当前位置:文档之家› 理论力学第6章(2)A

理论力学第6章(2)A

理论力学第6章(2)A
理论力学第6章(2)A

6 点的合成运动(2) 一、 是非题

1、 用合成运动的方法分析点的运动时,若牵连角速度0e ≠ω,相对速度0v r ≠,则一定有不为零的科氏加速度。 (×)

2、 牵连速度是动参考系相对于固定参考系的速度。 (×)

3、 当牵连运动为定轴转动时,牵连加速度等于牵连速度对时间的一阶导数。 (×)

4、 当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。 (√)

5、 考虑地球自转,地球上的任何地方运动的物体(质点),都有科氏加速度。 (×)

6、不论牵连运动为何种运动,点的速度合成定理r e a v v v ρ

ρρ+=皆成立。 (√) 7、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。(×) 8、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。 (√)

9、刚体作定轴转动,动点M 在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。 (×) 10、当牵连运动为定轴转动时一定有科氏加速度。 (×) 二、1) D 2) B 、A 、D 3) B 、A 4) C 三、

一)运动分析

1.选AB 杆上A 为动点;

2.动系固定在偏心轮上;

3.

绝对运动:点的直线运动;

相对运动:点的曲线运动; 牵连运动:刚体定轴转动。 牵连点:轮O 上的A’点; 牵连点运动:点的圆周运动。 二)速度计算,画v 矢量图

ωθωθe cot OA cot v v e a ===

四,

一)运动分析

1.选OA 杆上的A 点为动点 2.动坐标系固连于BC 杆

3.绝对运动是点的圆周运动;相对运动是点的直线运动;牵连运动是刚体的平行移动。 二)速度计算

在动点上画v 矢量图

s /m 173.030cos r 30cos v v a e =?=?=ω

三)加速度计算 在动点上画a 矢量图,牵连运动为平移运动,只有3个加e

a ?r

a ?n

a a ?

a v ?e

v ?r

v ?e v ?r v ?

a

v ?

速度,可用对角线关系确定各加速度的实际方向,然后用三角计算算出加速度的大小:

22n

a e s /m 05.030sin r 30sin a a =?=?=ω

五、

一)运动分析

1.选AB 杆上的A 点为动点 2.动坐标系固连于凸轮上。

3.绝对运动是点的直线运动;相对运动是点的圆周运动;牵连运动是刚体的平行转动。

二)速度计算 在动点上画v 矢量图

?=?=?=?=30v 30v v 30v 30v v 0e r 0e a cos /cos / tan tan

三)加速度计算 在动点上画a 矢量图,牵连运动为平移运动,但凸轮匀速运

动,牵连加速度为零,只有三个加速度,可用对角线关系确定各加速度的实际方向。 由几何关系计算出:

R 9v 38R 3v 2R 3v 2a a 20

3

202

r n

r a ==

=

=?

??cos cos cos 由r t

r n r a a a a a ?

?

?

?

=+=可知绝对加速度与相对加速度的大小相等。

六、

一)运动分析

1. 取OA 杆上A 点为动点,

2. 动系固定于凸轮上,

3. 三运动: 1) 绝对运动:点的圆周运动; 2) 相对运动:点的圆周运动; 3) 牵连运动:刚体的平动。 二)求速度

在动点上画v 矢量图

三)加速度计算 绝对运动和相对运动都是点的圆周运动,都分解为切向与法向加速度:

在动点上画加速度矢量图,

对五个加速度矢量,先画出方向已知的三个。

将 等号两边分别向n 轴投影

n r e n a t a a 60cos a 60cos a 30cos a +?-=?-?- ??--?=30cos /)60cos a a 60cos a (a n a n r e t a

)r u a (33a 2

t

a -= )-(r OA r

u a r 33a 2t a ==α

e

t r n r a a a a a ????++=a

a ?n

r a ?t

r a ?e v ?a

v ?r v ?θA u

a o 3

u 30cos 2v e =

°=r a v v =r

e a a a a ?

??+=n r

t r e n a t a a a a a a ?????++=+n r

t r e n a t a a a a a a ?????++=+θA

u a

o t

a a ?

e

a ?n r a ?n

a a ?t

r a ?n ?

a

v ?e

v ?r

v ?

备用

一)运动分析

1.选CD 杆上的C 点为动点 2.动坐标系固连于AB 杆

3.绝对运动是点的直线运动;相对运动是点的直线运动;牵连运动是刚体的平移运动。 二)速度计算

在动点上画v 矢量图 s /m 1.02/r 30sin v v e a ==?=ω

三)加速度计算

在动点上画a 矢量图,牵连运动为平移运动,只有3个加速度,可用对角线关系确定各加速度的实际方向,然后用三角计算算出加速度的大小:

22n e a s /m 346.030cos r 30cos a a =?=?=ω

为什么此题计算加速度时不必用加速度矢量方程进行投影的方法?而是直接用几何计算算出加速度的大小即可?

a

a ?n

r a ?

r

a ?

精选-理论力学试题及答案

理论力学试题及答案 (一) 单项选择题(每题2分,共4分) 1. 物块重P ,与水面的摩擦角o 20m ?=,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( )。 A 静止(非临界平衡)状态 B 临界平衡状态 C 滑动状态 第1题图 第2题图 2. 图(a)、(b)为两种结构,则( )。 A 图(a)为静不定的,图(b)为为静定的 B 图(a)、(b)均为静不定的 C 图(a)、(b)均为静定的 D 图(a)为静不定的,图(b)为为静定的 (二) 填空题(每题3分,共12分) 1. 沿边长为m a 2=的正方形各边分别作用有1F ,2F ,3F ,4F ,且1F =2F =3F =4F =4kN ,该力系向B 点简化的结果为: 主矢大小为R F '=____________,主矩大小为B M =____________ 向D 点简化的结果是什么? ____________。 第1题图 第2题图 2. 图示滚轮,已知2m R =,1m r =,ο30=θ,作用于B 点的力4kN F =,求力F 对A 点之矩A M =____________。 3. 平面力系向O 点简化,主矢R F '与主矩M 10kN F '=,20kN m O M =g ,求合力大小及作用线位置,并画在图上。 D C A B F 1 F 2 F 3 F 4

第3题图 第4题图 4. 机构如图,A O 1与B O 2均位于铅直位置,已知13m O A =,25m O B =,2 3rad s O B ω=,则 杆A O 1的角速度A O 1ω=____________,C 点的速度C υ=____________。 (三) 简单计算题(每小题8分,共24分) 1. 梁的尺寸及荷载如图,求A 、B 2. 丁字杆ABC 的A 端固定,尺寸及荷载如图。求A 端支座反力。 3. 在图示机构中,已知m r B O A O 4.021===,AB O O =21,A O 1杆的角速度4rad ω=,角加速度22rad α=,求三角板C 点的加速度,并画出其方向。 F O R ' O M

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化 2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。 答:F/2;62F/5。 2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩 M x(F)= 。 答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ) 图2-40 图2-41 2-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。 答:-60N; 2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE的一个力F,图中α=30°,则此力对各坐标轴之矩为: M x(F)= ;M Y(F)= ;M z(F)= 。 答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/4 2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。 答:M x(F)=160 N·cm;M z(F)=100 N·cm

图2-42 图2-43 2-6.试求图示中力F 对O 点的矩。 解:a: M O (F)=F l sin α b: M O (F)=F l sin α c: M O (F)=F(l 1+l 3)sin α+ F l 2cos α d: ()22 21l l F F M o +=αsin 2-7.图示力F=1000N ,求对于z 轴的力矩M z 。 题2-7图 题2-8图 2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。试求其合力,并画在图上(图中长度单位为米)。 解:将力系向O 点简化 R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N 主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m 合力的方向:cos (R ,)=,cos (R ,)=-

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

理论力学陈立群第7章习题解答

第七章 质点动力学 习题解答 7-1 质量为40 g 的小球M 以初速度v =8 j (m/s)从点A (0, 0, 0.3m)抛出后,受到沿i 方向恒定的电磁力作用,其大小F = kN ,如图所示。求小球M 到达xy 平面点B 时,点B 的坐标和小球的速度。 解:取小球M 为研究对象,小球所受到的主动力为 k i F mg F R -= 由质点运动微分方程R F m =r ,写出投影式 F x m = ,0=y m ,mg z m -= 初始条件为 000====t t y x ,3.00==t z ; 000====t t z x ,v y t ==0 解得质点的速度方程为 t m F x = ,v y = ,gt z -= 质点的运动方程为 22t m F x = ,vt y =,3.02 2+-=t g z 当0=z 时,小球到达xy 平面,由 03.02 2 =+- =t g z 解得s 247.01=t ,于是小球到达xy 平面时的各速度分量为 m/s 7.494811===t m F x t t ,m/s 81===v y t t ,m/s 425.211 -=-==gt z t t . 各坐标为 m 2.61222 11 == =t m F x t t ,m 979.111 ===vt y t t , m 137.23.02 211 -=+-==t g z t t . 7-2 图示A ,B 两物体的质量分别为m A 和m B ,二者用一细绳连接,此绳跨过一定滑轮,滑轮半径为r 。运动开始时,两物体的高度差为 h ,且m A > m B ,不计滑轮质量。求由静止释放后,两物体达到相同高 度时所需的时间。 解:分别取A 和B 物体为研究对象,受力图如图示,列出动力学方程 TA A A A F W x m -= , TB B B B F W x m -= , 式中g m W A A =,g m W B B =,根据题意,有 TB TA F F =,B A x x -=,B A x x -= 初始条件 00==t A x ,h x t B ==0,00==t A x ,00==t B x . 解以上初值问题,得 题7-2图

理论力学试题及答案

理论力学试题及答案 一、是非题(每题2分。正确用√,错误用×,填入括号内。) 1、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。 2、力对于一点的矩不因力沿其作用线移动而改变。() 3、在自然坐标系中,如果速度υ= 常数,则加速度α= 0。() 4、虚位移是偶想的,极微小的位移,它与时间,主动力以及运动的初始条件无关。 5、设一质点的质量为m,其速度 与x轴的夹角为α,则其动量在x轴上的投影为mv x =mvcos a。 二、选择题(每题3分。请将答案的序号填入划线内。) 1、正立方体的顶角上作用着六个大小相等的力,此力系向任一点简化的结果 是。 ①主矢等于零,主矩不等于零; ②主矢不等于零,主矩也不等于零; ③主矢不等于零,主矩等于零; ④主矢等于零,主矩也等于零。 2、重P的均质圆柱放在V型槽里,考虑摩擦柱上作用一力偶,其矩为M时(如图),圆柱处于极限平衡状态。此时按触点处的法向反力N A与N B的关系 为。 ①N A = N B;②N A > N B;③N A < N B。 3、边长为L的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图示,若给平板一微小扰动,使其从图示位置开始倾倒,平板在倾倒过程中,其质心C点的运动轨迹是。 ①半径为L/2的圆弧;②抛物线;③椭圆曲线;④铅垂直线。 4、在图示机构中,杆O1 A//O2 B,杆O2 C//O3 D,且O1 A = 20cm,O2 C = 40cm,CM = MD = 30cm,若杆AO1 以角速度ω= 3 rad / s 匀速转动,则D点的速度的大小为cm/s,M点的加速度的大小为cm/s2。 ①60;②120;③150;④360。

《理论力学》第七章点的合成运动习题解

2 v v e =1 v v =AB r v v =0 45 45 v r =N B C .第七章 点的合成运动习题解 [习题7-1] 汽车A 以h km v /401=沿直线道路行驶,汽车B 以h km v /2402=沿另一叉道行驶。求在B 车上观察到的A车的速度。 解: 动点:A 车。 动系:固连于B 车的坐标系。 静系:固连地面的坐标系。 绝对运动:动点A 相对于地面的运动。 相对运动:动点A 相对于B 车的运动。 牵连运动:在动系中,动点与动系的重合点, 即牵连点相对于静系(地面)的运动。当A、 B两车相遇时,即它们之间的距离趋近于0时, A、B相重合,B车相对于地面的速度就是 牵连速度。2v v e =。由速度合成定理得: → → → +=r e v v v 。用作图法求得: h km v v AB r /40== (↑) 故,B车上的人观察到A车的速度为h km v v AB r /40==,方向如图所示。 [习题7-2] 由西向东流的河,宽1000m ,流速为0.5m/s ,小船自南岸某点出发渡至北岸,设小船相对于水流的划速为1m/s 。问:(1)若划速保持与河岸垂直,船在北岸的何处靠岸?渡河时间需多久?(2)若欲使船在北岸上正对出发点处靠岸,划船时应取什么方向?渡河时间需多久? 解:(1) 动点:船。 动系:固连在流水上。 静系:固连在岸上。 绝对运动:岸上的人看到的船的运动。 相对运动:船上的有看到的船的运动。 牵连运动:与船相重合的水体的运动。 绝对速度:未知待求,如图所示的v 。 相对速度:s m v r /1=,方向如图所示。 牵连速度:s m v e /5.0=,方向如图所示。 由速度合成定理得: → → → +=r e v v v

理论力学第一章习题

第一章习题 1.4 细杆绕点以角速转动,并推动小环C 在固定的钢丝上滑动。图中的为已知常数,试求小球的速度及加速度的量值。 解 如题1.4.1图所示, 绕点以匀角速度转动,在上滑动,因此点有一个垂直杆的速度分量 点速度 又因为所以点加速度 OL O ωAB d A B O C L x θd 第1.4题图 OL O C AB C 22x d OC v +=?=⊥ωωC d x d d v v v 222 sec sec cos +====⊥⊥ω θωθθωθ =&C θθθω&????==tan sec sec 2d dt dv a () 2 222222tan sec 2d x d x d += =ωθθω

1.5 矿山升降机作加速度运动时,其变加速度可用下式表示: 式中及为常数,试求运动开始秒后升降机的速度及其所走过的路程。已知升降机的初速度为零。 解 由题可知,变加速度表示为 由加速度的微分形式我们可知 代入得 对等式两边同时积分 可得 : (为常数) 代入初始条件:时,,故 即 又因为 所以 对等式两边同时积分,可得: ??? ? ? -=T t c a 2sin 1πc T t ?? ? ?? -=T t c a 2sin 1πdt dv a = dt T t c dv ??? ? ? -=2sin 1πdt T t c dv t v ???? ? ??-=00 2sin 1πD T t c T ct v ++ =2cos 2ππ D 0=t 0=v c T D π 2- =????????? ??-+ =12cos 2T t T t c v ππdt ds v = dt T t T t c ???? ? ???? ??-+12cos 2ππ=ds ??? ?????? ??-+=t T t T T t c s 2sin 222 12πππ

理论力学第二章作业a

第二章 平面汇交力系与平面力偶系 一、判断题 1. 两个力F 1、F 2在同一轴上的投影相等,则这两个力大小一定相等。 ( ) 2. 两个力F 1、F 2大小相等,则它们在同一轴上的投影大小相同。 ( ) 3. 力在某投影轴方向的分力总是与该力在该轴上的投影大小相同。 ( ) 4. 平面汇交力系的平衡方程中,选择的两个投影轴不一定要满足垂直关系。 ( ) 5.力偶各力在其作用平面上任意轴上投影的代数和都等于零。 ( ) 6. 因为构成力偶的两个力满足F =-F ′,所以力偶的合力等于零。 ( ) 7.在图7中圆轮在力偶矩为M 的力矩和力F 的共同作用下保持平衡,则说明一个力偶可由一适合的力平衡。 ( ) 二、填空题 1.平面汇交力系平衡的几何条件是 ;平衡的解析条件是 。 2.平面内两个力偶等效的条件是 ;力偶系的平衡条件是 。 3. 如图所示,AB 杆自重不计,在5个已知力作用下处于平衡,则作用于B 点的四个力的合力F R ′的大小F R ′ = ,方向沿 。 4. 作用于刚体上的四个力如图所示,则: 1)图a 中四个力的关系为 ,其矢量表达式为 。 2)图b 中四个力的关系为 ,其矢量表达式为 。 3)图c 中四个力的关系为 ,其矢量表达式为 。 三、选择题 1.一刚体受到两个作用在同一直线上、方向相反 的力F 1和F 2作用,它们之间的大小关系是F 1=2 F 2 ,则 W 题7图 题10图 a b c 题11图

该两力的合力矢R 可表示为( ) A . R = F 1 - F 2 B. R = F 2 - F 1 C. R = F 1 + F 2 D. R = F 2 2. 某力F 在某轴上的投影的绝对值等于该力的大小,则该力在另一任意与之共面的轴上的投影为:( ) A. 一定等于零; B. 不一定等于零; C. 一定不等于零; D. 仍等于该力的大小。 四、计算题 1. 图示四个平面共点力作用于物体的O 点。已知F 1=F 2=200KN , F 3=300KN ,F 4=400KN 力1F 水平向右。用解析法求它们的合力的大小和方向。 2. 简易起重装置如图所示,如A 、B 、C 三处均可简化为光滑铰链连接,各杆和滑轮的自重可以不计,忽略滑轮的大小;起吊重量2KN G 。求直杆AB ,AC 所受力的大小,并 1 4

理论力学试题及答案

2 理论力学试题及答案 、是非题(每题 2分。正确用错误用X,填入括号内。 ) 1、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。 2、力对于一点的矩不因力沿其作用线移动而改变。 4、虚位移是偶想的,极微小的位移,它与时间,主动力以及运动的初始条件无关。 5、设一质点的质量为 m 其速度—与x 轴的夹角为a,则其动量在 x 轴上的投影为 mv =mvcos a o 二、选择题(每题 3分。请将答案的序号填入划线内。) 1、正立方体的顶角上作用着六个大小相等的力,此力系向任一点简化的结果是 ① 主矢等于零,主矩不等于零; ② 主矢不等于零,主矩也不等于零; ③ 主矢不等于零,主矩等于零; ④ 主矢等于零,主矩也等于零。 2、重P 的均质圆柱放在 V 型槽里,考虑摩擦柱上作用一力偶,其矩为 M 时(如图),圆柱处于极限平衡状态。此 时按触点处的法向反力 N A 与N B 的关系为 ① N A = N B ; ② N A > N B ; ③ N A < N B O 3、边长为L 的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图示,若给平板一微小扰动,使其从图示位 置开始倾倒,平板在倾倒过程中,其质心 C 点的运动轨迹是 ①半径为L/2的圆弧; ②抛物线; ③椭圆曲线; ④铅垂直线。 4、在图示机构中,杆 0 A //QB,杆 C 2 C //C 3 D,且 O A = 20cm , C 2 C = 40cm , CM = MD = 30cm 若杆 AO 以角速度 w 3、在自然坐标系中,如果速度u 常数,则加速度a = 0 O =3 rad / s 匀速转动,则D 点的速度的大小为 cm/s ,M 点的加速度的大小为 cm/s

理论力学习题册答案

第一章 静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。 ( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。 ( ) 4、凡是受两个力作用的刚体都是二力构件。 ( ) 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有 ( ) ①二力平衡公理 ②力的平行四边形法则 ③加减平衡力系公理 ④力的可传性原理 ⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a (球A )b (杆AB )c (杆AB 、CD 、整体 )d (杆AB 、CD 、整体

)e(杆AC、CB、整体)f(杆AC、CD、整体 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame ) a(杆AB、BC、整体) b(杆AB、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体

第一章理论力学的基本概念

第一篇 力学基础 第一章 理论力学的基本概念 第一节 静力学的基本概念 B 在力的作用下 绝对不发生变形 的物体称为 _________ 。 A. 液体 改变的物体平移定理 B. 刚体体内任意两点间距离都不会 C. 固体 D.硬物 B. 刚体的平衡条件只是 变形体平衡的 _________ 。 A. 充分条件 刚体的平衡条件不是 B.必要条件 变形体平衡的 C. A 或 B D. A 和 B A 变形体在已知力系的作用下 处于平衡状态 ,那么如将它 看成刚体 ,其平衡 。 A. 不受影响 B.不再平衡 C. 变形增加 体 D. 无法确定 那么如将它看成变形 D 物体处于平衡态 ,是指物体对于周围物体保持 __________ 状态。 A. 静止 B.匀速直线运动 C. 匀加速直线运动 D.静止或匀速直线运动 A 关于力的含义,下列 __________ 是错误的 A. 力是物体的一个基本属性基本量 B. 力是物体间的相互作用 C. 力是物体运动状态发生变化的原因 D. 力是物体形状发生变化的原因 A 关于力的含义,下列 __________ 是错误的。 A. 只要有物体存在,就必然有力存在,力是物体的固有属性 B. 力是物体间的相互作用,孤立的一个物体不存在力 C 刚体的运动有 两种基本的运动形式 A. 匀速运动和加速运动 C.平行移动和定轴转动 C 刚体在运动过程中,若刚体内 ,则 刚体的这种运动称为 刚 体的平动 。 A. 某一直线始终保持不动 刚体的 定轴转动 即刚体的 ________ 。 B. 直线运动和曲线运动 D.平面运动和定轴转动 B. 某一直线始终在同一平面内运动 C ?任一直线始终与原来的位置保持平 行 D.任一直线始终保持转动

理论力学第二章

第2章 力系的等效与简化 2-1试求图示中力F 对O 点的矩。 解:(a )l F F M F M F M M y O y O x O O ?==+=αsin )()()()(F (b )l F M O ?=αsin )(F (c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2 22 1sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF 2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。 解:)(2 )()(j i k i F r F M +-? +=?=F a A O m kN )(36.35) (2 ?+--=+--= k j i k j i Fa m kN 36.35)(?-=F x M 2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm , α = 30°。试求力F 对x 、y 、z 轴之矩。 解: )cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--?-=?=F D A k j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-= 力F 对x 、y 、z 轴之矩为: m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(?-=+-=+-=ααF x M m N 10sin 40)(2?-=-=αF y M m N 5.7sin 30)(2?-=-=αF z M 2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。 习题2-1图 A r A 习题2-2图 (a ) 习题2-3图

理论力学试题及答案

一、选择题(每题3分,共15分)。) 1. 三力平衡定理是--------------------。 ① 共面不平行的三个力互相平衡必汇交于一点; ② 共面三力若平衡,必汇交于一点; ③ 三力汇交于一点,则这三个力必互相平衡。 2. 空间任意力系向某一定点O 简化,若主矢0≠'R ,主矩00≠M ,则此力系简化的最后结果--------------------。 ① 可能是一个力偶,也可能是一个力; ② 一定是一个力; ③ 可能是一个力,也可能是力螺旋; ④ 一定是力螺旋。 3. 如图所示,=P 60kM ,T F =20kN ,A , B 间 的静摩擦因数s f =0.5,动摩擦因数f =0.4,则物块A 所受的摩擦力F 的大小为-----------------------。 ① 25 kN ;② 20 kN ;③ 310kN ;④ 0 4. 点作匀变速曲线运动是指------------------。 ① 点的加速度大小a =常量; ② 点的加速度a =常矢量; ③ 点的切向加速度大小τa =常量; ④ 点的法向加速度大小n a =常量。 5. 边长为a 2的正方形薄板,截去四分 之一后悬挂在A 点,今若使BC 边保持水平,则点A 距右端的距离x = -------------------。 ① a ; ② 3a /2; ③ 6a /7; ④ 5a /6。 二、填空题(共24分。请将简要答案填入划线内。) T F P A B 30A a C B x a a a

1. 双直角曲杆可绕O 轴转动,图 示瞬时A 点的加速度2s /cm 30=A a , 方向如图。则B 点加速度的大小为 ------------2s /cm ,方向与直线------------成----------角。(6分) 2. 平面机构如图所示。已知AB 平行于21O O ,且AB =21O O =L ,r BO AO ==21,ABCD 是矩形板, AD=BC=b ,1AO 杆以匀角速度ω绕1O 轴转动,则矩形板重心1C 点的速度和 加速度的大小分别为v = -----------------, a = --------------。(4分) (应在图上标出它们的方向) 3. 在图示平面机构中,杆AB =40cm ,以1ω=3rad/s 的匀角速度绕A 轴转动,而CD 以2ω=1rand/s 绕B 轴转 动,BD =BC =30cm ,图示瞬时AB 垂直于CD 。若取AB 为动坐标系,则此时D 点的牵连速度的大小为 -------------,牵连加速度的大小为 -------------------。(4分) (应在图上标出它们的方向) 4. 质量为m 半径为r 的均质圆盘, 可绕O 轴转动,其偏心距OC =e 。图示瞬时其角速度为ω,角加速度为ε。则该圆盘的动量p =--------------,动量矩 =o L ------------------------------------,动能T = -----------------------,惯性力系向O 点的简化结果 为----------------------------------------------------------。 (10分) (若为矢量,则应在图上标出它们的方向) m 3m 3m 4 03O A B A a B A ω D C 1O 2 O 1 C A B C D 1ω2 ωe C ε O

理论力学习题解答第七章

7-1. 在图示机构中,曲柄OA上作用一力偶,其矩为M,另在滑块D上作用水平力F。机构尺寸如图所示。求当机构平衡时,力F与力偶矩M的关系。 7-2. 图示桁架中,已知AD=DB=6m,CD=3m,节点D处载荷为P。试用虚位移原理求杆3的内力。

7-3. 组合梁由铰链C 铰接AC 和CE 而成,载荷分布如图所示。已知跨度l=8m ,P=4900N ,均布力q=2450N/m ,力偶矩M=4900N ?m ;求支座反力。 N 2450N 14700N 2450==-=E B A F F F ,, 7-4 组合梁由水平梁AC 、CD 组成,如图所。已知:F 1= 20kN ,F 2 = 12kN ,q = 4kN/m ,M = 2kN ·m 。不计梁自重,试求:固定端A 和支 座B 处的约束力。 组合梁由水平梁AC 、CD 组成,如图12-16a 所。已知:F 1= 20kN ,F 2 = 12kN ,q = 4kN/m ,M = 2kN ·m 。不计梁自重,试求:固定端A 和支座B 处的约束力。 2

(a) (b) 2 2

(d ) (e) 图12-16 例题12-5图 解:组合梁为静定结构,其自由度为零,不可能发生虚位移。为能应用虚位移原理确定A 、B 二处的约束力,可逐次解除一个约束,代之以作用力,使系统具有一个自由度,并解除约束处的正应力视为主动力;分析系统各主动力作用点的虚位移以及相应的虚功,应用虚位移原理建立求解约束力的方程。 为方便计算,可事先算出分布载荷合力大小及作用点。对于本例: 2 2 δr

kN 41=?==q F F K H 各作用点如图12-16b 所示,且HC = CK = 0.5m 。 1.计算支座B 处的约束力 解除支座B ,代之以作用力F N B ,并将其视为主动力。 此时,梁CD 绕点C 转动,系统具有一个自由度。设梁CD 的虚位移为?δ,则各主动力作用点的虚位移如图12-16b 所示。 应用虚位移原理,有 0δ=∑ F W , 0δ30sin δδδ2N =?+--D B B K K r F M r F r F ? (a ) 图12-16b 中的几何关系, ???δ2δ; δδ; δ5.0δ===D B K r r r 将上述各式代入虚位移原理表达式(a ),有 0δ)5.0(2N =+--?F M F F B K (b ) 因为0δ≠?,于是,由式(b )求得支座B 的约束力为 kN 125.02N =-+=M F F F K B (c ) 2.求固定端A 处的约束力偶 解除A 端的转动约束,使之成为允许转动的固定铰支座,并代之以约束力偶M A , 将M A 视为主动力偶(图12-16c )。这时,梁AC 和CD 可分别绕点A 、B 转动,系统具有一个自由度。设梁AC 有一虚位移δβ,则梁AC 、CD 上各主动力作用点相应的虚位移如图12-16c 所示。 根据虚位移原理

理论力学试题和答案

理论力学试题和答案

理论力学(五) 2 理论力学期终试题 (一) 单项选择题(每题2分,共4分) 1. 物块重P ,与水面的摩擦角o 20m ?=,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( )。 A 静止(非临界平衡)状态 B 临界平衡状态 C 滑动状态 D 不能确定 第1题图 第2题图 2. 图(a)、(b)为两种结构,则( )。 A 图(a)为静不定的,图(b)为为静定的 B 图(a)、(b)均为静不定的 C 图(a)、(b)均为静定的 D 图(a)为静不定的,图(b)为为静定的 (二) 填空题(每题3分,共12分) 1. 沿边长为m a 2=的正方形各边分别作用有1F ,2F ,3F ,4F ,且1F =2F =3F =4F =4kN ,该力系向B 点简化的结果为: 主矢大小为R F '=____________,主矩大小为B M =____________ 向D 点简化的结果是什么? ____________。 (a)(b) P Q o 30 D C A B F 1 F 2 F 3 F 4 R r θ A B O

理论力学(五) 3 第1题图 第2题图 2. 图示滚轮,已知2m R =,1m r =,ο30=θ,作用于B 点的力4kN F =,求力F 对A 点之矩A M =____________。 3. 平面力系向O 点简化,主矢R F '与主矩O M 如图。若已知10kN R F '=,20kN m O M =g ,求合力大小及作用线位置,并画在图上。 第3题图 第4题图 4. 机构如图,A O 1与B O 2均位于铅直位置,已知13m O A =,25m O B =,2 3rad s O B ω=,则杆A O 1的角速度A O 1ω=____________,C 点的速度C υ=____________。 (三) 简单计算题(每小题8分,共24分) 1. 梁的尺寸及荷载如图,求A 、B 处的支座反力。 O R F ' O M O 2 O 1 C A B 2O B ω A 1m 1m 2m q 0=2kN/m M =4kN·m P =2kN B

理论力学第七章题解

理论力学第七章题解 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

理论力学题解 第七章思考题 7.1. 建立适当的坐标系,单摆悬挂点A始终在轴上,摆锤为 B,摆长,则摆锤的约束方程为:, ,,。可见, 摆锤受完整、双侧、非稳定约束。是否受理想约束,要视悬挂点的约束情况而定。b5E2RGbCAP 7.2. 轮I、II、III的转角可唯一确定力学系统的位置, 被确定后,轮I及绳的位置被确定,确定后,轮II轮III 的位置随之确定。为系统的广义坐标。系统的自由度为 3。p1EanqFDPw 7.3. 由于约束方程可积,积分为:<为积分常 数),所以该约束属于完整约束。 7.4. 7.5. 7.6. <1)由于已知平板的运动规律,所以圆轮与平板的接触点的虚位移<相对固定平面)=<相对平板)+<平板牵连运动引起 的)中的。又因圆轮作无滑滚动,因此。于是圆轮所受 约束力的虚功之和,圆轮受理想约束。<2)由于平 板运动规律没有预先给定,,,圆轮 受到非理想约束。如果以圆轮和平板作为一个系统,约束力的虚功之和为零,系统受理想约束。DXDiTa9E3d

7.7. 7.8. 7.9. 因<是质点1相对质点2的相 对虚位移)。所以或,都会导致两约束力的虚功之和 为零。 7.10. 7.11. 第七章习题 7.1. 杆的自由度为1,以杆与水平方向的夹角作为广义坐标,根 据虚功原理,

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以 n3 预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。 若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。 2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。 2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。 2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,

01第一章《理论力学》作业答案

40 1-图[习题1-3] 计算图1-35中321,,F F F 三个力分别在z y x ,,轴上的投影。已知 kN F 21=,kN F 12=, kN F 33=。 解: )(2.16.025 3 11kN F F x -=?-=? -= )(6.18.0254 11kN F F y =?=?= 01=z F )(424.053 45sin 1cos sin 02222kN F F x =??==θγ )(566.05 4 45sin 1sin sin 02222kN F F y =??==θγ )(707.045cos 1cos 0222kN F F z =?==γ 03=x F 03=y F )(333kN F F z == [习题1-8] 试求图示的力F 对A 点之矩,,已知m r 2.01=, m r 5.02=,N F 300=。 解:010012030cos 60sin )30sin (60cos )(r F r r F F M A ?+--= )(152 32.023300)5.02.05.0(5.0300)(m N F M A ?-=??? +?-?-=

43 1-?图[习题1-11] 如图1-43所示,钢绳AB 中的张力kN F T 10=。写出该张力T F 对O 点的矩的矢量表达式。长度单位为m 。 解: 2)21()01(22=-+-=BC 2318)04()12()10(2 2 2==-+-+-=AB z y x F F F k j i F M 420 )(0→ → → = 式中, )(357.2212 3210cos cos kN F F T Tx =?? =?=θγ )(357.22 12 32 10sin cos kN F F T Ty -=? ? -=?-=θγ )(428.92 3410sin kN F F T Tz -=? -=-=γ 故428 .9357.2357.2420)(0--=→ → → k j i F M 357.2357.24428.9357.22---=→ →→→j i k i )(357.24)357.2428.9(2→ → → → --?---=j i k i → → → -+-=k j i 714.4428.9428.9 ()m kN ? [习题1-14(c)] 画杆AB 的受力图。 解: (1)确定研究对象 研究对象: 杆AB 。 (2)取分离体 把研究对象(即杆AB )从物体系统中分离出来。也就是重新画杆AB 。 (3)画主动力 作用在梁AB 上的主动力有:P F 。

大学理论力学期末试题及答案

理论力学试题 一`作图题(10分) 如下图所示,不计折杆AB 和直杆CD 的质量,A 、B 、C 处均为铰链连接。试分别画出图中折杆AB 和直杆CD 的受力图。 二、填空题(30分,每空2分) 1.如下图所示,边长为a =1m 的正方体,受三个集中力的作用。则将该力系向O 点简化可得到: 主矢为=R F ρ ( , , )N ; 主矩为=O M ρ ( , , )N.m 。 2.如下图所示的平面机构,由摇杆A O 1、B O 2,“T 字形”刚架ABCD ,连杆DE 和竖直滑块E 组成,21O O 水平,刚架的CD 段垂直AB 段,且AB =21O O ,已知 l BO AO ==21,DE=l 4 ,A O 1杆以匀角速度ω绕 1O 轴逆时针定轴转动,连杆 DE 的质量均匀分布且大小为 M 。 根据刚体五种运动形式的定义,则“T 字形”刚架ABCD 的运动形式为 ,连杆DE 的运动形式为 。 在图示位置瞬时,若A O 1杆竖直,连杆DE 与刚架CD 段的夹角为o CDE 60=∠,则在该瞬时:A 点的速度大小为 ,A 点的加速度大小 为 ,D 点的速度大小为 ,连杆DE 的速度瞬心到连杆DE 的质心即其中点的距离为 ,连杆DE 的角速度大小为 ,连杆DE 的动量大小为 ,连杆DE 的动能大小为 。 三、计算题(20分) C 处为中间A A r v C P F ρ D C 2O 1O ω E B A D

铰。所受荷载如图所示。已知F=40 kN ,M= 20kN ·m ,q=10kN/m ,a=4m 。试求A 处和B 处约束力。 四、计算题(20分) 机构如右上图所示,1O 和2O 在一条竖直线上,长度mm A O 2001=的曲柄A O 1的一端A 与套筒 A 用铰链连接,当曲柄A O 1以匀角速度s rad /21 =ω绕固定轴1O 转动时,套筒A 在摇杆B O 2上滑动 并带动摇杆B O 2绕固定轴2O 摆动。在图示瞬时,曲柄A O 1为水平位置,02130=∠B O O 。 试求此 瞬时:(1)摇杆B O 2的角速度2ω;(2)摇杆B O 2的角加速度2α 五、计算题(20分) 如下图所示,滚子A 沿倾角为θ=0 30的固定斜面作纯滚动。滚子A 通过一根跨过定滑轮B 的绳子与物块C 相连。滚子A 与定滑轮B 都为均质圆盘,半径相等均为r ,滚子A 、定滑轮B 和物块C 的质量相等均为m ,绳子的质量忽略不计。系统由静止开始运动,试求: (1)物块C 的加速度; (2)绳子对滚子A 的张力和固定斜面对滚子A 的摩擦力。 答案 一、作图题(10分) (5分) (5分) 二、填空题(30分,每空2分) 1. -1,2,-3 ; -4,2,2 2. 平移或平动, 平面运动 。 l ω, l 2ω,l ω ,l 2, 2 ω , l M ω, 2232l M ω 。 三、计算题(20分) 解:(1)取折杆BC 为研究对象,画出受力图(4分) 列平衡方程组中的一个方程得: RB

理论力学课后习题第二章解答

理论力学课后习题第二章解答 2.1 解 均匀扇形薄片,取对称轴为轴,由对称性可知质心一定在轴上。 有质心公式 设均匀扇形薄片密度为,任意取一小面元, 又因为 所以 对于半圆片的质心,即代入,有 2.2 解 建立如图2.2.1图所示的球坐标系 x x 题2.1.1图 ? ?=dm xdm x c ρdS dr rd dS dm θρρ==θcos r x =θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?? ????2 π θ= πππ θθa a a x c 342 2sin 32sin 32=?==

把球帽看成垂直于轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为。 则 由对称性可知,此球帽的质心一定在轴上。 代入质心计算公式,即 2.3 解 建立如题2. 3.1图所示的直角坐标,原来与共同作一个斜抛运动。 当达到最高点人把物体水皮抛出后,人的速度改变,设为,此人即以 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离 题2.2.1图 z ρ)(222z a dz y dv dm -===ρπρπρz )2()(432 b a b a dm zdm z c ++-==? ?人 W y 题2.3.1图 x v x v αcos v 0=水平v 1s

① ② ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 可知道 水平距离 跳的距离增加了 = 2.4解 建立如图2.4.1图所示的水平坐标。 以,为系统研究,水平方向上系统不受外力,动量守恒,有 ① 对分析;因为 ② 在劈上下滑,以为参照物,则受到一个惯性力(方向与加速度方向相反)。如图2.4.2图所示。所以相对下滑。由牛顿第二定律有 t a v s ?=cos 01gt v =αsin 0ααcos sin 20 1g v s =)(cos )(0u v w Wv v w W x x -+=+αu w W w a v v x ++ =cos 0αααsin )(cos sin 0202uv g W w w g v t v s x ++==12s s s -=?αsin )(0uv g w W w + 题2.4.1图 θ题2.4.2图 1m 2m 02211=+x m x m 1m 相对绝a a a +=1m 2m 2m 1m 21x m F -=惯2m 1m 2m

相关主题
文本预览
相关文档 最新文档