一种自适应背景差分运动目标检测算法
- 格式:pdf
- 大小:786.21 KB
- 文档页数:5
基于背景和帧间差分法的运动目标提取作者:熊英来源:《计算机时代》2014年第03期摘要:在自动人脸识别系统中,人体目标的检测是该系统识别人脸的前期关键步骤之一。
为了能快速准确地检测出运动的人体目标,提出了背景差分法和帧间差分法相结合的运动目标提取检测方法。
针对视频中的背景因镜头摆动或物体的移入/移出而有所变动,给出了几种提取背景的方法,比较各种方法后决定采用中值法快速地进行背景建模,随后采用自适应背景更新,结合两种差分法检测运动目标。
通过实验验证了本文算法的有效性。
关键词:运动目标;背景差分法;帧间差分法;背景建模中图分类号:TP391 文献标志码:A 文章编号:1006-8228(2014)03-38-040 引言对于人体生物特征的识别,可以说从古到今一直受到人类的关注。
随着智能监控、人机交互技术的发展,具有视频分析处理能力并可对运动目标实现检测和跟踪的智能化视频监控系统己成为研究的热点和主流[1]。
视频图像中运动目标检测相对于静态图像而言稍显复杂一些,运动目标检测是指在视频图像序列中判断是否有前景目标的运动,如果有前景目标,则对目标进行初始定位的检测。
视频是由时间上连续的图像序列构成的,故对于视频中运动目标的检测是按照一定的周期从视频序列中提取出一张张静态图像帧来实现检测的,因此视频序列图像与静态图像中的目标检测方法存在相似的地方,而不同的地方就在于运动目标时间上的连惯性[2]。
针对视频图像的特殊性,我们常用于运动目标检测的方法有以下几种[3]。
1 运动目标检测的方法1.1 背景差分法背景差分法(Background Difference Method)是利用当前图像与预存的背景图像作差分,再利用阈值来检测运动区域的一种动态目标识别技术。
背景差分法的原理如图1所示。
[当前图像][—] [二值化][连通性分析][目标][背景图像][非目标][f][b][R][Y][N] [D]图1 背景差分法的识别过程首先通过式⑴求出当前图像f与背景图像b的差,即⑴然后根据式⑵对差分结果图像D进行二值化,再对二值化之后的图像R进行连通性分析,即⑵当某一连通区域的面积大于一定的阈值T时,则认为检测到目标,并认为这个连通的区域就是提取的目标[4]。
帧间差分法运动目标检测过程及原理帧间差分法是一种常用的运动目标检测方法,依靠帧与帧之间的差异来实现对运动目标的检测。
其原理是通过计算相邻帧之间的差异,将运动目标从静态背景中分离出来,从而实现目标检测。
1. 获取视频流或者图像序列,并将其转换为灰度图像。
该过程可以使用OpenCV等图像处理库实现。
2. 按照时间顺序,每隔一定的时间间隔(例如,每秒钟、每隔几帧)取一帧图像,形成连续的图像序列(也可以直接读取视频流)。
如果采用的是视频流,还需将视频流的时间基准与实际时间对齐。
3. 对于每一帧图像,先将其与上一帧图像做差,得到当前帧的差分图像。
若没有前一帧图像,则将当前帧图像作为背景参考。
4. 对于差分图像,可以应用阈值分割算法(例如Otsu算法、自适应阈值法等)来将其二值化。
此时,目标物体所在的像素值区域将为前景,而背景则为另一种像素值。
5. 对于二值化后的图像,可以应用形态学处理(例如开操作、闭操作等)来去除噪声点和孔洞,从而更准确地提取目标轮廓。
6. 最后,可以利用cv2.findContours()函数查找目标的轮廓。
这些轮廓可以代表单个运动目标或者多个运动目标。
且可以通过测量轮廓的面积、宽度、高度、位置等属性,进一步对目标进行分类与识别。
总结起来,帧间差分法是一种基于视频或图像序列的运动目标检测方法,它的优点是实现简单、速度较快,且对于CMOS或CCD摄像头等图像采集设备不稳定、背景不纯,亮度不均等问题具有较好的适应性。
不足之处在于对于复杂的场景或目标缩放、旋转、部分遮挡等情况,其检测效果容易受到影响。
因此,在实际应用中,我们需根据具体情况选择不同的算法方法来实现更准确、可靠的目标检测。
《运动目标检测和跟踪算法的研究及实现》一、引言运动目标检测和跟踪是计算机视觉领域中的一项重要技术,广泛应用于智能监控、自动驾驶、人机交互等众多领域。
本文旨在研究并实现一种高效、准确的运动目标检测和跟踪算法,为相关领域的研究和应用提供参考。
二、运动目标检测算法研究1. 背景及意义运动目标检测是计算机视觉中的一项基础任务,其目的是从视频序列中提取出感兴趣的运动目标。
传统的运动目标检测方法主要包括帧间差分法、背景减除法等,但这些方法在复杂场景下往往存在误检、漏检等问题。
因此,研究一种适用于复杂场景的、高效的、准确的运动目标检测算法具有重要意义。
2. 算法原理及实现本文采用基于深度学习的运动目标检测算法。
该算法利用卷积神经网络(CNN)提取视频帧中的特征,并通过区域生成网络(RPN)生成候选目标区域。
接着,利用分类网络对候选区域进行分类,确定是否为运动目标。
最后,通过边界框回归和NMS (非极大值抑制)等技术对检测结果进行优化。
在实现过程中,我们采用了PyTorch等深度学习框架,利用GPU加速计算,提高了算法的运算速度。
同时,我们还针对不同场景的实际情况,对算法进行了优化和改进,提高了算法的准确性和鲁棒性。
三、运动目标跟踪算法研究1. 背景及意义运动目标跟踪是在检测出运动目标的基础上,进一步对目标进行跟踪和定位。
传统的运动目标跟踪方法主要包括基于特征的方法、基于模型的方法等,但这些方法在复杂场景下往往存在跟踪不准确、易丢失等问题。
因此,研究一种适用于复杂场景的、稳定的、准确的运动目标跟踪算法具有重要意义。
2. 算法原理及实现本文采用基于深度学习的Siamese网络进行运动目标跟踪。
Siamese网络通过学习目标模板和搜索区域的特征表示,实现目标的快速定位和跟踪。
在实现过程中,我们采用了离线训练和在线更新的方式,提高了算法的准确性和适应性。
同时,我们还结合了光流法等技术,进一步提高了算法的稳定性和准确性。
帧间差分法运动目标检测过程及原理帧间差分法是一种常用的运动目标检测方法,它通过比较相邻帧之间的差异来判断是否存在运动目标。
其基本原理是利用目标在连续帧之间的运动导致像素值的变化,通过对像素值差异的分析来判断是否存在目标。
1. 选择连续的帧:首先选择需要进行运动目标检测的视频序列,并选择连续的几帧作为输入。
通常情况下,选择相邻的两帧或者多帧进行比较。
2. 图像预处理:对选取的帧进行预处理,包括图像增强、降噪等操作。
常用的预处理方法包括平滑滤波、中值滤波等。
3. 帧间差分计算:对连续帧之间的像素进行差分计算,得到差分图像。
差分图像可以通过计算相邻像素的差异来获得,常用的差分计算方法包括绝对差分、平方差分等。
4. 二值化处理:将差分图像进行二值化处理,将差异像素标记为目标像素,无差异像素标记为背景像素。
常用的二值化方法包括阈值法、自适应阈值法等。
5. 目标提取:从二值化的差分图像中提取出目标区域。
可以通过连通区域分析、形态学操作等方法来实现目标提取。
6. 目标跟踪:将提取出的目标区域与原始图像进行叠加,实现目标的跟踪。
可以通过目标的位置、大小等信息来实现目标的跟踪。
帧间差分法的原理是基于连续帧之间的差异来判断是否存在目标。
当目标发生运动时,连续帧之间的像素值会发生变化,差分图像中会出现明显的差异区域。
通过对差分图像进行二值化和目标提取操作,可以得到目标的位置和形状信息。
进一步结合目标跟踪算法,可以对目标进行跟踪和分析。
帧间差分法具有简单、快速、实时性好等优点,适用于对静态相机下的运动目标进行检测。
由于光照变化、背景噪声等因素的干扰,帧间差分法也存在一定的局限性。
在实际应用中通常需要结合其他方法来进行运动目标检测。
一种基于背景减法和帧差的运动目标检测算法陈文会,张晶,樊养余,马爽(西北工业大学电子信息学院,陕西西安710072)摘要:针对帧差分法易产生空洞以及背景减法不能检测出与背景灰度接近的目标的问题,提出了一种将背景减和帧差法相结合的运动目标检测算法。
首先利用连续两帧图像进行背景减法得到两种差分图像,并用最大类间与类内方差比法得到合适的阈值将这两种差分图像二值化,然后将得到的两种二值化图像进行或运算,最后利用图像形态学滤波得到准确的运动目标。
实验结果表明,该算法简单、易实现、实时性强。
关键词:运动目标检测;背景差分;帧差法;最大类间与类内方差比法;形态学滤波中图分类号:TP391.4文献标识码:A文章编号:1674-6236(2013)03-0024-03A method based on background subtraction and frame difference algorithmfor moving target detectionCHEN Wen -hui ,ZHANG Jing ,FAN Yang -yu ,MA Shuang(School of Electronics and Information ,Northwestern Polychechnical University ,Xi ’an 710072,China )Abstract:For the frame difference method is easy to produce the hollow and background subtraction is not detected if background is close to the target problem ,a method of detection combining background subtraction and frame difference is presented.The first use of two successive frames of image background subtraction from the two image difference ,and the maximum between class and within class variance ratio method to obtain the proper threshold will be the two difference images of the two values ,and then obtained the two values of the two image or operation ,finally using image morphological filtering to obtain accurate moving target.The experimental results show that ,the algorithm is simple ,easy to realize and strong real -time performance.Key words:moving target detection ;background subtraction ;frame difference ;maximum between class and within classvariance ratio method ;morphological filtering收稿日期:2012-09-11稿件编号:201209065作者简介:陈文会(1963—),男,陕西西安人,副教授。
帧间差分法运动目标检测过程及原理帧间差分法是一种常用的运动目标检测方法,它通过比较视频序列中不同帧之间的差异来检测运动目标,从而实现目标跟踪和识别。
本文将介绍帧间差分法的运动目标检测过程及原理。
帧间差分法的运动目标检测过程主要包括以下几个步骤:1. 视频帧获取:首先需要获取视频序列,可以通过摄像头、摄像机等设备来获取。
2. 帧间差分处理:将视频序列中相邻的两帧进行差分处理,得到两帧之间的差异,以检测目标的运动情况。
差分处理可以使用像素级的差异或者区域级的差异进行计算。
3. 运动目标检测:通过帧间差分处理得到的差异图像,可以进行阈值处理、边缘检测、连通域分析等操作,以提取出视频序列中的运动目标。
4. 目标跟踪与识别:最后可以对提取出的运动目标进行跟踪和识别,以实现对目标的监控与分析。
二、帧间差分法的原理帧间差分法的原理是基于视频序列中连续帧之间的差异来进行运动目标检测的。
具体来说,帧间差分法的原理包括以下几个方面:1. 差分图像计算:帧间差分法首先通过比较视频序列中相邻帧的像素值,计算出两帧之间的差异。
常见的计算方式包括绝对差分、均方差分等,可以得到表示两帧之间差异的差分图像。
1. 视频监控:帧间差分法可以用于视频监控系统中对目标的运动进行检测与跟踪,从而实现对监控区域的实时监控与预警。
2. 交通监控:在交通监控系统中,帧间差分法可以用于车辆与行人的运动检测与识别,以实现交通流量统计、违规行为检测等功能。
3. 智能驾驶:在智能驾驶系统中,帧间差分法可以用于实时检测路面上的车辆、行人等运动目标,以实现自动驾驶、避障等功能。
4. 人体姿态识别:帧间差分法可以用于对人体姿态的运动进行检测与分析,从而实现人体姿态识别、动作分析等功能。
优点:2. 对光照变化不敏感:帧间差分法在运动目标检测过程中对光照变化不敏感,能够适应不同光照条件下的目标检测需求。
3. 算法简单:帧间差分法的算法相对简单,计算量小,适用于资源有限的嵌入式系统。
基于帧间差分法的目标运动检测算法
摘要
针对目前视频监控领域中,目标运动检测技术在视频分析研究中具有很大的应用价值,本文提出了一种基于帧间差分法的目标运动检测算法。
该算法通过采用基于帧间差分法的处理技术来实现对目标物体的运动检测,提高了目标物体的跟踪精度和算法的鲁棒性。
实验证明该算法较传统方法具有更好的检测效果和更高的遥测率,具有一定的实际应用价值。
关键词:帧间差分法;目标运动检测;跟踪精度;算法鲁棒性;遥测率。
一、背景介绍
目标运动检测技术在视频图像处理领域中具有广泛的应用价值,特别是在视频监控领域中有着广泛应用。
目标运动检测技术可以通过对视频图像进行处理,对图像中的目标物体进行跟踪和检测,从而实现对目标物体的监控。
目前,针对目标物体的运动检测技术主要有两种:基于背景差分法和基于帧间差分法。
其中,基于帧间差分法的目标运动检测技术在处理速度和检测精度方面具有许多优势。
本文旨在。