当前位置:文档之家› 热分析

热分析

热分析
热分析

1.什么是热分析?

热分析

程序温度下,测物质的物理性质与温度关系的一类技术

只要将总定义中的物理性质代换成诸如质量、温差等物理量,就很容易得到各种热分析方法的定义

热重法

程序温度下,测量物质的质量与温度关系的技术

差热分析

程序温度下,测物质和参比物的温度差与温度关系的技术

2.热分析包括:

差示扫描热量法

差热分析

热重法

3.热重(TG)基本原理

在程序温度(升/降/恒温及其组合)过程中,观察样品的质量随

温度或时间的变化过程。

应用:

质量变化热稳定性分解温度组分分析脱水

腐蚀/氧化还原

反应动力学

4.同步热分析的优势

样品的TG(质量变化) 和DSC(热量) 效应可以在一次测量中完成

?缩短测试时间

?确保了测试结果的可比性

不会受测试条件的影响

不会受样品制备的影响

不会受材料的不均一性的影响

5.常规 DTA测量方法

恒定加热速率时,测样品温度的变化速率

通常T稳速上升,熔化或吸/放热反应T平台

参比物:在所测范围内不发生任何热效应

记录样品与参比物之间的温差

Al2O3

6.DSC 基本原理及应用

在程序温度(升/降/恒温及其组合)过程中,测量样品与参考物之间的热流差,以表征所有与热效应有关的物理变化和化学变化。

7.第一次升温 :

● 玻璃化转变在转变区域往往伴随有应力松弛峰

● 热固性树脂:若未完全固化,第一次升温Tg 较低,伴有不可逆的固化放热峰 ● 部分结晶材料:计算室温下的原始结晶度

● 吸水量大的样品(如纤维等):往往伴有水分挥发吸热峰,可能掩盖样品的特征转变

高分子材料的二次升温

● 玻璃化转变:消除了应力松弛峰,曲线形状典型而规整

● 热固性树脂(未完全固化):玻璃化温度一般会提高。

● 部分结晶材料:经过特定冷却条件(结晶历史)研究结晶度、晶体熔程/熔融热焓与结晶历史关系。

● 易吸水样品:消除了水分的干扰,得到样品的真实转变曲线

● 横向样品比较,消除了热历史的影响,有利于比较样品的性能差异

8.高分子测试一定需要二次升温吗?

取决于您希望看到什么样的结果

关注样品原始的信息:一次升温

消除热历史或力学历史:二次升温

各样品在相同的起点上进行本身性能的比较:二次升温

热固性材料:第一次和第二次升温都很重要

要注意选择合适的降温条件。

应用:

? 玻璃化转变

? 熔融、结晶

? 熔融热、结晶热

? 共熔温度、纯度

? 物质鉴别 ? 相容性 ? 热稳定性、氧化稳定性 ? 反应动力学 ? 热力学函数 ? 液相、固相比例

热分析的基础与应用

热分析的基础与分析 SII·Nano technology株式会社 应用技术部大九保信明 目录 1.引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2.热分析概要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2-1热分析的基本定义 2-2热分析技术的介绍 2-3热分析结果的主要 3.热分析技术的基本原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3-1 差热分析DTA原理 3-2 差热量热DSC原理 3-3 热重TG 原理 3-4 热机械分析TMA原理 4.应用篇。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 4-1DSC的应用例 4-1-1聚苯乙烯的玻璃化转变分析 4-1-2聚苯乙烯的融解温度分析 4-1-3比热容量分析 4-2TG/DTA的应用例 4-2-1聚合物的热分析测定 4-2-2橡胶样品的热分析测定 4-2-3反应活化能的解析 4-3TMA的应用例 4-3-1聚氯乙烯样品玻璃化温度的测定 4-3-2采用针入型探针对聚合物薄膜的测定 4-3-3热膨胀,热收缩的异向性解析 结束语。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 参考文献

1.前言 与其它分析方法相比,热分析方法研究的历史较为久远,1887年,勒夏特利埃(Le Chatelier)就着手研究差热分析,1915年,我国的本多光太郎开创了热重分析(热天平)。之后,随着电气、电子技术、机械技术的发展,热分析仪器迅速地得到了普及,加之,由于最近该仪器的自动化、计算机化程度的不断提高,热分析技术已作为通用的分析技术之一已被广泛的应用。 热分析技术涉及众多领域,以化学领域为首,热分析技术已广泛应用于物理学、地球科学、生物化学、药学等领域。起初,在这些领域中,热分析主要用于基础性研究。随着研究成果的不断积累、扩大,现已被用于应用开发、材料设计,以及制造工序中的各种条件的研究等生产技术方面。近年来,在日本工业标准/JIS等的试验标准、日本药典等的法定分析法中有些也采用了热分析技术。同时,在产品的出厂检验、产品的验收检查等质量管理、工艺管理领域,热分析也已成为最重要的分析方法之一。 作为热分析技术的最常用的方法,本章主要介绍差热分析(DTA)、差热量热分析(DSC)、热重分析(TG)及热机械分析(TMA)的基本原理以及各种测量技术的典型应用示例。 2.热分析的概要 2-1 热分析的定义 根据国际热分析协会(International Confederation for Thermal Analysis and Calorimetry:ICTA)的定义,热分析为: 热分析技术是在控制程序温度下,测量物质(或其反应生成物)的物理性质与温度(或时间)的关系的一类技术。 图1为根据该定义制作的热分析仪器的示意图。所谓热分析是指,如图1所示将试样放入加热炉中,检测使温度发生变化时所发生的各种性能变化的方法。根据要检测不同的物质性能的变化,热分析技术可以分类为几种不同的热分析技术。 图1热分析仪器的示意图

DSC 热分析方法简介

Interpretation of DSC curves Practice: The 15 diagrams on the next pages include the following effects:§melting §crystallization, cold crystallization §evaporation, vaporization, drying §solid-solid transition §polymorphic transitions via the liquid phase §glass transition §oxidation §curing, polymerization, polyaddition §decomposition §initial deflection §artifact, mechanical disturbances Write down the effects on the curves and try to find out what each substance is.

Diagram 1 Clear liquid Diagram 2 White powder Wg^-1-0.030 -0.025°C 299.5 300.0 300.5 mW 5°C 292 294296298300302304306308^exo Interpretation DSC 216.11.2000 17:43:26 MSG MT: G. Widmann System e R TA METTLER TOLEDO S Diagram 3 White powder, heated to 200 °C and shock cooled to ambient mW 10°C 120130140150160170180190 ^exo Interpretation DSC 310.11.2000 17:31:50 MSG MT: G. Widmann System e R TA METTLER TOLEDO S

差热分析

差热分析 Ⅰ、目的要求 1、掌握差热分析的基本原理及方法,了解差热分析仪的构造,学会操作技术。 2、用差热分析仪对CuSO4·5H2O进行差热分析,并定性解释所得的差热图谱。 3、学会热电偶的制作及标定,掌握绘制步冷曲线的实验方法。 Ⅱ、实验原理 1、差热分析 许多物质在加热或冷却过程中往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化。这些变化并伴随有体系焓的改变,因而产生热效应。其表现为该物质与外界环境之间产生温度差。而有一些物质,如Al2O3、MgO、SiO2等,在一定温度范围内比较稳定,不会发生物理或化学变化,也就没有热效应的产生,这类物质称为热中性体标准物或参比物。 如果将某一待测物与参比物同置于温度均匀的电炉中以一定的速率升温,参比物在整个实验温度范围内没有物理或化学变化发生,因而不产生任何热效应。所以,当样品没有热效应产生时,它和参比物具有相同的温度,两者的温差ΔT=0,当样品发生物理或化学变化并伴有热效应时,由于传热速率的限制,两者的温度就不一致,即有温差ΔT≠0。显然,温差出现的温度以及温差的大小与待测物的结构和性质有关。 图为理想情况下的差热曲线 差热分析(简称DTA)是一种热分析法,就是在程序控制温度下,测量试样与参比物之间的温度差与温度关系的一种技术,可用于鉴别物质并考察物质组成结构以及物质在一定得温度条件下的转化温度、热效应等物理化学性质,它广泛地应用于许多科研领域及生产部门。测定时,将样品与参比物同时放入一个可按规定速度升温或降温的电炉中,然后分别记录参比物的温度,也可记录样品本身或

样品附近环境的温度,以及样品与参比物的温度差,随着测定时间的延续,就可以得到一张差热图。 2、影响差热分析的若干因素 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度;峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件下,峰面积大的表示热效应也大。在相同的测定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 3、样品保持器和加热电炉 样品保持器是仪器的关键部位,可用陶瓷和金属块制成。保持器的上端有两个相互平衡的粗空,可以容纳坩埚,也可直接装上样品和参比物。底部的细孔与上端两个粗空的中心位置相通,用于插入热电偶。如果在整个测量过程中,样品不与热电偶作用,也不会在热电偶上烧结熔融,可不必使用坩埚而直接将其装入粗空中。热电偶直接与样品接触,测定的灵敏度可以的待提高。加热电炉要有较大的恒温区,通常采取立式装置。 4、差热分析仪 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起。两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 Ⅲ、仪器试剂 加热电炉1套双孔绝缘小瓷冠(孔径约为1mm) 程序控温仪1台α- Al2O3(分析纯) 沸点测定仪1台CuSO4?5H2O(分析纯)

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

三种热分析方法综合介绍.

三种热分析方法综合介绍 热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。 物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。 表1热分析方法的分类 (一)差热分析(DTA) 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

TGDSC热分析

TG-DSC热分析 一、实验目的 1.了解热重分析法和差示扫描量热法的基本原理和同步热分析仪分析仪的基本构造; 2.掌握同步热分析仪的使用方法; 3.测定碳酸钙试样的TG-DSC谱图,并根据所得到的谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 1.热重分析 热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。 进行热重分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。 通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。 从热重法可以派生出微商热重法,也称导数热重法,它是记录TG曲线对温度或时间的一阶导数的一种技术。实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。 DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。 热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。图中给出可用热重法来检测的物理变化和化学变化过程。我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。但象熔融、结晶和玻璃化转变之类的热行为,样品没有质量变化,热重分析方法就帮不上忙了。 2.差示扫描量热分析 差示扫描量热法(DSC)是在等速升温(降温)的条件下,测量输入到试样与参比物的功率差(如以热的形式)随温度变化,简称DSC(differential scanning calorimetry)。DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis) 1.DTA的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 差热分析的原理如图Ⅱ-3-1所示。将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线如图Ⅱ-3-2所示。若以对t作图,所得DTA曲线如图Ⅱ-3-3所示, 在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原 理图图 II-3-2试样和参 比物的升温曲线 1.参比物; 2.试样; 3.炉体; 4.热电偶(包括吸热转变) 图Ⅱ-3-3 DTA吸热转变曲线 TA曲线所包围的面积S可用下式表示 式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。 2.DTA曲线起止点温度和面积的测量

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

热分析技术简介——DSC

热分析技术简介——DSC 摘要:差示扫描量热分析仪因其使用方便,精确度高等特点,多年来备受青睐。本文介绍了差示扫描量热法(DSC)的发展历史、现状及工作原理,并且简要地介绍了DSC在天然气水合物、食品高聚物测定和水分含量测定、油脂加工过程及产品、沥青性能研究及改性沥青的性能评定中的应用。 关键词:DSC 技术发展现状应用 一、差示扫描量热法( DSC ) 简史 18世纪出现了温度计和温标。 19世纪,热力学原理阐明了温度与热量即热焓之间的区别后,热量可被测量。 1887年,Le Chatelier进行了被认为的首次真正的热分析实验:将一个热电偶放入黏土样品并在炉中升温,用镜式电流计在感光板上记录升温曲线。 1899年,Roberts Austen将两个不同的热电偶相反连接显著提高了这种测量的灵敏度,可测量样品与惰性参比物之间的温差。 1915年,Honda首次提出连续测量试样质量变化的热重分析。 1955年,Boersma设想在坩埚外放置热敏电阻,发明现今的DSC。 1964年,Watson等首次发表了功率补偿DSC的新技术。 差示扫描量热法是六十年代以后研制出的一种热分析方法。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术,简称DSC(Differential Scanning Calovimetry)。根据测量方法的不同,又分为两种类型:功率补偿型DSC和热流型DSC。其主要特点是使用的温度范围比较宽、分辨能力高和灵敏度高。由于它们能定量地测定各种热力学参数(如热焓、熵和比热等)和动力学参数,所以在应用科学和理论研究中获得广泛的应用。 二、差示扫描量热法的现状 2.1差示扫描量热法(DSC)的原理 差示扫描量热法(DSC)装置是准确测量转变温度,转变焓的一种精密仪器,它的主要原理是:将试样和参比物置于相同热条件下,在程序升降温过程中,始终保持样品和参比物的温度相同。当样品发生热效应时,通过微加热器等热元件给样品补充热量或减少热量以维持样品和参比物的温差为零。加热器所提供的热量通过转换器转换为电信号作为DSC曲线记录下来。它是一种将与物质内部相转变有关的热流作为时间和温度的函数进行测量的热分析技术。 2.2差示扫描量热分析技术发展 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

差热分析(DTA)

第 二 节 差热分析(DTA ) Differential Thermal Analysis 差热分析的基本概念 差热分析:是指在程序控制温度下测量物质和参比物的温度差与温度关系的技术。 差热曲线:描述样品与参比物之间的温度差(ΔT )随温度(T )或时间(t )变化的曲线。 程序控制温度:指按一定的速率升温(或降温)。 参比物:指在分析温度范围内不产生热效应(既不吸热,也不放热)的物质。 差热分析仪的结构及工作原理 差热分析仪的工作原理 把试样(S )和参比物(R )分别装入两个坩埚,放在电炉中按一定的速率加热。在此过程中,如果试样发生物理变化或化学变化,并伴随有热效应,即发生吸热或放热现象,试样的温度(TS )将低于或高于参比物的温度(TR ),从而产生一定的温度差(ΔT= TS - TR )。 ~ 用同极串联的一对相同的热电偶构成的差热电偶可将试样与参比物的温度差转变为温差电动势U △T 。将这个温差电动势放大,并用来调节记录仪的记录笔或显象管亮点的纵坐标,就可以将试样与参比物的温度差随温度(T )或时间(t )的变化曲线( ΔT - T 曲线)记录下来。 差热曲线提供的信息 峰的个数:吸热和放热过程的个数。 峰的位置:吸热和放热过程发生的温度。 峰的性质:向上,放热;向下,吸热。 峰的形状:热反应的速率。 峰的面积:吸收或释放的热量的多少。 基线的位置:样品与参比物的比热关系。 基线的长度:物质稳定存在的温度区间。 峰的面积与吸收或释放的热量的关系 ~ 峰的面积与吸收或释放的热量成正比。 式中, A 是吸热峰或放热峰的面积;ma 是试样中反应物的质量;ΔH 是单位反应物吸收或释放的热量,即单位反应物的焓变;g 是与仪器有关的系数; λs 是试样热导率。 利用Speil 公式,可以根据峰的面积求得反应过程中的焓变和反应物质的量。 S a t t a g H m dt T T A λ?=?-?=? 2 1])([

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

差热分析

学号:201014400116 成绩: 基础物理化学实验 实验名称:差热分析 10级冶金班8组 实验人姓名:何婉芳 同组人姓名:黄波邵雪村樊星亚 指导老师:周崇松 实验日期:2012-12-13

湘南学院化学与生命科学系 一、实验目的: 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理: 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析(Differentiai Thermal Analysis.简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。差热分析仪的结构如图5-1所示。 它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,

见图5-1)。A、B两端引入记录笔1,记录炉温信号。 若炉子等速升温,则笔1记录下一条倾斜直线,如图5-2中T;A、C 端引入记录笔2,记录差热信号。若样品不发生任何变化,样品和参比物的温度相同,两支热电偶产生的热电势大小相等,方向相反,所以ΔVAC=0,笔2划出一条直线,如图5-2中AB、DE、GH段,是平直的基线。反之,样品发生物理化学变化时,ΔVAC≠0,笔2发生左右偏移(视热效应正、负而异),记录下差热峰如图5-2中BCD、EFG所示。两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-2典型的差热分析 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中TB);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件下,峰面积大的表示热效应也大。

ANSYS热分析

第一章 简 介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 项目 国际单位 英制单位 ANSYS 代号 长度 m ft 时间 s s 质量 Kg lbm 温度 ℃ o F 力 N lbf 能量(热量) J BTU 功率(热流率) W BTU/sec 热流密度 W/m 2 BTU/sec-ft 2 生热速率 W/m 3 BTU/sec-ft 3 导热系数 W/m-℃ BTU/sec-ft-o F KXX 对流系数 W/m 2-℃ BTU/sec-ft 2-o F HF 密度 Kg/m 3 lbm/ft 3 DENS 比热 J/Kg-℃ BTU/lbm-o F C 焓 J/m 3 BTU/ft 3 ENTH 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: z 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q Δ+Δ+Δ=? 式中: Q —— 热量; W —— 作功; ΔU ——系统内能; ΔKE ——系统动能; ΔPE ——系统势能; z 对于大多数工程传热问题:0==PE KE ΔΔ; z 通常考虑没有做功:0=W , 则:U Q Δ=; z 对于稳态热分析:0=Δ=U Q ,即流入系统的热量等于流出的热量; z 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温

实验一综合热分析实验

实验一综合热分析实验 一、目的要求 1.了解综合热分析仪的基本构造、原理及方法。 2.了解实验条件的选择。 3.掌握热分析样品的制样方法。 4.掌握对样品的热分析图谱进行相关分析和计算。 二、综合热分析仪的结构、原理及性能 综合热分析仪是在程序控制温度下同步测定物质的重量变化、温度变化和热效应的装置。一般地,综合热分析仪主要由程序控制系统、测量系统、显示系统、气氛控制系统、操作控制和数据处理系统等部分组成。 1.TG的结构、原理及性能 热重法(TG)是在程序控制温度下,测量物质的质量与温度关系的一种热分析技术。热重法记录的是热重曲线(TG曲线),它以质量作为纵坐标,以温度或时间为横坐标,即m—T曲线。 热重法通常有下列两种类型:等温热重法:在恒温下测定物质质量变化与时间的关系;非等温热重法:在程序升温下测定物质质量变化与温度的关系。 热重法所用仪器称为热重分析仪或热天平,其基本构造是由精密天平和程序控温的加热炉组成,热天平是根据天平梁的倾斜与重量变化的关系进行测定的,通常测定重量变化的方法有变位法和零位法两种。①变位法是利用物质的质量变化与天平梁的倾斜成正比的关系,用差动变压器直接控制检测。②零位法是靠电磁作用力使因质量变化而倾斜的的天平梁恢复到原来的平衡位置,施加的电磁力与质量变化成正比,而电磁力的大小与方向是通过调节转换结构中线圈中的电流实现的,因此检测此电流即可知质量变化。天平梁倾斜由光电元件检出,经电子放大后反馈到安装在天平衡量上的感应线圈,使天平梁又回到原点。 SDTQ600综合热分析仪采用水平双杆双天平的结构设计。一臂作为水平天平零位平衡测量,另一臂作为高灵敏度DTA的热电偶。同时,一臂用来装填试样,

差热分析

摘要:本实验报告阐述了差热分析实验的基本原理、实验及数据处理方法,以三氧化二铝 (Al2O3)作为参照物,分别测量了五水合硫酸铜(CuSO4·5H2O)和锡(Sn)样品的差热曲线并对其进行了分析,最后对实验结果进行了讨论。 关键词:差热曲线三氧化二铝锡五水合硫酸铜 正文 一、引言 差热分析(DTA)是在程序控制下测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。描述这种关系的曲线称为差热曲线或DTA曲线。由于试样和参比物之间的温度差主要取决于试样的温度变化,因此就其本质来说,差热分析是一种主要与焓变测定有关并借此了解物质有关性质的技术。 二、实验目的 1、了解差热分析的基本原理和实验基本步骤。 2、测量五水硫酸铜和锡的差热曲线,并简单计算曲线峰的面积。 三、实验原理 1、差热曲线的形成及差热分析的一般特点 物质在加热或冷却过程中会发生物理变化或化学变化,与此同时,往往还伴随吸热或放热现象。伴随热效应的变化,有晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和离解等化学变化。另有一些物理变化,虽无热效应发生但比热容等某些物理性质也会发生改变,这类变化如玻璃化转变等。物质发生焓变时质量不一定改变,但温度是必定会变化的。差热分析正是在物质这类性质基础上建立的一种技术。 若将在实验温区内呈热稳定的已知物质(参比物)和试样一起放入加热系统中(图1),并 图1 加热和测定试样与参比物温度的装置示意图 以线性程序温度对它们加热。在试样没有发生吸热或放热变化且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸取足够的热量,从而使试样温度低于程序温度。只有经历一个传热过程试样才能回复到与程序温度相同的温度。

ANSYS传热分析实例汇总

实例1: 某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。 几何参数: 筒外径30 feet 总壁厚 2 inch 不锈钢层壁厚0、75 inch 玻纤层壁厚 1 inch 铝层壁厚0、25 inch 筒长200 feet 导热系数不锈钢8、27 BTU/hr、ft、o F 玻纤0、028 BTU/hr、ft、o F 铝117、4 BTU/hr、ft、o F 边界条件空气温度70 o F 海水温度44、5 o F 空气对流系数2、5 BTU/hr、ft2、o F 海水对流系数80 BTU/hr、ft2、o F 沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。 以下分别列出log文件与菜单文件。 /, Steady1 /title, Steady-state thermal analysis of submarine /units, BFT Ro=15 !外径(ft) Rss=15-(0、75/12) !不锈钢层内径ft) Rins=15-(1、75/12) !玻璃纤维层内径(ft)

Ral=15-(2/12) !铝层内径(ft) Tair=70 !潜水艇内空气温度 Tsea=44、5 !海水温度 Kss=8、27 !不锈钢的导热系数(BTU/hr、ft、oF) Kins=0、028 !玻璃纤维的导热系数(BTU/hr、ft、oF) Kal=117、4 !铝的导热系数(BTU/hr、ft、oF) Hair=2、5 !空气的对流系数(BTU/hr、ft2、oF) Hsea=80 !海水的对流系数(BTU/hr、ft2、oF) /prep7 et,1,plane55 !定义二维热单元 mp,kxx,1,Kss !设定不锈钢的导热系数 mp,kxx,2,Kins !设定玻璃纤维的导热系数 mp,kxx,3,Kal !设定铝的导热系数 pcirc,Ro,Rss,-0、5,0、5 !创建几何模型 pcirc,Rss,Rins,-0、5,0、5 pcirc,Rins,Ral,-0、5,0、5 aglue,all numcmp,area lesize,1,,,16 !设定划分网格密度 lesize,4,,,4 lesize,14,,,5 lesize,16,,,2 eshape,2 !设定为映射网格划分 mat,1 amesh,1 mat,2 amesh,2 mat,3 amesh,3 /SOLU SFL,11,CONV,HAIR,,TAIR !施加空气对流边界 SFL,1,CONV,HSEA,,TSEA !施加海水对流边界 SOLVE /POST1 PLNSOL !输出温度彩色云图

热分析基础

[分享]热分析的基础与分析发现一篇不错的文章,对热分析进行了比较详细的介绍,分享给大家。 热分析的基础与分析 SII·Nano technology株式会社 热分析的基础与分析 目录 1.引言 2.热分析概要 2-1热分析的基本定义 2-2热分析技术的介绍 2-3热分析结果的主要 3.热分析技术的基本原理 3-1差热分析DTA原理 3-2差热量热DSC原理 3-3热重TG原理 3-4热机械分析TMA原理 4.应用篇 4-1 DSC的应用例 4-1-1聚苯乙烯的玻璃化转变分析 4-1-2聚苯乙烯的融解温度分析 4-1-3比热容量分析 4-2 TG/DTA的应用例 4-2-1聚合物的热分析测定 4-2-2橡胶样品的热分析测定 4-2-3反应活化能的解析 4-3 TMA的应用例 4-3-1聚氯乙烯样品玻璃化温度的测定 4-3-2采用针入型探针对聚合物薄膜的测定 4-3-3热膨胀,热收缩的异向性解析 结束语 参考文献

1.前言 与其它分析方法相比,热分析方法研究的历史较为久远,1887年,勒夏特利埃(LeChatelier)就着手研究差热分析,1915年,日本的本多光太 郎开创了热重分析(热天平)。之后,随着电气、电子技术、机械技术的发展,热分析仪器迅速地得到了普及,加之,由于最近该仪器的自动 化、计算机化程度的不断提高,热分析技术已作为通用的分析技术之一已被广泛的应用。热分析技术涉及众多领域,以化学领域为首,热分析 技术已广泛应用于物理学、地球科学、生物化学、药学等领域。起初,在这些领域中,热分析主要用于基础性研究。随着研究成果的不断积累 、扩大,现已被用于应用开发、材料设计,以及制造工序中的各种条件的研究等生产技术方面。近年来,在日本工业标准/JIS等的试验标准、 日本药典等的法定分析法中有些也采用了热分析技术。同时,在产品的出厂检验、产品的验收检查等质量管理、工艺管理领域,热分析也已成 为最重要的分析方法之一。作为热分析技术的最常用的方法,本章主要介绍差热分析(DTA)、差热量热分析(DSC)、热重分析(TG)及热机 械分析(TMA)的基本原理以及各种测量技术的典型应用示例。 2.热分析的概要 2-1热分析的定义 根据国际热分析协会(International Confederation for ThermalAnalysis and Calorimetry:ICTA)的定义,热分析为:热分析技术是在控 制程序温度下,测量物质(或其反应生成物)的物理性质与温度(或时间)的关系的一类技术。 图1为根据该定义制作的热分析仪器的示意图。所谓热分析是指,如图1所示将试样放入加热炉中,检测使温度发生变化时所发生的各种性能变

相关主题
文本预览
相关文档 最新文档