当前位置:文档之家› 网络阻抗测试仪报告1

网络阻抗测试仪报告1

网络阻抗测试仪报告1
网络阻抗测试仪报告1

d

江 苏 大 学

D题: 阻抗网络测试仪

指导老师:徐雷钧

参赛学生: 顾世豪

陈明明

孟德华

系院: 电子信息工程学院

专业: 自动化

电子科学技术

电子信息科学技术 2012年8月

网络阻抗测试仪(D题)

摘要:本设计以 TI 公司 16 位超低功耗单片机 MSP430F169为核心,以矩阵键盘和12864液晶屏为人机交换界面。利用两片AD9850芯片组成双路信号发生器,通过程序控制产生两路频率为1Hz-200KHz、相位差为90度的正弦波,经过低通滤波器滤除杂波,利用待测阻抗与基准阻抗分压电路和相敏检测器,检测出参考电压相量和阻抗电压向量在参考电压方向上的投影,并通过A/D芯片进行采样,将采样得到的电压信号送入单片机进行处理。自由轴法的基本思想是:待测阻抗Zx和标准阻抗Zs串联,严格要求被测参数矢量在X、Y坐标轴上投影准确正交,然后分别测出待测阻抗、标准阻抗两端的矢量电压Ux和Us在直角坐标X、Y轴上的分量,最后送入单片机经过四则运算即可求出阻抗网络的阻抗值和阻抗角。关键词:msp430;自由轴法 ;阻抗测量;AD9850

目 录

一、系统方案 (3)

1.1整体设计方案 (3)

1.1.1主要模块方案比较与论证 (4)

1.1.2信号发生器的设计方案 (4)

1.1.3测量方法选择 (5)

1.1.4程控放大器电路的设计方案 (6)

二.主要模块硬件设计 (7)

2.1单片机主控模块 (7)

2.2按键输入与12864显示电路模块 (6)

2.3 DDS双路正交正弦波产生电路模块 (7)

2.4程控放大器电路模块 (7)

2.5低通滤波电路模块 (8)

2.6基准阻抗分压电路模块 (8)

2.6相位检测电路和A/D转换电路模块 (9)

2.7电源电路模块 (10)

三、软件设计 (11)

四、理论分析 (11)

五、测量结果与分析 (12)

六、测试仪器 (12)

七、参考文献 (12)

一、系统方案

1.1整体设计方案

根据题目要求,系统可分为6个基本模块,包括单片机主控模块、DDS模块、显示模块、按键输入模块、控制模块。Msp430单片机是TI公司生产的16位超低功耗微控制器,性能优越,因此选用Msp430F149用于整个系统信号的控制与处理。系统框图如下所示:

1.1主要模块方案比较与论证

1.1.1信号发生器的设计方案

方案一:采用集成函数发生器产生的波形利用函数发生器如(ICL8038)产生

频率可变的正弦波、方波、三角波。此方案实现电路复杂,难于调试,实现波形

难度大,且要保证技术指标困难,故采用此方案不理想。

方案二:采用琐相环间接合成(PLL)虽然具有工作批频率高、宽带、频谱质量好的优点,但由于锁相环本身是一个惰性环节,锁定时间长。另外由模拟方法合成的正弦波的参数(如幅度频率和相位等)都很难控制,而且要实现1KHZ~10KHZ大范围的频率变化相当困难,不易实现。

方案三:采用直接数字式频率合成(简称DDS),利用单片机编程控制AD9850芯片,按不同的频率要求以频率控制字K为步进对相位增量进行累加,以累加相位值作为地址码读取存放在存储器内的波形数据。经D/A转换和幅度控制,再滤波就可以得到所需要波形。由于DDS具有相对带宽,频率转换时间极短(可小于20uf),频率分辩率高,全数字化结构便于集成等优点,以及输出相位连续,频率、相位和幅度均可实现程控,因此,可以完全满足本题的要求。

1.1.2测量电路方案设计

方案一:谐振法要求较高频率的激励信号,一般不容易满足高精度的要求。由于测试频率不固定,测试速度也很难提高。需要调谐到谐振,阻抗测量精度低。 方案二:动平衡电桥法对从低频至高频的宽频率范围,且宽的阻抗测量范围内具有高精度。但其不能适应更高的频率范围要求,而且检测器电路要求比较高,硬件电路设计较为复杂,调试难度大。

方案三:基于自由轴法的阻抗测量方法将对阻抗的测量转换成对相量比值的测量,而且自由轴法坐标轴的选择可以是任意的,参考电压可以不与任何一个被测电压的方向同向,由于其精确的正交坐标系主要靠软件产生和保证,硬件电路大大简化,还消除了固定轴法难以克服的同相误差,提高了精确度。被测参数通过MCU获得,因而可以方便的计算出阻抗模值|Zx|、阻抗角、品质因数等。故采用此方案。

1.1.3程控放大电路方案设计

方案一:采用多级放大的级联实现可控增益放大。每一级设置不同的增益档位,通过模拟开关选择各级放大倍数实现信号的级联放大,最终实现的增益等于各级的增益之和。此方案实现原理简单,但使电路设计复杂,增加了系统的成本和不稳定性,尤其是各级的寄生电容等也会增加放大器级联调试的难度,降低放大器的稳定性,且难以实现放大器的增益的连续可调。

方案二:直接采用压控放大器VCA810,通过单片机输出AD信号来控制其增益大小。此方案硬件电路简单,编程设置步进值并通过按键控制输出电压大小,易于调试,故采用此方案。

二、主要模块硬件电路设计

2.1单片机主控模块

本控制模块以TI公司的单片机Msp430F169为控制核心,包括外部晶振模块,3.3V稳压模块、基本的I/O口模块等。

图2单片机主控模块

2.2按键输入与12864显示电路接口模块

此模块包含4X4矩阵键盘模块和12864液晶接口,用于控制和显示数据。

图3 按键输入与12864显示电路接口模块

2.3 DDS双路正交正弦波产生电路模块

此模块采用两路AD9850组成信号发生器,通过msp430单片机编程控制

AD9850,产生1KHz-200KHz的相位相差90度的两路正弦波。AD9850工作原理:AD9850有40 位控制字,32 位用于频率控制(低32位),5 位用于相位控制,1 位用于电源休眠( Powerdown) 控制,2位用于选择工作方式。这40 位控制字可通过并行或串行方式输入到AD9850 。在并行装入方式中,通过8 位总线D0 —D7将数据输入到寄存器,在W - CLK 的上升沿装入8位数据,并把指针指向下一个输入寄存器,在重复5 次之后再在FQ - UD 上升沿把40位数据从输入寄存器装入到频率/ 相位数据寄存器(更新DDS 输出频率和相位) ,同时把地址指针复位到第一个输入寄存器。

图4 DDS电路模块

2.4程控放大器电路模块

此模块由压控放大器VCA810构成放大电路,通过3管脚输入-1--2V电压便可改变VCA810的放大倍数,以满足题目中电压幅值2V的要求。

图5 程控放大器电路模块

2.5滤波电路的设计方案

由于使用DDS芯片,输出的信号含有大量的杂散波,考虑到本测试系统的需要,作为激励源的输入信号必须为平滑的波形,且谐波和噪声的影响越小越好,而且由于经过上面的运放电路,波形可能会发生失真,因此在运放后加上低通滤波器。本设计采用电感和电容构成椭圆滤波器。如图是其在Multium11.0中的仿真波形。

图6 滤波电路

2.6基准阻抗分压电路模块

此模块由半桥电路和参考阻抗分压电路组成,通过控制继电器的通断,完成不同量程的阻抗测量。继电器可以通过单片机编程来控制以便实现不同阻抗范围内的自动切换,完成对不同阻抗的精确测量。

图7 基准阻抗分压电路模块

2.7 相位检测电路和A/D转换电路模块

幅值Vp=2V的正弦波通过待测阻抗和参考阻抗分压电路产生两路正弦信号Us

和Ux,通过由模拟开关CD4053和放大器OPA2227组成的相位检测电路,通过控制开关的通断分别得到向量Us和Ux在0度和90度正弦上的投影分量,并通过A/D采样,得到各投影分量的值,并送人单片机进行处理。

图8 相位检测电路和A/D转换电路模块

2.8电源电路模块

如图利用可调稳压芯片LM317、LM337芯片制作正负15V电源,利用稳压芯片7805、7905制作正负5V电源。

图9 电源电路模块

三、软件设计

图10 软件设计流程图

四、理论分析

信号发生电路产生的正弦波加在被测阻抗与标准阻抗上,分压后经过差分放大电路分别得到两阻抗上的电压值。因为单片机只能正确采样0~5V 之间的电压,而输入的信号是正弦信号,因此在将其送入单片机之前进行电压提升,使正弦信号任意时刻的电位均大于或是等于0。分压后的正弦信号送入单片机进行正交采样计算求得待测阻抗值,并显示结果。矢量电压值分两次测量,先测量实部,然后测量虚部。即在任一时刻采样得到信号瞬时值U1,然后经过1/4周期(相当于相移π/2)采样得到瞬时值U2,则可以得到

21,21jU U U jU U U s x +=+= (1) 其测量矢量图如下图所示。

图11 测量矢量图

以测量电容为例,建立测量RLC 参数的数学模型如下:

4343,2121eN eN jU U U jeN eN jU U U s x +=+=+=+= (2) 式中,e 为MSP430单片机内A/D 转换器的刻度系数,即每个数字代表的电压值;i N 是i U 对应的数字量(i=1,2,3,4)。因此,坐标系一旦确定,两个矢量之商即可表示为:

22

213

241

22

214

231

2

143N

N N

N N N

N

N N

N N N

jeN

eN jeN eN Ux

Us j

+?++++

+=

=

(3)

s Z 采用标准电阻s R ,则有:

x x R U U Z jwC G s

x s

x

+=×?=1

1

(4)

将式(3)带入式(4)中,得到: )(2

2

213

2412

22

1

4

2311N N N

N N N N N N N N N R x

x j jwC

G s

+?+++?

=+ (5)

被测电容参数的实部和虚部分别为:

22

214

231

1N

N N

N N N

R x

s

G

++×

?

= (6)

22

213

2411

N N N N N N wR x s

C +?×

?= (7) 则电容的损耗系数为:

3

2414231N N N N N N N N wC G x

x

x

D ?+=

=

(5)

这样就得到了被测电容的参数。这种测量方法充分利用了单片机的控制和计算能

力,电路简单,精度高。 五、测量结果与分析

1.双路正弦信号发生器:

测量频率f=1K--5Mhz,幅度Vpp=2.0

2.阻抗网络测量:

测量精度为3%,满足基本要求中5%的要求。 六、测试仪器

示波器:20MHz,双踪 万用表:DT830

LCR 数字电桥:TH2811D

参 考 文 献

[1] 吴鹏,沈博,郑彦鹏等一款低频低噪声频谱搬移电路的设计 电测与仪表, 1987

[2]谢自美主编.电子线路设计·实验·测试(第二版).武汉:华中科技大学出版社,2000

[3]高晋占微弱信号检测 北京:清华大学出版社,2006 [4]李朝青编著.单片机原理及接口技术(第三版).北京:北京航空航天大学出版社,2005 [5]全国大学生电子设计竞赛组委会(编).全国大学生电子设计竞赛获奖作品精选(2005).北京:

[6]马忠梅(主编).单片机的 C 语言应用程序设计(第 3 版).北京:北京航空航天大学出版社,2004

[7]董尚斌(主编).电子线路(Ⅰ).北京:清华大学出版社,2006.10

[8]阿瑟.B.威廉斯编著.电子滤波器设计手册.北京:电子工业出版社,1986 [9](美) 塞尔吉欧·弗朗哥编著刘树棠,朱茂林,荣玫译.基于运算放大器和模拟集成电路的电路设计. 西安:西安交通大学出版社,2004

[10]郭庆,杨海玲,陈尚松.双路相位差可调信号发生器的设计[J].电子测量技术,2007(4):191-193.

[11]叶佩青,杨更更,杨开明,游华云.多通道相位差可调正弦波信号发生器的设计[J].仪表技术与传感器,2004(1):10-13,16.

[12]陈尚松,雷加,郭庆.电子测量与仪器[M].北京:电子工业出版社,2005.

[13]任季中,冯小平.高性能DDS芯片AD9959及其应用[J].电子元器件应用,2007(6)4-7.

[14]徐正平,翟林培,田雅男,等.基于DDS技术的高频正弦波发生器的设计[J].微计算机信息,2009,2(2):67-68.

[15]王艳林,李东,刘桂礼.相位差可调的双通道信号发生器的设计[J].自动化与仪器仪表,2004(8):40-42.

[16]冯杰. 任意波形发生器[ J ]. 电子世界 , 2004 (7) : 5 5.

[17]张屺,杨波,冯旭哲,等.程控宽带正交信号发生仪[J ] . 电子工程师 , 2000 ( 4) : 26 O 27 .

[18]张李勇,陈朗,张飞舟.基于8051单片机的双通道波形发生器的设计与实现 [ J ] . 计算机工程与应用,2004(8):100O 103 .

精简系列双端口 USB 矢量网络分析仪( Keysight P937XA),频率范围高达 26.5 GHz

技术资料是德科技精简系列 USB 矢量网络分析仪 P937XA 2 端口,高达 26.5 GHz 外形紧凑,性能优异。

是德科技精简系列:小身材,高性能 利用是德科技精简系列中的 Keysight P937xA,在上市时间、生产效率、预算和工作台空间等方面实现良好平衡。精确且可重复的测量、自动化编码功能以及始终如一的直观用户体验,这些优势让您能够充满自信地完成产品开发生命周期每个阶段的工作。结合全方位的是德科技服务(包括校准、教育和咨询),这些仪器可以增强您的解决方案,帮助您加快技术应用、降低成本。 P937xA 系列是是德科技首款紧凑型矢量网络分析仪(VNA),其价格适中,并采用完整的双端口设计,可以显著减小测试需要的空间。这款紧凑型 VNA 覆盖十分宽广的频率范围,从 300 kHz 到 26.5 GHz 有六种频率范围可选。这款 VNA 安装在紧凑型机箱中,由外部计算机控制,具备非常强大的处理能力和功能。PC 上运行的固化软件拥有与其他是德科技 VNA 相同的直观图形用户界面(GUI),使您可能尽量减少在不同型号之间过渡的成本。 应用软件 –手动测试无源元器件(例如天线、滤波器、连接器、适配器) –无线元器件制造测试 –航空航天/国防制造测试 –在分类环境中的评测/设计验证 关键性能 这款是德科技紧凑型 VNA 在动态范围、测量速度、迹线噪声和稳定度等关键技术指标上均达到业界先进水平。它与历经考验、值得信赖的 Keysight VNA 采用相同的测量技术,确保您可以获得始终一致的测量结果。 –测量速度:24 ms(201 点,全 2 端口校准,100 kHz IFBW) –动态范围:> 114 dB @ 9 GHz;> 110 dB @ 20 GHz(10 Hz IFBW) –迹线噪声:< 0.003 dBrms(1 kHz IFBW) –稳定度:0.005 dB/°C(高达 4.5 GHz) 主要特性 –是德科技最紧凑的 VNA,可以在不同测试位置之间轻松地共享使用 –从 300 kHz 至 26.5 GHz 有多种频率范围可选 –能够扩展测试端口数(最多 4 个端口) –可随时进行频率和软件升级 –采用与值得信赖的 Keysight VNA 相同的 GUI 和测量技术 –支持电子校准件(ECal),使校准变得轻松快捷

DF9000地网接地阻抗测试仪,接地电阻测量仪

接地阻抗测试仪,接地电阻测试仪 接地阻抗测试仪系列产品可分为: DF9000大型地网变频大电流接地特性测量系统, DF910K大型地网变频大电流接地阻抗测量系统, DF902K变频抗干扰接地阻抗测量仪。 1、DF9000大型地网变频大电流接地特性测量系统:系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)。精确测量接地阻抗,接地电抗,接地电阻,接触电压,跨步电位差,场区地表电位梯度,接触电压,接触电位差,跨步电压,转移电位,导通电阻,土壤电阻率等参数,可全面测量大型地网的各项特性参数,完全满足新版DL/T475-2006《接地装置特性参数测量导则》的要求。 2、DF910K大型地网变频大电流接地阻抗测量系统:系统输出功率大(5-20KW),输出电压(0-1000V),输出电流(0-50A)。精确测量接地阻抗,接地电阻,接触电位差,接地电抗,导通电阻,土壤电阻率等参数。 3、DF902K变频抗干扰接地阻抗测量仪:系统输出功率2kW,输出电压(0-200-400V).测试输出电流(0-10A)。精确测量接地阻抗,接地电阻,接地电抗,导通电阻,土壤电阻率等参数。可满常规接地网的测量。 变频抗干扰接地阻抗测试主要用于 1.精确测量大型接地网接地阻抗、接地电阻、接地电抗; 2.精确测量大型接地网场区地表电位梯度;

3.精确测量大型接地网接触电位差、接触电压、跨步电位差、跨步电压; 4.精确测量大型接地网转移电位; 5.测量接地引下线导通电阻; 6.测量土壤电阻率 变频抗干扰接地阻抗测试: 也称大地网接地电阻测试仪,变频大电流接地阻抗测试仪,大型接地网接地阻抗测试系统、接地装置特性参数测试系统、大地网接地阻抗测试仪,接地阻抗测试仪等 DF9000变频大电流多功能地网接地特性测量系统 一、概述 DF9000变频大电流多功能地网接地特性测量系统是上海大帆电气有限公司和上海交通大学联合研制的最新成果,主要用于精确测量大型接地网特性参数的软硬件系统,系统主要功能:精确测量接地阻抗,接地电阻、接地电抗,场区地表电位梯度,接触电压,跨步电压,土壤电阻率,地网电流分布情况等参数。 DF9000变频大电流多功能地网接地特性测量系统通过对接地网注入一个异于工频的电流,有效地避免了50Hz及其它干扰信号引起的测量误差,可精确、经济、安全的测量接地网接地阻抗,接触电压,跨步电压,场区地表电位梯度等参数,同时使得测量过程变得方便而安全。 DF9000变频大电流多功能地网接地特性测量系统主要包括:大功率

矢量网络分析仪基础知识和S参数测量

矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 。因为只有一个口,总是接在最后又称 1.单端口网络习惯上又叫负载Z L 终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 2单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S )更方便些。 11 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。 2匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 2传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

2两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回 损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即 S 11、S 21、S 12、S 22。这里仅简单的(但不严格)带上一笔。 S 11与网络输出端接上匹配负载后的输入反射系数Г相当。注意:它是网络 的失配,不是负载的失配。负载不好测出的Γ,要经过修正才能得到S 11 。 S 21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传 输系数T 或插损,对放大器即增益。 上述两项是最常用的。 S 12即网络输出端对输入端的影响,对不可逆器件常称隔离度。 S 22即由输出端向网络看的网络本身引入的反射系数。 中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能 力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。 1.2 传输线 传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到 微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。 2特性阻抗Z 0 它是一种由结构尺寸决定的电参数,对于同轴线: 式中εr 为相对介电系数,D 为同轴线外导体内径,d 为内导体外径。 2反射系数、返回损失、驻波比 这三个参数采用了不同术语来描述匹 配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电

矢量网络分析仪的误差分析和处理

矢量网络分析仪的误差分析和处理 一、矢量网络分析仪的误差来源 矢量网络分析仪的测量的误差主要有漂移误差、随机误差、系统误差这三大种类。 1、漂移误差 漂移误差是由于进行校准之后仪器或测试系统性能发生变化所引起,主要由测试装置内部互连电缆的热膨胀特性以及微波变频器的变换稳定性引起,且可以通过重新校准来消除。校准维持精确的时间范围取决于在测试环境下测试系统所经受到的漂移速率。通常,提供稳定的环境温度便能将漂移减至最小。 2、随机误差 随机误差是不可预测的且不能通过误差予以消除,然而,有若干可以将其对测量精度的影响减至最小的方法,以下是随机误差的三个主要来源: (1)仪器噪声误差 噪声是分析仪元件中产生的不希望的电扰动。这些扰动包括:接收机的宽带本底噪声引起的低电平噪声;测试装置内部本振源的本底噪声和相位噪声引起的高电平噪声或迹线数据抖动。 可以通过采取以下一种或多种措施来减小噪声误差:提高馈至被测装置的源功率;减小中频带宽;应用多次测量扫描平均。

(2)开关重复性误差 分析仪中使用了用来转换源衰减器设置的机械射频开关。有时,机械射频开关动作时,触点的闭合不同于其上次动作的闭合。在分析仪内部出现这种情况时,便会严重影响测量的精度。 在关键性测量期间,避免转换衰减器设置,可以减小开关重复性误差的影响。 (3)连接器重复性误差 连接器的磨损会改变电性能。可以通过实施良好的连接器维护方法来减小连接器的重复性误差。 3、系统误差 系统误差是由分析仪和测试装置中的不完善性所引起。系统误差是重复误差(因而可预测),且假定不随时间变化,可以在校准过程中加以确定,且可以在测量期间用数学方法减小。系统误差决不能完全消除,由于校准过程的局限性而总是存在某些残余误差,残余(测量校准后的)系统误差来自下列因素:校准标准的不完善性、连接器界面、互连电缆、仪表。 反射测量产生下列三项系统误差:方向性、源匹配、频率响应反射跟踪。 传输测量产生下列三项系统误差:隔离、负载匹配、频率响应传输跟踪。 下面分别介绍这六项系统误差,其中提到的通道A为反射接收机,通道B为传输接收机,通道R为参考接收机。 (1)方向性误差 所有网络分析仪都利用定向耦合器或电桥来进行反射测量。对理想的耦合器,只有来自被测件(DUT)的反射信号出现在通道A上。实际上,有少量入射信号经耦合器的正向路径泄漏并进入通道A(如

Agilen阻抗分析仪使用手册

Agilent 4294A阻抗分析仪 使用手册 华中科技大学激光技术国家重点实验室 2002年1月 目录 目录...................................................................................... 一、介绍.............................................................................. 二、基本原理: ................................................................. 三、A GILENT 4294A的主要技术指标: ............................. 四、前/后面板、硬/软键介绍 ........................................... 五、测量方法...................................................................... 一、介绍 Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和

开发提供强有力的工具。它具有: ·在宽阻抗范围的宽频率范围内进行精确测量 ·强大的阻抗分析功能 ·便于使用并能用多种方式与PC机配套 电子器件: 无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。 半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。 其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。材料: 介质材料:塑料、陶瓷、印制电路板和其它介质材料和损耗切角评估。 磁性材料:铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估。 半导体材料:半导体材料的介电常熟、导电率和C-V特性。 二、基本原理: Agilent 4294A阻抗分析仪所采用的是自动平衡电桥技术。如图所示:可以将平衡电桥看作一个放大器电路,基于欧姆定律V=I*R进行测量。被测器件(DUT)通过一个交流源激励,它的电压就是在高端H监测到的电压。低端L为虚拟地,电压为0V。通过电阻器R2的电流I2跟通过被测器件(DUT)的电流I相等。因此,输出电压和通过被测器件(DUT)的电流成正比,电压和电流自动平衡,这也就是它的名字的由来。 在实际应用中,为了覆盖更加大的频率范围,通常用一个null-detector 和modulator来代替电路中的放大器。当然,这只是一个基本的测量原理电路,为了得到精确的结果,还有许多的附加电路。 三、Agilent 4294A的主要技术指标:

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“G”代表 GHz,“M”代表MHz,“k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按 下大按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off (隐藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal 母头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Open,校准提示(嘀的响声)后完成Open校准件的 测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Short,校准提示(嘀的响声)后完成Short校准件的 测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连

LCR表、阻抗分析仪和测试夹具选购指南_10.9.2

Agilent LCR表、阻抗分析仪和测试夹具选购指南 元器件和材料测试解决方案

适应您各种应用的具有成本效益的测试解决方案 无论您的应用是在研究开发、生产制造、质量保 证、还是来料检验方面,Agilent科技都可以向您提供正 确的阻抗测试解决方案。Agilent科技备有完整的系列 阻抗测试设备和测试附件来帮助您高效率地完成测试任 务,当您决定从Agilent购买一台阻抗测试仪表时,您 将得到的不仅仅是精确和可靠的测试结果,我们还向您 提供: 完整的解决方案: Agilent的阻抗分析仪产品系列的 频率覆盖范围从20 Hz到3 GHz,从而为您的应用提供 最为广泛的选择范围。此外,还有一些第三方合作伙伴 可以向您提供专门和Agilent仪器配合使用满足特殊测 试要求的辅助产品。这份资料将对您可以选择的各种阻 抗测试产品和附件做一个概括性的描述。 广泛而深刻的知识: Agilent在提供阻抗测试解决方 案方面有几十年的经验,多年的经验和持续不断的技术 创新已经融合到每种LCR表和阻抗测试仪的设计和生 产制造过程当中。Agilent还有一系列的技术出版物,对 您各种不同的测试应用提供技术协助 (在第15页我们列 出了所有这些出版物的清单)。 快捷方便的服务: 任何时候,只要您有阻抗测试的 需求,您都可以方便地从Agilent公司获得快捷的帮 助。Agilent可以向您提供三种类型的阻抗测试解决方案,如表1所示,您只要联系到Agilent训练有素的技术支持工程师,便可以在他们的帮助下找出正确的解决方案。图1. 阻抗测试技术比较 应用范围广泛的先进测试技术 图1是Agilent的LCR表和阻抗分析仪所使用的不同测试技术的比较,正如您所看到的那样,每一种技术都有其特别的测试优: 自动平衡桥法的阻抗测试范围最宽,典型的测试频率在20 Hz到110 MHz之间,这项技术比较适用于低频和通用的测试。 阻 抗 测 量 范 围 ( 欧 姆 ) 测量频率范围(Hz) 在10%的精度范围内, Agilent阻抗测试技术的比较 自动平衡桥法 I-V方法 射频 I-V方法 网络分析方法 表1. 阻抗测试产品类型 2

矢量网络分析仪

矢量网络分析仪 科电贸易ZNBT是首款多端口矢量网络分析仪,能够提供最多24个集成式测试端口。该仪器可以同步测试多台被测设备,或测量一台最多带24个端口的被测设备。 即便在带有多个端口的情况下,科电贸易ZNBT也只需要很短的测量时间。其他亮点包括宽动态范围、高输出功率电平以及具有高功率处理容量的输入。 仪器提供两个不同的频率范围:ZNBT8可在9kHz至8.5GHz的频率范围内操作,ZNBT20、ZNBT26和ZNBT40可分别在100kHz至20GHz、26.5GHz和40GHz的频率范围内操作。这些特性使得科电贸易ZNBT非常适用于移动无线电、无线通信以及电子产品行业中的广泛应用。 该仪器主要用于有源及无源多端口组件的开发和生产阶段,此类组件包括多频段移动电话的GPS、WLAN、Bluetooth?以及前端模块。卓越性能便于有效分析基站滤波器以及其他高选择性组件。 R&S?ZNBT在基于开关矩阵的多端口系统方面出类拔萃。高集成度使其成为一款极为紧凑的解决方案,可用于分析最多带24个端口的组件,而且所需机架空间少于R&S?ZNB。 借助便捷的用户界面,即便在非常复杂的多端口测量中,也能轻松处理。R&S?ZNBT 支持多种远程控制选件,并且能够轻松集成到自动化测试系统中,比如用于执行相控阵天线测量。 科电贸易ZNBT的主要特点 ●四端口R&S?ZNBT8基本单元,可升级到8、12、16、20或24个端口 ●八端口R&S?ZNBT20、R&S?ZNBT26、R&S?ZNBT40基本单元,可升级到12、 16、20或24个端口 ●频率范围介于9kHz至8.5GHz(R&S?ZNBT8),或100kHz至26.5GHz 或40GHz(R&S?ZNBT20) ●至多24个完全相位相参接收机 ●最高140dB的宽动态范围 ●快速扫描时间,201个扫描点的扫描时间为2.1ms(R&S?ZNBT8)和2.5 ms(R&S?ZNBT20) ●100dB的宽功率扫描范围 ●高功率处理容量 ●中频带宽范围介于1Hz至10MHz ●温度稳定性高达0.01dB/°K ●超过100个迹线和通道 ●轻松配置多端口测量

HTDW-3A大型地网接地电阻测试仪

HTDW-5A大型地网接地电阻测试仪使用方法 目前在电力系统中,大地网的接地电阻的测试目前主要采用工频大电流三极法测量。为了防止电网运行时产生的工频干扰,提高测量结果的准确性,绝缘预防性试验规程规定:工频大电流法的试验电流不得小于30A。由此,就出现了试验设备笨重,试验过程复杂,试验人员工作强度大,试验时间长等诸多问题。 华天电力生产的HTDW-3A大地网接地电阻测试仪,采用了新型变频交流电源,并采用了微机处理控制和信号处理等措施,很好的解决了测试过程中的抗干扰问题,简化了试验操作过程,提高了测试结果的精度和准确性,大大降低了试验人员的劳动强度和试验成本。 本仪器适用于测试各类接地装置的工频接地阻抗、接触电压、跨步电压、等工频特性参数以及土壤电阻率。可测变电站地网(4Ω)、水火电厂、微波站(10Ω)、避雷针(10Ω)多用机型。 本仪器采用异频抗干扰技术,能在强干扰环境下准确测得工频50Hz下的数据。测试电流最大5A,不会引起测试时接地装置的电位过高,同时它还具有极强的抗干扰能力,故可以在不停电的情况下进行测量。 1.测量的工频等效性好。测试电流波形为正弦波,频率仅与工频相差为5Hz,使用45Hz 和55Hz 两种频率进行测量。 2.抗干扰能力强。本仪器采用异频法测量,配合现代软硬件滤波技术,使得仪器具有很高的抗干扰性能,测试数据稳定可靠。 3.精度高。基本误差仅0.005Ω,可用来测量接地阻抗很小的大地网。 4.功能强大。可测量电流桩,电压桩,接地电阻,跨步电压,接触电压。 5.操作简单。全中文菜单式操作,直接显示出测量结果。 6.布线劳动量小,无需大电流线。 三、技术指标 1.测量范围:0~150Ω(含电流桩阻抗)

S参数定义,矢量网络分析仪基本知识和S参数测量

S参数定义、矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 1.单端口网络习惯上又叫负载Z L。因为只有一个口,总是接在最后又称终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 ?单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。?匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 ?传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

V2 ?两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即S11、S21、S12、S22。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。

4395A 阻抗分析仪使用方法

安捷伦4395A 阻抗分析仪使用方法 1.使用频率范围:100kHz ~ 500MHz 2.使用配件(非标配):41951-69001阻抗适配器,16092弹簧夹具,0S/0Ω/50Ω校准用标准配件,同轴线缆(3条) 3.同轴线缆连接41951-69001阻抗适配器与4395A阻抗分析仪 同轴线缆4395A阻抗分析仪41951-69001阻抗适配器 NO. 1 RF OUT 50Ω端Input S端 NO. 2 R 50Ω端OUTPUT R端 NO. 3 A 50Ω或B 50Ω端OUTPUT T端 备注:连接41951-69001阻抗适配器与4395A阻抗分析仪应当在关机状态下进行。4.测试参数设置 阻抗测试至少应当设置以下参数: (a)测试频率范围——通过4395A阻抗分析仪前面板上的START/STOP或者CENTER/SPAN即可设置起始/终止频率或者中心频率/范围。 (b)信号输出等级——选择4395A阻抗分析仪前面板上的Source硬键,在出现的菜单中选择POWER软键可以设置信号输出等级。参数可选范围为:-15dB ~ +15dB。该参数与测试过程中可能出现的A或B端过载报警有关。为避免出现报警,可以将其设置为负值。5.校机 5.1 选择4395A前面板上的Cal硬键,在出现的软键菜单中选择CALIBRATE MENU。 5.2 开路校机。连接0S标准配件到41951-69001阻抗适配器,选择OPEN软键。当本操

作实施后,OPEN字样下方会出现下划线,此时可以取下0S标准配件。 5.2 短路校机。连接0Ω标准配件到41951-69001阻抗适配器,选择SHORT软键。当本操作实施后,SHORT字样下方会出现下划线,此时可以取下0Ω标准配件。 5.3 50Ω负载校机。连接50Ω标准配件到41951-69001阻抗适配器,选择LOAD软键。当本操作实施后,SHORT字样下方会出现下划线。 5.4 选择DONE CAL软键实施校机。显示屏幕上会出现一条水平线及Cor字样,如果设置有Maker List,将会在表中显示各Maker点处的阻抗约为50Ω。此时校机完成,可以取下50Ω标准配件。

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1 DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器(DSP)从数字信号中提取被测网络的幅度信息和相位信息,通过比值运算求出被测网络的S参数,最后把测试结果以图形或数据的形式显示在液晶屏幕上。 ◆合成信号源:由3~6GHz YIG振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。

CHB-2000(A)电爆网络全电阻测试仪

CHB-2000(A)型电爆网络全电阻测试仪 一概述和适用范围 2001年10月开始实施的新煤矿安全手册第三百三十六条规定,每次爆破作业前,爆破工必须作电爆网络全电阻检查。严禁用发爆器打火发电检查电爆网络是否导通。根据上述要求,按GB3836-2000《爆炸性气体环境用电气设备》的要求,设计成本质安全型专用电雷管网格电阻测试仪。该仪器采用微处理器及新型电子元器件设计的一种读数精确,性能稳定可靠,外壳结构上采用圆弧流线型设计,3位半数字显示,操作简便,功耗小,重量轻的便携式智能仪器。 本仪器广泛适用于煤矿井下可燃气体爆炸性环境和其它工作情况下,检测单只电雷管及网络电雷管的电阻值,也适用于电雷管生产和库存单位作检验仪表。 二技术要求 1.防爆形式:矿用本质安全型, 2.防爆标志:ExibI 3. 环境条件:环境温度:0℃~40℃ ; 相对湿度:≤95%(25℃);大气压力:(80~106)kPa;具有甲烷、煤尘等爆炸气体的煤矿井下。 4、仪表电源: 选用通用普通9V叠层干电池一节,允许电压下降至7V,仪表尚可保证测量精度。 5、测试仪具有电池欠压显示、欠压自动关机及延时关机功能:电池电压小于7.5V时,液晶显示器出现“LOBAT”符号,电池电压小于7V或开机10分钟后,测试仪自动关机。 6、测试仪具有背光功能:背光打开10秒钟后自动关闭。 7、量程:分二档,读数单位为Ω。 1) 0~199.9Ω档用于检测单只或25只以内串联电雷管阻值,分辨率为0.1Ω。准确度:±(1.0%读数+5个字)。 2) 0~1999Ω档用于检测整个电雷管串联网络阻值,分辨率为1Ω,准确度:±(1.0%读数+3个字)。 8、小数点、极性、单位自动定位,超量程最高位显示“1”,其余消隐。 19、外形尺寸:118×72×46mm。 10、重量:280g。 11、外壳材质:ABS防静电工程塑料。 重庆山兰机电设备有限公司版权所有

阻抗分析仪Measuring Impedance with the Bode 100

Measuring Impedance with the Bode 100 OMICRON Lab Webinar Nov. 2014 深圳市迪福伦斯科技有限公司 www.deffense.com.cn

Let‘s start with a question ?Why do the presenters wear moustaches? http://moteam.co/omimobros

Agenda ?Direct Impedance measurement methods ?Indirect Impedance via Gain ?Measurement examples ?Time for discussion ?Wishes & feature requests 深圳市迪福伦斯科技有限公司 www.deffense.com.cn

Impedance Measurement Methods ?Direct Measurements ?One-Port ?Impedance Adapter ?External bridge (e.g. High Impedance)?Indirect Measurements (via Gain) ?Two-Port shunt-thru ?Two-Port series-thru ?Voltage-Current Gain

?Support full impedance calibration (open/short/load)?Directly displaying impedance, reflection and admittance ?Ls, Lp, Rs, Rp, Cs, Cp, Q, VSWR

网络阻抗测试仪.

目录 一、方案论证与比较 (2 1.1 信号源选择部分方案论证 (2 1.2信号源调理部分方案论证 (3 1. 2.1 有源低通滤波 (3 1.2.2放大电路 (3 1.3I/V变换电路模块方案论证 (3 1.4阻抗模测量模块方案论证 (4 1.5阻抗角测量部分方案论证 (4 1.6综合控制部分方案论证 (5 二、分析计算 (5 2.1阻抗模 (5 2.2阻抗角 (6 2.3谐振点 (6 2.4被测网络结构的判断和计算 (6 2.4.1 元件类型判断 (6 2.4.2 元件串、并联判断 (6 2.4.3 元件参数的计算 (7 三、系统设计 (7

3.1总体设计框图 (7 3.2单元电路设计 (8 3.2.1 DDS产生信号源电路设计 (8 3.2.2 信号源滤波及放大电路设计 (9 3.2.3 I/V转化电路设计 (9 3.2.4峰值检波模块电路设计 (9 3.2.5比较器电路设计 (10 3.2.6电源电路设计 (10 3.2.7 MSP430和CPLD电路设计 (11 四、软件系统流程图 (12 五、系统测试 (13 5.1测试原理与方法 (15 5.2使用仪器 (16 5.3测试数据结果 (16 5.4数据误差分析 (17 5.5总结 (18 六、参考文献 (18 网络阻抗测试仪

摘要:本方案采用MSP430单片机作为主控。利用DDS芯片AD9851、运放电路、矩阵键盘,设计了一个输出幅度2V±0.1V(Vpp、频率1kHz~200kHz、可步进显示的正弦信号作为标准输入信号,设定固定频率或扫频信号输入到被测未知R、L、C网络,经过I-V转换电路后,通过有效值转换芯片AD637和24位高精度A/D 转换芯片测量输出电压值,换算阻抗。阻抗角的测量是将原输入信号和经由被测网络后输出的一组测量信号分别经过由TL3016构建成的具有迟滞特性的过零比较器整形为方波,通过可编程逻辑器件(CPLD对方波信号进行滤波、测算相位差,单片机读取CPLD相位差信息计算得到阻抗角。利用相位的大小判断元件的种类,分别利用DDS的低频和高频信号判断串并联网络结构,由阻抗和电路结构进一步计算元件具体数值。 关键字:阻抗测量;AD7799;TL3016;RLC网络;MSP430 一、方案论证与比较 1.1 信号源选择部分方案论证 阻抗参数测量在传感器、仪器仪表以及印刷电路分布参数分析等技术领域中占据非常重要的地位,目前阻抗测量技术已经从电桥法、谐振法等传统方法发展到矢量伏安法等现代数字测量技术。然而现有的数字化阻抗测量方法都要求激励信号是低失真度的正弦信号,而频率高的低失真度正弦信号很难获得,这限制了测量精度的提高和测量范围的扩大。可见,获得低失真度、高精度、稳定的标准信号源是这个系统的核心,它的成功与否,将直接影响到整个系统的性能。 方案一:利用模拟分立元件(如RC、LC网络产生振荡信号 利用成熟的三点式晶体管振荡电路,可以通过改变电阻,电感,电容元件的参数,来改变正弦振荡的频率。这种电路的特点是频率稳定性较好,并且很容易起振,电路简单。但是如果要实现题目中要求的1KHz至200KHz那么宽的频率范围,很难做到,或者实现起来系统体积太大,功耗很高,容易产生杂波,不易精确调节振荡频率。 方案二:利用压控振荡器VCO产生振荡信号

矢量网络分析

矢量网络分析 CKBOOD was revised in the early morning of December 17, 2020.

矢量网络分析(Vector Network Analyzer ,VNA)是通过测量元件对频率扫描和功率扫描测试信号的幅度和相位的影响来精确表征元件特征的一种方法。网络分析是指对较复杂系统中所用元件和电路的电器性能进行测量的过程。这些系统传送具有信息内容的信号时,我们最关心的是如何以最高效率和最小失真使信号从一处传到另一处。矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域。国内生产矢量网络分析仪的厂家主要有:中国电子科技集团41所、天津德力、成都天大仪器等单位。国产矢量网络分析仪中,仅41所有与国外同类先进产品相对应的频率上限覆盖至170GHz的系列化产品。在世界范围内矢量网络分析仪生产厂商主要有美国安捷伦、日本安立和德国罗德施瓦茨等,其中以美国安捷伦代表着最高水平,其推出产品最高频率上限已达500GHz。 矢量网络分析仪可测量的器件: 无源器件(滤波器) 有源器件(放大器) 单端口器件(天线)

双端口器件(衰减器) 多端口器件(混频器,耦合器,功分器) 平衡器件(平衡滤波器等) 网络分析仪有标量网络分析仪和矢量网络分析仪之分。 标量网络分析仪:只测量幅度信息,不支持相位的测量。接收机采用二极管检波,没有选频特性,动态范围小。 矢量网络分析仪:可同时测量被测网络的幅度信息和相位信息。接收机采用调谐接收,具有选频特性,能够有效抑制干扰和杂散,动态范围大。通过测量被测网络(被测件)对频率扫描和功率扫描测试信号的幅度与相位的影响,来表征被测网络的特性。 网络分析的基本原理 网络有很多种定义,就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输,这就好比光源发出的光射向某种光学器件,例如透

矢量网络分析仪的使用——实验报告

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验内容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率范围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“ G”代表GHz, “ M”代表MHz,“ k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按下大 按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off(隐 藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal母 头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点 击Open,校准提示(嘀的响声)后完成Open校准件的测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连接端), 点击Short,校准提示(嘀的响声)后完成Short校准件的测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点

大型地网接地电阻测试仪说明书

目录 一、仪器概述 (1) 二、性能特点 (1) 三、技术指标 (1) 四、仪器测试的操作过程及功能说明 (2) 1、测量原理框图及测试接线图 (2) 2、测试操作步骤 (4) 4、测试菜单详细解释 (6) 5、测试过程中仪器自诊说明 (6) 五、注意事项 (7) 六、随机配件 (7)

大型地网接地电阻测试仪 一、仪器概述 目前在电力系统中,大型地网的接地电阻的测试目前主要采用工频大电流三极法测量。为了防止电网运行时产生的工频干扰,提高测量结果的准确性,绝缘预防性试验规程规定:工频大电流法的试验电流不得小于30安培。由此,就出现了试验设备笨重,试验过程复杂,试验人员工作强度大,试验时间长等诸多问题。 大型地网接地电阻测试仪,可测变电站地网(4Ω)、水火电厂、微波站(10Ω)、避雷针(10Ω)多用机型,采用了新型变频交流电源,并采用了微机处理控制和信号处理等措施,很好的解决了测试过程中的抗干扰问题,简化了试验操作过程,提高了测试结果的精度和准确性,大大降低了试验人员的劳动强度和试验成本。 本仪器适用于测试各类接地装置的工频接地阻抗、接触电压、跨步电压、等工频特性参数以及土壤电阻率。本仪器采用异频抗干扰技术,能在强干扰环境下准确测得工频50Hz下的数据。测试电流最大5A,不会引起测试时接地装置的电位过高,同时它还具有极强的抗干扰能力,故可以在不停电的情况下进行测量。 二、性能特点 1、测量的工频等效性好。测试电流波形为正弦波,频率仅与工频相差为5Hz,使用45Hz 和55Hz 两种频率进行测量。 2、抗干扰能力强。本仪器采用异频法测量,配合现代软硬件滤波技术,使得仪器具有很高的抗干扰性能,测试数据稳定可靠。 3、精度高。基本误差仅0.005Ω,可用来测量接地阻抗很小的大型地网。 4、功能强大。可测量电流桩,电压桩,接地电阻,跨步电压,接触电压。 5、操作简单。全中文菜单式操作,直接显示出测量结果。 6、布线劳动量小,无需大电流线。 三、技术指标 1、阻抗测量范围:0~5000Ω 2、分辨率:0.001Ω 3、测量误差:±(读数×2%+0.005Ω)

FD100Z200Z网路电阻测试数显发爆器使用说明书

FD100Z200Z网路电阻测试数显发爆器使用 说明书 一、网络电阻测试使用说明说 A、用途 新实施的煤矿安全规程第三百三十六条规定,每次爆破作业前,爆破工必须做电爆网路全电阻检查,严禁用发爆器打火发电检查电爆网路是否导通,根据上述要求,FD100Z/200Z按GB3836-2000CC爆炸性环境用防爆电器设备的要求设计生产该仪器采用3位半高精高亮度LED数码显示,在井下显示清楚(红色),测试准确,性能稳定,抗震动,功耗小,操作简单等优点。 该网路电阻测试部分或国家专利,专利证号ZL200420085071.8 B、技术要求 1、防爆形式:矿用隔爆兼本质安全型EXD[ib]1 2、使用环境:温度-20℃~40℃相对湿度≤98%RH大气压力80~106KPA 3、电源:RS201.5V高性能碱性电池4节。开路电压≤6.2V。允许电压降至4.5V 4、测试回路:短路电流≤10MA 5、量程:0~1999欧姆 C、操作说明

1、新仪器使用前,应把仪器后盖打开,把第四节高性能碱性电池接至电板位置正确装好,盖上盖后,拧紧螺丝,显示窗数码管“左边”显示“1”,让显示窗两侧两接线端子短路,数码管显示“222”说明电池已装好,电路正常。以上工作必须在井上完成。禁止在井下打开盖子换电池。 2、现场使用时,把仪器有显示窗的一面,水平朝上放好,若测单支雷管电阻值时,可直接把雷管的两根脚线接到测试端子的连接线上,待显示窗数字显示稳定时,读书即为被测电雷管的电阻值。 3、测电爆网路全电阻值时,先测出放炮母线的电阻值,再把连接好的电爆网络接到放炮母线上,把放炮母线的另两个接头接到测试端子上,显示窗立刻显示被测电爆网路的全电阻值,待显示数字稳定后读数即为被测电爆网路的全电阻值。 D、注意事项 1、本测试功能专业与测量网路电阻切勿测量电压、电流等其它电量,以免电量受损。 2、仪器后盖未完全盖好固定好时,严禁使用。 3、仪器电池电压降到4.5V已下时,应及时更换电池一保证测量的准确性。 4、检修时不得更改电路元件规格、型号参数。 5、若作为放炮器使用时请详细参阅放炮器使用说明说。

相关主题
文本预览
相关文档 最新文档