设计论文
14 图3.8 6阶振型 沈阳理工大学课程设计论文
15 图3.9 8阶振型 3.5结论 通过ANSYS软件对盘式制动器制动盘的前8阶模态进行分析可知最大形变为0.654e-4m,且固有频率越大最大变形越集中,不利于制动盘的使用寿命,但固有频率过小可能增加共振的可能性,所以应适当增大固有频率且对制动盘结构的质量和刚度的分布进行适当的调整(如增大最大变形处的刚度)以增大制动盘使用寿命。 沈阳理工大学课程设计论文
16 参考文献 1.张乐乐,苏树强,谭南林 .ANSYS辅助分析应用基础教程上机指导.北京交通大学出版社,2007.12 2.王新敏.ANSYS工程结构数值分析.北京.人民出版社,2007 3.胡海龙.CATIA V5 R18基础设计.北京:清华大学出版社,2010.7 4.陈家瑞.汽车构造.北京:机械工业出版社,2009.2