当前位置:文档之家› 风荷载计算教学教材

风荷载计算教学教材

风荷载计算教学教材
风荷载计算教学教材

风荷载计算

4.2风荷载

当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

4.2.1单位面积上的风荷载标准值

建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:

1.基本风压值Wo

按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的大值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。

对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100一遇的风压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。

2.风压高度变化系数μz

《荷载规范》把地面粗糙度分为A、B、C、D四类。

A类:指近海海面、海岸、湖岸、海岛及沙漠地区;

B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;

C类:指有密集建筑群的城市市区;

D类:指有密集建筑群且房屋较高的城市市区;

计算公式

A类地区=1.379(z/10)0.24

B类地区= (z/10)0.32

C类地区=0.616(z/10)0.44

D类地区=0.318(z/10)0.6

位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。

3.风载体型系数μs

风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。

计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型数或由风洞试验确定。几种常用结构形式的风载体型系数如下图

注:“+”代表压力;“-”代表拉力。

4.风振系数βz

风振系数βz反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度、基本风压。《荷载规范》规定对于基本自振周期大于0.25s的工程结构,如房屋、屋盖及各种高耸结构,以及对于高度大于30m且高宽比大于1.5的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。其中风振系数βz可按下式计算:

(-2)

式中:ψz——基本振型z高度处的振型系数,当高度和质量沿高度分布均匀时,可以近似用z/H代替型系数;

ζ——脉动增大系数,查表时需要参数ω0T2,其中ω0为基本风压值,T为结

基本周期,可用近似方法计算;

υ——脉动影响系数,

μz——风压高度变化系数,

脉动增大系数ξ

ω0T1(kNs/m) 0.01 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60

钢结构 1.47 1.57 1.69 1.77 1.83 1.88 2.04 2.24 2.36

有填充墙的房屋钢结构1.26 1.32 1.39 1.44 1.47 1.50 1.61 1.73 1.81

混凝土及砌体结构 1.11 1.14 1.17 1.19 1.21 1.23 1.28 1.34 1.38

ω0T1(kNs/m) 0.80 1.00 2.00 4.00 6.00 8.00 10.00 20.00 30.00

钢结构 2.46 2.53 2.80 3.09 3.28 3.42 3.54 3.91 4.14

有填充墙的房屋钢结构 1.88 1.93 2.10 2.30 2.43 2.52 2.60 2.85 3.01

混凝土及砌体结构 1.42 1.44 1.54 1.65 1.72 1.7 1.82 1.96 2.06

注:计算ω0T1时,对地面粗糙度B类地区可直接代入基本风压,而对A类、C类和D类地区应按当地的本风压分别乘以1.38、O.62和0.32后代入。

根据我国的实测数据进行计算,再结合我国的工程设计经验加以修正而确定的c值列于表

C 0.48 0.49 0.49 0.48 0.46 0.43 0.43 0.41

D 0.43 0.46 0.49 0.49 0.48 0.47 0.46 0.45

5.0 A 0.52 0.53 0.51 0.49 0.46 0.44 0.42 0.39

B 0.50 0.53 0.52 0.50 0.48 0.45 0.44 0.42

C 0.47 0.50 0.52 0.52 0.50 0.48 0.47 0.45

D 0.43 0.48 0.52 0.53 0.53 0.52 0.51 0.50

8.0 A 0.53 0.54 0.53 0.51 0.48 0.46 0.43 0.42

B 0.51 0.53 0.54 0.52 0.50 0.49 0.46 0.44

C 0.48 0.51 0.54 0.53 0.52 0.52 0.50 0.48

D 0.43 0.48 0.54 0.53 0.55 0.55 0.54 0.53

4.2.2总体风荷载

1.总体风荷载

设计时,使用总风荷载计算风荷载作用下结构的内力及位移。总风荷载为建筑物各个表面承受风力的合力,是沿建筑物高度变化的线荷载。通常,按x、y两个互相垂直的方向分别计算总风荷载。按下计算z高度处的总风荷载标准

值:(4.2 3)

式中:n——建筑外围表面数;

Bi——第i个表面的宽度;

——第i个表面的风载体型系数;

——第i个表面法线与总风荷载作用方向的夹角如图4.2-5

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

9、2.6风荷载标准值计算

2.6风荷载标准值计算 作用在屋面梁和楼面梁节点处的集中风荷载标准值: 为了简化计算起见,通常将计算单元范围内外墙面的分布风荷载,化为等量的作用于楼面集中风荷载,计算公式如下: 0)(/2k z z i j W w h h B βμ=+ 式中: 基本风压200.5/kN m w =;结构基本周期1(0.06~0.09)0.24~0.36n s s T ==,取 10.30.25s s T =>考虑风振影响。作用在屋面梁和楼面梁节点处的集中风荷载标准值 为:w=βz ·μs ·μz ·ωo ,对于矩形平面μs =1.3;μz 可査荷载规范底层柱高取h=4.3+0.45=4.75m 。计算过程如下表中所示W k =β z μ s μz 0ω. 。0ωT 12 =0.5 ×0.32 =0.045, 由于地面粗糙度为C 类,0ωT 12 应乘以0.62,得0.0279查表ξ=1.15 ;H/B=16.45 /82.5=0.20 查表V=0.40。 (1)各楼层位置处的zi β值计算结果zi β=1+ξVZ/H z μ 表2.6-1 (2)各楼层位置处的风荷载标准值Fi= Ai zi βμs z μωo 表2.6-2

水平风荷载作用下框架内力分析 1) 柱端弯矩 如图2.6-2 h y V M )(1上-= 图2.6-2柱端弯矩计算图 2)梁端弯矩:根据结点平衡求出 对于边柱如图2.6-3 下上i i i M M M += 3)对于中柱如图:2.4-3 Vyh M =下

按两端线刚度分配 右左左 下上左) (i i i M M M i i i ++= 图2.6-3 梁端弯矩计算 4)水平荷载引起的梁端剪力、柱轴力 如图2.6-4所示: 梁端剪力: l M M V i i 右 左+= 柱轴力:边柱 ∑==N i R R V N 1 中柱 ∑=-=N i R R R V V N )(21 图2.6-4 梁端剪力计算 1/1轴框架各柱的杆端弯矩、梁端弯矩计算过程见下表2.6-3表2.6-4 表2.6-3 表2.6-4 梁端弯矩剪力 右 左右 下上右) (i i i M M M i i i ++=

常用活荷载取值参考

地下室小型汽车停车库:4KN/㎡ 地下室顶板施工活荷载:10KN/㎡(未计覆土) 消防车折标等效均布荷载标准值:20KN/㎡ 屋面花园:3KN/㎡ 上人屋面:2KN/㎡ 裙房层面施工活荷载:4KN/㎡ 电梯机房:7KN/㎡ 空调机房:8N/㎡ 发电机房、变配电房:10N/㎡ 住宅:厅、厨房、卫生间、幼儿园:2KN/㎡;阳台:2.5KN/㎡ 会所:3.5N/㎡ 活荷载如何选取: 1,活动的人较少, 2.0 2,活动的人较多且有设备, 2.5 3,活动的人很多且有较重设备, 3.0 4,活动的人很集中,有时很挤或有较重设备, 3.5 5,活动的性质很剧烈, 4.0 6,储存物品的仓库, 5.0 7,有大型的机械设备, 6.0-7.5 普通瓷砖楼面:80厚4kn/m2 90厚4.2kn/m2 100厚4.5kn/m2 120厚 5.05kn/m2 地暖楼面:80厚4.8kn/m2 90厚5.1kn/m2 100厚5.1kn/m2 120厚5.8kn/m2 工业建筑楼面,操作荷载对板面一般取2.0KN/M2 对堆料较多的车间,取2.5KN/M2 如果在某个时期有成品,半成品堆放的特别严重时,取4.0KN/M2 会所一般房间取2.5,活动的人较多的房间取3.0比较合适。 还有比较特殊的建筑如医院的医技楼和住院楼,设备的种类多,这类房间的活荷载取值就需要按等效换算来确定。 公共卫生间8。0 住宅有120隔墙的我取3.0 楼面活荷载:(KN/M2) 设不冲按摩式浴缺的卫生间 4 有分隔的蹲而公共卫生间(包括填料、隔墙) 8或按实际 阶梯教室 3 微机电子计算机房 3 大中型电子计算机房 >5或按实际 银行金库及标据仓库 10 制冷机房 8 水泵房 10 变配电房 10

竖向荷载计算--分层法例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的 线刚度值( EI i l )。 图1 解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。 图2 二层计算简图

图3 底层计算简图 2、计算修正后的梁、柱线刚度与弯矩传递系数 采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底 层柱的弯矩传递系数为1 2 ,其余各层柱的弯矩传递系数为 1 3 。各层梁的弯 矩传递系数,均为1 2 。 图4 修正后的梁柱线刚度

图5 各梁柱弯矩传递系数 3、计算各节点处的力矩分配系数 计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如: G节点处: 7.63 0.668 7.63 3.79 G H G H GH GH GD Gj G i i i i i μ==== ++ ∑ GD 3.79 0.332 7.63 3.79 GD GD GH GD Gj G i i i i i μ==== ++ ∑ H节点处: 7.63 0.353 7.63 3.7910.21 HG HG HG HG HE HI Hj H i i i i i i μ==== ++++ ∑ 3.79 0.175 7.63 3.7910.21 HI HI HI HG HE HI Hj H i i i i i i μ==== ++++ ∑ 10.21 0.472 7.63 3.7910.21 HE HE HE HG HE HI Hj H i i i i i i μ==== ++++ ∑ 同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

工程中风压-风荷载理论定义和计算方法

第一章风、风速、风压和风荷载 第一节风的基本概念 风是空气从气压大的地方向气压小的地方流动而形成的。气流一遇到结构的阻塞,就形成高压气幕。风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。 风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。 对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。 不同的季节和时日,町以有不同的风向,给结构带来不同的影响。每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。关于需考虑风向的参数将在下面有关章节中加以说明。 风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。这样,结构上除水平分风力外,还存在上下作用的竖向分风力。竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。但其值也较水平风力为小,但属于同一数量级。 根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其他物理量都看成不随时间而改变的量,考虑到风的长周期远远地大于一般结构的自振周期,因而这部分风 虽然其本质是动力的,但其作用与静力作用相近,因此可认为,其作用性质相当于静力。脉动风是由于风的不规则性引起的,它的强度是随时间按随机规律变化的。由于它周期较短,因而应按动力来分析,其作用性质完全是动力的。 研究表明,脉动风的影响与结构周期、风压、受风面积等有直接影响,这些参数愈大,影响也愈大,兼之结构上还有平均风作用,因而对于高、细、长、大等柔性结构,风的影响起着很大的、甚至决定性的作用。 第二节风力强度表示法 不同的风有不同的特征,但它的强度常用风速来表达。最常用的风速分类有两种,即范围风速和工程风速。 一、范围风速 将风的强度划分为等级,用一般风速范围来表达。常用的有:蒲福风速表;福基达龙卷风风力等级表。 (一)蒲福风速表

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算 在编制扣件式钢管脚手架安全施工组织设计时,作用于脚手架的水平风荷载,往往是计算的难点之一。我们依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《脚手架规范》)和国家现行《建筑结构荷载规范》(GBJ9-87)(以下简称《荷载规范》)的有关规定,对风荷载的计算参数进行分析,找出规律性的内涵,以便准确地计算,确保施工安全。 脚手架规范第4.2.3条规定:作用于脚手架的水平风荷载标准值,应按下式计算: ωk=0.7μzμsω0 式中ωk——风荷载标准值(kN/m2) μz——风压高度变化系数; μs——脚手架风荷载体型系数 ·ω0——基本风压(kN/m2)。 计算风荷载标准值除修正系数外,还有三个参数,现分析归纳如下: 一、基本风压ω0及修正系数 基本风压ω0应按荷载规范“全国基本风压分布图”的规定采用。 荷载规范规定:风荷载标准值ωk=βzμzμsω0,即风荷载标准值中还应乘以风振系数βz,以考虑风压脉动对高层建筑结构的影响。脚手架规范编制时,考虑到脚手架附着在主体结构上,故取βz=1。

荷载规范规定的基本风压是根据重现期为30年确定的,而脚手架使用期较短,遇到强劲风的概率相对要小得多,基本风压ω0乘以0.7修正系数是参考英国脚手架标准计算确定的。 二、风压高度变化系数μz 荷载规范规定:风压高度变化系数,应根据地面粗糙度类别按《荷载规范》采用。 地面粗糙度可分为A、B、C三类 A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵及房屋比较烯疏的中、小城镇和大城市郊区 C类指有密集建筑群的在城市市区。 选用风压高度变化系数,应注意以下两种情况: 1.立杆稳定计算,应取离地面5m高度计算风压高度变化系数。经计算,风荷载虽然在脚手架顶部最大,但此处脚手架结构所产生的轴压力很小,综合计算值最小;5m高度处组合风荷载产生计算值虽较小,但脚手架自重产生的轴压力接近最大,综合计算值最大。根据以上分析,立杆稳定性计算部位为底部。 2.连墙件计算,应取脚手架上部计算风压高度变化系数。连墙件的轴向力设计值与风压高度变化系数成正比函数关系,即架体升高,风压高度变化系数增大,连墙作轴向力设计值随之增大,架体顶部达到最大。连墙件稳定承载力及扣件抗滑承载力验算,应取连墙件最大轴向力设计值。 三、风荷载体型系数μs 风荷载体型系数按《脚手架规范》4.2.4规定计算。

荷载计算题

1.图示简支梁,4000L mm =,受到楼面传来的均布恒荷载标准值7.5/k g kN m = (不含梁自重),均布活荷载标准值8/k q kN m =,梁截面尺寸为250400b h mm mm ?=?,混凝土容重为325/kN m γ=。活荷载的组合值系数为0.7c ψ=,准永久值系数为0.5q ψ=,频遇值系数0.6f ψ=,求该梁跨中处弯矩的基本组合、准永久组合和频遇组合。 ①基本组合: 梁自重线荷载:325/0.250.4 2.5/kN m m m kN m ??= 该梁承受均布荷载标准值 2.57.510/k g kN m =+= 当由可变荷载效应控制时 22 2211 1.2 1.4881 1 1.2104 1.484242 2.446.488G Gk Q Qk k k S S S g L q L kN m γγ=+=??+??=???+???=+=? 当由永久荷载效应控制时 22 2211 1.35 1.40.7881 1 1.35104 1.40.7842715.684 2.6888G Gk Q c Qk k k S S S g L q L kN m γγψ=+=??+???=???+????=+=? 该梁在基本组合下跨中弯矩为46.4kN m ? ②准永久组合 22 122118811 1040.5842082888n Gk qi Qik k q k i S S S g L q L kN m ψψ==+=?+??=??+???=+=?∑ ③频遇组合 22 1122211 881 1 1040.684209.629.688k n G f Q k qi Qik k f k i S S S S g L q L kN m ψψψ==++=?+??=??+???=+=?∑ 2.图示外伸梁,已知该梁受到均布恒荷载标准值10/k g kN m =(含梁自重),均布活荷载标准值

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

荷载设计值标准值区别

荷载设计值标准值区别 荷载代表值:设计中用以验算极限状态所用的荷载量值,例如标准值、组合值、频遇值、准永久值。 组合值:对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值。 频遇值:对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 准永久值:对可变荷载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载值。 设计值:荷载代表值与荷载分项系数的乘积。 标准值:荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值、或某个分位值)。此概念在建筑地基规范、桩基规范、砼设计规范中经常出现,且以前的国家和地方规范使用中有点混乱,好多人都分不清设计值和标准值的具体使用方法,往往根据自己的意愿取用。我们知道任何荷载都有不同程度的变异性,但在设计中,不可能直接引用反映荷载变异性的各种统计参数,通过复杂的概率运算进行具体的设计,因此在设计时除了采用能便于设计者使用的设计表达式外,对荷载仍应赋予一个规定的量值,即荷载代表值,荷载可根据不同的设计要求规定不同的代表值,以使之能更确切地反映它在设计中的特点。荷载规范中给出4种代表值:标准值、组合值、频遇值、准永久值。对永久荷载应该用标准值作为代表值,

对可变荷载应根据设计要求用标准值、组合值、频遇值、准永久值作为代表值。荷载标准值是荷载的基本代表值,其他代表值都可以在标准值的基础上乘以相应的系数后得出。 由于荷载本身的随机性,因而使用期间的最大荷载亦是随机变量,可以用其统计分布来描述,按照《建筑结构可靠度设计统一标准》(GB50068-2001)的规定,标准值由设计基准期内最大荷载概率分布的某个分位值来确定(但未具体规定分位值,此为数理统计概念,可以简单理解为符合正态分布),设计基准期统一为50年。当对荷载有足够的资料而有可能对其统计分布作出合理的估计时,取分位值作为荷载的代表值,原则上可取分布的特征值。目前并非所有的荷载都能取得充分的的资料,根据工程实践协议一个公称值(Nominal value)作为代表值,以上两种方式确定的代表值统称为荷载标准值。 荷载标准值和设计值的关系: 荷载代表值乘以荷载分项系数后的值,称为荷载设计值。 在设计中,只是在按承载力极限状态计算荷载效应组合设计值的公式中引用了荷载分项系数。因此,只有在按承载力极限状态设计时才需要考虑荷载分项系数和设计值。 在按正常使用极限状态设计中,当考虑荷载标准组合时,恒载和活荷载都用标准值;当考虑荷载频遇组合和准永久组合时,恒载用标准值,活荷载用频遇值和准永久值或只用准永久值。 那么荷载代表值和标准值什么关系呢?

桥梁计算题2014.10.6

六、计算题 1、某公路桥梁由多跨简支梁组成,总体布置如图6-1所示,每孔标准跨径25m ,计算跨径24m ,桥梁总宽10m ,行车道宽8m ,每孔上部结构采用后张法预应力混凝土箱梁,每个桥墩上设四个支座,支座横桥向中心距为4m 。桥墩支承在岩基上,由混凝土独柱墩身和带悬臂 的盖梁组成,桥梁设计荷载等级为公路-I 级,混凝土的重力密度为25kN/m 2 。 问:(1)该桥按规模分为哪一类? (2)该桥的设计安全等级为几级? (3)在计算汽车设计车道荷载时,设计车道数取几? (4)桥梁的车道横向折减系数为多少? (5)在计算主梁的剪力和弯矩时,车道荷载标准值如何取用? 图6-1(图中尺寸单位:m ) 【解】(1)根据《桥规》第1.0.11条表1.0.11可知:该桥按规模分类属大桥; (2)根据《桥规》第1.0.9条表1.0.9可知:该桥的设计安全等级为二级; (3)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取2; (4)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为1.0; (5)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均为kN/m 5.10=k q ;集中荷载标准值,当桥梁计算跨径小于或者等于5m 时,kN 180=k P ;当桥梁计算跨径等

于或大于50m 时,kN 360=k P ;当桥梁计算跨径在5m ~50m 之间时,k P 值采用直线内插求得。计算剪力时,集中荷载标准值k P 乘以1.2的系数。本题中,计算跨径024m l =。 所以:计算主梁弯矩时的集中荷载标准值:180180(245)/(505)256kN k P =+?--=; 计算主梁剪力时的集中荷载标准值:256 1.2=307.2kN k P =?。 2、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m ,设计荷载等级为公路-I 级,桥梁采用上、下行双幅分离式横断面形式,单幅行车道宽16m ,两侧防撞栏杆各0.6m ,单幅桥全宽17.2m 。 问:(1)计算汽车设计车道荷载时,采用几个设计车道数? (2)桥梁的车道横向折减系数为多少? (3)在计算主梁的剪力和弯矩时,车道荷载标准值各为多少? 【解】(1)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取4; (2)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为0.67; (3)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均取为kN/m 5.10=k q ;集中荷载标准值:当计算主梁弯矩时:180180(405)/(505)320kN k P =+?--=; 当计算主梁剪力时:320 1.2=384kN k P =?。 3、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m 。若该主梁跨中横断面面积 2m 6.9=F 、主梁采用C50混凝土,混凝土的弹性模量MPa 1045.34?=c E ,跨中截面的截面 惯性矩4m 75.7=c I 、材料重力密度3 kN/m 0.26=γ,试计算汽车荷载冲击系数μ为多少? 【解】已知:m 40=l ,2 m 6.9=F ,MPa 1045.34?=c E ,3kN/m 0.26=γ,4m 75.7=c I 结构跨中处延米结构重力: 3 26109.6249600N/m G F γ==??= 结构跨中处的单位长度质量:22 /249600/9.8125443Ns /m c m G g === 简支梁桥基频: 3.18Hz f = == 冲击系数:189.00157.01826.3ln 1767.00157.0ln 1767.0=-=-=f μ。 4、图6-2所示为一座桥面板铰接的T 形截面简支梁桥,桥面铺装厚度为0.12m ,桥面板净跨径为 1.42m ,车辆两后轮轴距为 1.4m ,车辆后轮着地宽度和长度分别为:20.6m b =和 20.2m a =;车辆荷载的轴重kN 140=P ,冲击系数3.11=+μ,计算桥面板根部在车辆荷

风荷载计算

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振 系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 风荷载计算 (3)计算各楼层标高处的风荷载z q 。攀枝花基本风压取00.40/w KN mm =,取②轴横 向框架梁,其负荷宽度为,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可

得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 2. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 1. 2() 2.88 2.880.00 1.300.740.50.000/z s z q z KN m βμμ==????= (4)将分布风荷载转化为节点荷载 第六层:即屋面处的集中荷载6F 要考虑女儿墙的影响 6 2.306 2.216 3.3 2.370 2.306 1.441 1.385 3.3 1.441 1.480 0.5[( ) 2.306]10.5[() 1.441]19.92222222 F KN ++++=+?+?++?+?= 第五层的集中荷载5F 的计算过程 5 2.21 6 2.216 2.306 2.216 1.441 1.385 1.385 1.385 0.5[ ] 3.30.5[(] 3.312.002222F KN ++++=+?+++?= 4 2.216 2.216 2.16 2.216 1.38 5 1.385 1.385 1.385 0.5[] 3.30.5[(] 3.311.882222F KN ++++=+?+++?= 3 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.385 0.5[] 3.30.5[(] 3.311.882222 F KN ++++=+?+++?= 第二层,要考虑层高的不同: 2 3.3 4.252.216 1.385( )13.5922 F KN =+?+=

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

荷载得标准值.知识分享

荷载得标准值.

2013年二级注册建筑师考点 2013年二级建筑师考试辅导荷载的标准值 一、民用建筑楼面均布活荷载 1.楼面活荷载是房屋结构设计中的主要荷载。 《荷载规范》规定的民用建筑楼面均布活荷载标准值及其组合值、频遇值、准永久值系数如表1-2所列。 注:①本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情况特殊时,应按实际情况采用。 ②第6项书库活荷载当书架高度大于2m时,书库活荷载尚应按每米书架高度不小于2.5KN/㎡确定。 ③第8项中的客车活荷载只适用于停放载人少于9人的客车;消防车活荷载是适用于满载总重为300KN的大型车辆;当不符合本表的要求时,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。 ④第11项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5kN集中荷载验算。 ⑤本表各项荷载不包括隔墙自重和二次装修荷载。对固定隔墙的自重应按恒荷载考虑,当隔墙位置可灵活自由布置时,非固定隔墙的白重应取每延米长墙重(kN/m)的1/3作为楼面活荷载的附加值(kN/㎡)计人,附加值不小于1.0kN/㎡. 2.设计楼面梁、墙、柱及基础时,表1-2中的楼面活荷载标准值在下列情况下应乘以规定的折减系数。 (1)设计楼面梁时的折减系数: 1)第1(1)项当楼面梁从属面积超过25㎡时,应取0.9; 2)第1(2)-7项当楼面梁从属面积超过50㎡时,应取0.9;

3)第8项对单向板楼盖的次梁和槽形板的纵肋应取0.8; 对单向板楼盖的主梁应取0.6; 对双向板楼盖的梁应取0.8; 4)第9—12项应采用与所属房屋类别相同的折减系数。 (2)设计墙、柱和基础时的折减系数 1)第1(1)项应按表11-5规定采用; 2)第1(2)-7项应采用与其楼面梁相同的折减系数; 3)第8项对单向板楼盖应取0.5; 对双向板楼盖和无梁楼盖应取0.8; 4)第9-12项应采用与所属房屋类别相同的折减系数。 注:楼面梁的从属面积应按梁两侧各延伸二分之一梁间距的范围内的实际面积确定。 二、民用建筑屋面均布活荷载 房屋建筑的屋面,其水平投影面上的屋面均布活荷载,应按表1-4采用。 屋面均布活荷载,不应与雪荷载同时组合。 注:①不上人的屋面,当施工或维修荷载较大时,应按实际情况采用;对不同结构应按有关设计规范的规定,将标准值作0.2kN/㎡的增减。 ②上人的屋面,当兼作其他用途时,应按相应楼面活荷载采用。 ③对于因屋面排水不畅、堵塞等引起的积水荷载,应采取构造措施加以防止;必要时,应按积水的可能深度确定屋面活荷载。 ④屋面花园活荷载不包括花圃土石等材料自重。 直升机停机坪荷载应根据直升机总重按局部荷载考虑,同时其等效均布荷载不低于0.5KN/㎡.

最新民用建筑荷载标准值

民用建筑荷载标准值(自重): 住宅办公楼旅馆医院标准值2.0KN/m2 食堂餐厅 2.5KN/m2 礼堂剧场影院3.0KN/m2 商店车站3.5KN/m2 健身房舞厅 4.0KN/m2 书房储藏室 5.0KN/m2 KN是千牛kg是千克。1KN=1000N,1Kg=9.81N。纠正以下kn指节(用于航海). 在物理中牛顿(Newton,符号为N)是力的公制单位。它是以发现经典力学的艾萨克·牛顿(Sir Isaac Newton)命名。 般住宅就用两种级别规格的板就可以了,就是所说的一级板和二级板,一级板就是说可以承受的活荷载是1KN/M2,二级板,可以承受的活荷载是2KN/M2,西南地区已经规定了最小为四级板,即可以承受活荷载是4KN/M2。 商品楼一般是10CM的厚度,200KG/M3的承重设计,280KG/M3的安全系数还是有的,但是实际上可以承重多少就不知道了,至少我们没有听说过谁家来了10多个客人把楼板踩塌的新闻。但是有一点要注意,东西放上去不塌,不代表楼板就可以承受这种重量,长期承受超过楼板负载的重量肯定会导致楼板开裂变形的。 另外每平方米200公斤的承重是平均承重不是一点上的承重能力,不然的话一个50KG 的人单脚站立的话就该把楼板踩踏了,按照我的理解这应该是一个空间内每方米都承受200KG的重量后中心点所能够承受的最大负载。如果有比较沉重的东西,比如说浴缸、大书柜什么的只要靠承重墙摆放还是比较安全的。 PS:以上纯属个人理解,非专业 一般情况下住宅楼板板厚最小取100mm(视楼板跨度大小有可能取更厚,一般楼板板厚是取1/40的楼板跨度)。除阳台,卫生间楼面均布活荷载标准值为250KG/m^2。其他房间的楼面布活活荷载标准值均为200KG/m^2。 活荷载设计值=1.4x活荷载标准值 所指荷载为均布荷载。注意均布二字

荷载组合例题(1)

【例题1】某办公楼面板,计算跨度为3.18m ,沿板长每米永久荷载标准值为3.1kN/m ,可变荷载只有一种,标准值为1.35Kn/m ,该可变荷载组合系数为0.7,准永久值系数为0.4,结构安全等级为二级。 求:用于计算承载能力极限状态和正常使用极限状态所需的荷载组合。 解: 1、承载能力极限状态 可变荷载控制的组合 ()221 1.2 3.1 3.18/8 1.4 1.35 3.18/87.07M kN m =???+??= 永久荷载控制的组合 ()221 1.35 3.1 3.18/8 1.40.7 1.35 3.18/8 6.96M kN m =???+???= 取 6.96M kN m = 。 2、正常使用极限状态 按标准组合计算 223.1 3.18/8 1.35 3.18/8 5.63M kN m =?+?= 按准永久组合计算 223.1 3.18/80.4 1.35 3.18/8 4.60M kN m =?+??= 【例题2】某矩形截面外伸梁如图,截面尺寸为250mm ×500mm ,承受永久荷载标准值20kN/m ,可变荷载标准值10kN/m ,组合系数ψc =0.7。 求:跨中最大弯矩设计值。 解:对跨中弯矩计算,跨中梁段荷载为不利荷载,其设计值应乘以放大系数: 1.35×20+0.7×1.4×10=36.8kN/m (永久荷载控制) 1.2×20+1.4×10=38kN/m (可变荷载控制) 外伸梁段的荷载为有利荷载,所以永久荷载分项系数为1.0,可变荷载分项系数为0,其设计值为:1×20+0×10=20kN/m 。 所以跨中最大弯矩设计值为: 38×62/8-0.5×20×22/2=151kN-m 。 对外伸段梁,跨中弯矩数值不影响支座处负弯矩,但是影响弯矩包络图范围,从而影响负筋配置,当然外伸段梁荷载为不利荷载。

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

风荷载标准值

风荷载标准值 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷 载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。 WK=βzμsμZ W0 W0基本风压 WK 风荷载标准值 βz z高度处的风振系数 μs 风荷载体型系数

相关主题
文本预览
相关文档 最新文档