工业设计外文文献翻译及原文
- 格式:doc
- 大小:84.00 KB
- 文档页数:13
Design Without Designers网站截图:/baidu?word=%B9%A4%D2%B5%C9%E8%BC%C6%D3%A2%CE%C4%CE%C4%CF%D 7&tn=sogouie_1_dg原文:Design Without DesignersI will always remember my first introduction to the power of good product design. I was newly arrived at Apple, still learning the ways of business, when I was visited by a member of Apple's Industrial Design team. He showed me a foam mockup of a proposed product. "Wow," I said, "I want one! What is it?"That experience brought home the power of design: I was excited and enthusiastic even before I knew what it was. This type of visceral "wow" response requires creative designers. It is subjective, personal. Uh oh, this is not what engineers like to hear. If you can't put a number to it, it's not important. As a result, there is a trend to eliminate designers. Who needs them when we can simply test our way to success? The excitement of powerful, captivating design is defined as irrelevant. Worse, the nature of design is in danger.Don't believe me? Consider Google. In a well-publicized move, a senior designer at Google recently quit, stating that Google had no interest in or understanding of design. Google, it seems, relies primarily upon test results, not human skill or judgment. Want to know whether a design is effective? Try it out. Google can quickly submit samples to millions of people in well-controlled trials, pitting one design against another, selecting the winner based upon number of clicks, or sales, or whatever objective measure they wish. Which color of blue is best? Test. Item placement? Test. Web page layout? Test.This procedure is hardly unique to Google. has long followed this practice. Years ago I was proudly informed that they no longer have debates about which design is best: they simply test them and use the data to decide. And this, of course, is the approach used by the human-centered iterative design approach: prototype, test, revise.Is this the future of design? Certainly there are many who believe so. This is a hot topic on the talk and seminar circuit. After all, the proponents ask reasonably, who could object to making decisions based upon data?Two Types of Innovation: Incremental Improvements and New ConceptsIn design—and almost all innovation, for that matter—there are at least two distinct forms. One isincremental improvement. In the manufacturing of products, companies assume that unit costs will continually decrease through continual, incremental improvements. A steady chain of incremental innovation enhances operations, the sourcing of parts and supply-chain management. The product design is continually tinkered with, adjusting the interface, adding new features, changing small things here and there. New products are announced yearly that are simply small modifications to the existing platform by a different constellation of features. Sometimes features are removed to enable a new, low-cost line. Sometimes features are enhanced or added. In incremental improvement, the basic platform is unchanged. Incremental design and innovation is less glamorous than the development of new concepts and ideas, but it is both far more frequent and far more important. Most of these innovations are small, but most are quite successful. This is what companies call "their cash cow": a product line that requires very little new development cost while being profitable year after year.The second form of design is what is generally taught in design, engineering and MBA courses on "breakthrough product innovation." Here is where new concepts get invented, new products defined, and new businesses formed. This is the fun part of innovation. As a result, it is the arena that most designers and inventors wish to inhabit. But the risks are great: most new innovations fail. Successful innovations can take decades to become accepted. As a result, the people who create the innovation are not necessarily the people who profit from it.In my Apple example, the designers were devising a new conception. In the case of Google and Amazon, the companies are practicing incremental enhancement. They are two different activities. Note that the Apple product, like most new innovations, failed. Why? I return to this example later.Both forms of innovation are necessary. The fight over data-driven design is misleading in that it uses the power of one method to deny the importance of the second. Data-driven design through testing is indeed effective at improving existing products. But where did the idea for the product come from in the first place? From someone's creative mind. Testing is effective at enhancing an idea, but creative designers and inventors are required to come up with the idea.Why Testing Is Both Essential and IncompleteData-driven design is "hill-climbing," a well-known algorithm for optimization. Imagine standing in the dark in an unknown, hilly terrain. How do you get to the top of the hill when you can't see? Test the immediate surroundings to determine which direction goes up the most steeply and take a step that way. Repeat until every direction leads to a lower level.But what if the terrain has many hills? How would you know whether you are on the highest? Answer: you can't know. This is called the "local maximum" problem: you can't tell if you are on highest hill (a global maximum) or just at the top of a small one.When a computer does hill climbing on a mathematical space, it tries to avoid the problem of local maxima by initiating climbs from numerous, different parts of the space being explored, selecting the highest of the separate attempts. This doesn't guarantee the very highest peak, but it can avoid being stuck on a low-ranking one. This strategy is seldom available to a designer: it is difficultenough to come up with a single starting point, let alone multiple, different ones. So, refinement through testing in the world of design is usually only capable of reaching the local maximum. Is there a far better solution (that is, is there a different hill which yields far superior results)? Testing will never tell us.Here is where creative people come in. Breakthroughs occur when a person restructures the problem, thereby recognizing that one is exploring the wrong space. This is the creative side of design and invention. Incremental enhancements will not get us there.Barriers to Great InnovationDramatic new innovation has some fundamental characteristics that make it inappropriate for judgment through testing. People resist novelty. Behavior tends to be conservative. New technologies and new methods of doing things usually take decades to be accepted - sometimes multiple decades. But the testing methods all assume that one can make a change, try it out, and immediately determine if it is better than what is currently available.There is no known way to tell if a radical new idea will eventually be successful. Here is where great leadership and courage is required. History tells us of many people who persevered for long periods in the face of repeated rejection before their idea was accepted, often to the point that after success, people could not imagine how they got along without it before. History also tells us of many people who persevered yet never were able to succeed. It is proper to be skeptical of radical new ideas.In the early years of an idea, it might not be accepted because the technology isn't ready, or because there is a lot more optimization still to be done, or because the audience isn't ready. Or because it is a bad idea. It is difficult to determine which of those reasons dominates. The task only becomes easy in hindsight, long after it becomes established.These long periods between formation and initial implementation of a novel idea and its eventual determination of success or failure in the marketplace is what defeats those who wish to use evidence as a decision criterion for following a new direction. Even if a superior way of doing something has been found, the automated test process will probably reject it, not because the idea is inferior, but because it cannot wait decades for the answer. Those who look only at test results will miss the large payoff.Of course there are sound business reasons why ignoring potentially superior approaches might be a wise decision. After all, if the audience is not ready for the new approach, it would initially fail in the marketplace. That is true, in the short run. But to prosper in the future, the best approach would be to develop and commercialize the new idea to get marketplace experience, to begin the optimization process, and to develop the customer base. At the same time one is preparing the company for the day when the method takes off. Sure, keep doing the old, but get ready for the new. If the company fails to recognize the newly emerging method, its competitors will take over. Quite often these competitors will be a startup that existing companies ignored because what they were doing was not well accepted, and in any event did not appear to challenge the existing business: see "The innovator's dilemma."Gestural, multi-touch interfaces for screen-driven devices and computer games are good examples. Are these a brilliant new innovation? Brilliant? Yes. New? Absolutely not. Multi-touch devices were in research labs for almost three decades before the first successful mass-produced products.I saw gestures demonstrated over two decades ago. New ideas take considerable time to reach success in the marketplace. If an idea is commercialized too soon, the result is usually failure (and a large loss of money).This is precisely what the Apple designer of my opening paragraph had done. What I was shown was a portable computer designed for schoolchildren with a form factor unlike anything I had ever seen before. It was wonderful, and even to my normally critical eye, it looked like a perfect fit for the purpose and audience. Alas, the product got caught in a political fight between warring Apple divisions. Although it was eventually released into the marketplace, the fight crippled its integrity and it was badly executed, badly supported, and badly marketed.The resistance of a company to new innovations is well founded. It is expensive to develop a new product line with unknown profitability. Moreover, existing product divisions will be concerned that the new product will disrupt existing sales (this is called "cannibalization"). These fears are often correct. This is a classic case of what is good for the company being bad for an existing division, which means bad for the promotion and reward opportunities for the existing division. Is it a wonder companies resist? The data clearly show that although a few new innovations are dramatically successful, most fail, often at great expense. It is no wonder that companies are hesitant - resistant - to innovation no matter what their press releases and annual reports claim. To be conservative is to be sensible.The FutureAutomated data-driven processes will slowly make more and more inroads into the space now occupied by human designers. New approaches to computer-generated creativity such as genetic algorithms, knowledge-intensive systems, and others will start taking over the creative aspect of design. This is happening in many other fields, whether it be medical diagnosis or engineering design.We will get more design without designers, but primarily of the enhancement, refinement, and optimization of existing concepts. Even where new creative artificial systems are developed, whether by neural networks, genetic algorithms, or some yet undiscovered method, any new concept will still face the hurdle of overcoming the slow adoption rate of people and of overcoming the complex psychological, social, and political needs of people. To do this, we need creative designers, creative business people, and risk takers willing to push the boundaries. New ideas will be resisted. Great innovations will come at the cost of multiple great failures.Design without designers? Those who dislike the ambiguity and uncertainty of human judgments, with its uncertain track record and contradictory statements will try to abolish the human element in favor of the certainty that numbers and data appear to offer. But those who want the big gains that creative judgment can produce will follow their own judgment. The first case will bring about the small, continual improvements that have contributed greatly to the increased productivity andlowering of costs of our technologies. The second case will be rewarded with great failures and occasional great success. But those great successes will transform the world.译文不需要设计师的设计唐·诺曼我永远也不会忘记我第一次向人们介绍优秀产品设计的魅力的经历,那时候我刚刚到苹果公司,还在逐渐的学习工作上的事务。
(6)·(Twentieth-century··industrial nations)20世纪意大利设计仅仅是意大利当代文化、政治、社会和经济事物的一个方面。
流行的大批生产的家具、装饰性的家用品、家用电器、办公设备、汽车以及后来的时装设计及服饰使得意大利在当代物质文化世界中获得如此重要的地位,从本质上来讲,这些事物是意大利寻求现代化以及力争在本世纪使自己现代化工业国家之一的反映。
(9)·(Markers and colored pencils ideal ··any drawing surface)马克笔和彩铅既是设计过程中最理想的工具,又是最终表现效果中最理想的工具。
由于很多的草图是画在薄的描图纸上的,在上面涂以水彩和加以蛋黄的颜料是不合适的,因为它们会使纸张弯曲变形。
马克笔能过迅速风干,并且它不会使纸张变形。
马克笔可以和彩铅一起快速的使用于任何图画的表现。
·(Neither extensive practice··as casein and tempera)有了这两种上色工具,既不需要过多的练习,也不需要高超的技巧,这两种方法简单明了。
通过对这两种方法的熟悉,你的工作速度或许能得到很大的提高。
这种上色的方法比排刷的上色方法以及大多数学生和专业人士在某种程度上都熟悉的上色方法来说要更快更容易掌握。
水彩以及其他排刷的优点以及精细程度是用马克笔和彩铅也能够实现的.水彩的混合和叠加以及喷绘技术是可以被模仿的,就好像诸如使用酪蛋白或加蛋黄的颜料也可以获得高光效果一样。
·(Markers and colored pencils are readily··and watercolor)马克笔可以很容易的买到,并且如今在专业的设计事务所里它大概是应用最为广泛的上色工具—-比加蛋黄的颜料的画法和水彩应用更为广泛.·(A variety of marker··or toned point paper)在专门经营艺术和绘画工具的商店里可以买到何种各样的马克笔品牌。
1.Creative China must find its ownPath网站截图:/baidu?word=%B9%A4%D2%B5%C9%E8%BC%C6%D3%A2%CE%C4 %CE%C4%CF%D7&tn=sogouie_1_dg原文:Creative China must find its own PathJustin 0'ConnorIt is commonly said that China needs to ‘catch-up’ with `the west' or the `developed world'. This phrase implies a singular path; there may be short cuts and `late-comer advantages' but the destination一a modern, developed country一is the same. But just when it seems China is within touching distance, the `developed world' changes the definition of what it is to be `developed' and puts more obstacles in the path of those trying to catch-up. In English we call this `moving the goal-posts'. After manufacturing, services and high-technology seemed to present clear goals for China, the cultural creative industries arrive as the new `value-added' product and service sector, posing yet more problems for the country's policy-makers. Many in the West have argued that China will take a long time to catch-up in these areas and that this provides a new source of competitive advantage to the West. Indeed, for some, the absence of a competitive cultural creative industries sector is evidence that China is not, and maybe can never be, fully `developed'.Much of this can be dismissed as another example of the West's superiority complex; however, there can be no doubt that the cultural creative industries present great possibilities but also great challenges for China. These industries一from visual and performing arts, to recorded music, film and TV, to digital animation and new media services, through to fashion, design and architecture一are highly creative and innovative products and services, relying on complex flows of knowledge and intellectual property. They are also cultural or symbolic products that reflect and influence our pleasures and ambitions, and our individual and collective sense of meaning and identity. For these reasons all nations have sought to protect and develop their own national culture and traditions by investing in cultural infrastructure and expertise. In the second half of the twentieth century this was expanded beyond `the arts,一galleries,museums, opera houses, universities, arts schools, journals etc. 一to include broadcast media, film, publishing and recorded music. In the last 20 years the emphasis has shifted from building economic infrastructures for reasons of national cultural identity to mobilizing culture and creativity for reasons of economic development.The cultural creative industries are now strongly linked with the knowledge economy, which emphasizes high levels of research, knowledge transfer and, above all, innovation. In the West artists or `cultural producers' have long been associated with dynamic, often unpredictable creative innovation. Now the innovative capacity of the cultural industries is extended to a new range of creative products and services and is also seen as a catalyst for innovation right across the economy. In China this agenda has also meant moving beyond the idea of a better industrialization or marketisation of existing cultural products towards a more systematic approach to the idea of cultural and creative innovation and its wider economic impacts. This demands the ability to anticipate new products and services, finding new audiences, differentiating rather than imitating what already sells. It requires new kinds of `soft skills' that are hard to acquire as they are often`tacit', demanding experience rather than formal education (though this is also necessary). It demands understanding different models of production, complex value chains and the interaction between cultural, creative and business skills. In the last few years the central driving force behind cultural and creative industries policies has been the idea of `cluster'. Starting from a few isolated examples in Beijing, Shanghai and other smaller coastal cities the concept has now become a central policy platform. Cultural and creative clusters exist in the West, though these terms cover extremely diverse developments. There are some good reasons why China would choose this policy platform above others. In many large cities experiencing de-industrialisation there are empty factories that seem ripe for this kind of development. The model of concentration to facilitate rapid development also fits well with China's history of collectivization and more recently its development of high-tech and other R&D parks. Clusters are also attractive to policy makers because they are highly visible一successful ones give publicity to them and the city. At the same time they offer clear and concrete steps to support a sector that is very new and not very well understood. However, there are some real problems to be overcome if these clusters are to deliver what is expected of them.Many clusters emerged organically, with artists looking for cheap workspace; but in China, as in the West, they soon drew attention from property developers. The first big problem faced by clusters is that cultural and creative producers raise the profile of a place and this is very quickly translated into rent rises, typically driving out the first occupants. This is a complex problem, but my main point would be that policy cannot be driven by the dynamics of real estate. Some have said that if creative industries are seconomically important we should let the market decide. There is some truth in this; it is very easy to subsidise bad artists and creative producers. However, the dynamics of real estate markets and the creative economy are very different, especially at the early stages. Cultural profile can raise rents muchmore rapidly than with other kinds of occupancy, often from a low base, and can provide good profit. But these rent rises are often too fast for a slowly emerging sector, which is not just to be seen as individual companies but as a complex emerging `creative ecology'. The real estate market measures `good' or `bad' creative by their ability to pay the rent, not on their long-term effect on innovation. There are easy measures for real estate success一higher rent yield一but how are we measuring the innovative capacity of the local economy? In general, local governments should not give tax breaks to real estate companies and then allow them to apply pure market rules to rents. More subtle intelligence and policy instruments are needed if government is find a productive balance in this area.Clusters are often conceived as places for the `industrialization' of cultural products一that is, mass production and marketing. The need for innovation is forgotten in the process. There are many visual art clusters that are very much like factories, reproducing extremely outdated products for the lowest end of the art market. This might provide jobs in the short term but simply confirms China as the world's low value producer. Similar things could be said about traditional crafts, which are extremely repetitive and are usually only protected by inter-provincial tariffs. These products might inflate the statistics一according to one report China is third largest exporter of cultural products一but they are very misleading; most of the products counted do little to enhance the innovation capacity of the cultural creative sector.Better understanding and governance of clusters is necessary. Clusters deliver benefits for many but not the entire cultural creative sector. Computer games, for example, does not benefit from clusters because more or less everything is produced in-house in great secrecy. They go to clusters because of tax and rent subsidies, not to be in proximity to others. Visual artists benefit from cheaper rents, the reputation of a `cool' place and from space to work in quiet; they do not necessarily engage in intensive networking and knowledge transfer. Other project based industries, such as new media, want the networking possibilities provided by clusters, what economists called `untraced interdependencies'. There are thus different requirements for the different branches, and both the mix of companies and the quality of the space need to be carefully understood.There is real scope for informed government policy here. In general they should look to raise the quality of production as well as developing new audiences and markets. Clusters can have a role in this, but they have to form part of a wider policy strategy. For example, universities are vital to building new human capital一they have to be encouraged to look to creative skills not just teaching from established models,.Local television stations can be encouraged to pay more for high quality content一at the moment the purchase is a one size fits all approach which often pays the worst and the best exactly the same. The design of urban spaces can be enhanced to support the city as a `creative milieu'. More directly, the cultural creative industries need new creative attitudes and mentalities that take some time to come through; they also demand a range of `soft skills' associated with project management, branddevelopment and marketing which have to be learned `on the job'. But they find it hard to learn these skills when they are mostly delivering services at the lowest part of the value chain, where innovation effects and intellectual property go abroad. Talent is wasted in servicing when it should be focused on developing original content. Local governments have to realize that though the cultural creative industries have strong economic benefits they are also about quality一high values which demand the long term view not the quick return of the `bottom line'. This push for high quality and higher levels of innovation is something that demands a more holistic approach to policy; and clusters can play a crucial role in this.Rather than be seen as convenient containers for cultural creative producers they need to become focal points for targeted development. Universities and art schools need to be more involved. As do their cultural creative industry research centres. Real knowledge transfer can be encouraged and facilitated by intelligent cluster managers. The skills to run a cluster are just emerging and there are some good exemplars一but much of it is just real estate management as in any other sector and this is a wasted opportunity. Networking events, joint marketing, seminars with foreign companies, spaces and occasions for experimentation, a carefully managed programme for the general public (too much tourism can destroy a cluster, as in Tianzi fang in Shanghai), intelligent links to other clusters and larger creative companies一all these demand specific skills to deliver. These skills also should be disseminated and improved across between the clusters. China does need to look to foreign experts and models; but it has also shown time and again that it can also find its own way, and in ways that have astonished outsiders. It can do this with the cultural creative industries but it has to look long term, beyond immediate economic gain (including rent increases) to the long-term creative and innovative capacity of the country. It has to recognize that it is catching up at a time when western creative industry corporations are more global than ever, looking to penetrate local Chinese markets just when the country is trying to develop its own creative sector. This presents a real challenge, but I would say that rather than try and use policy tools derived from the West, China should look to its own traditions and strengths. I do not just mean its traditional culture in terms of calligraphy or opera or ink painting; I mean its resources for social and economic development that uses, but is not subservient to, the `free' market. In fact the UK, closely associated with the creative industries agenda, has very little capacity to deliver industry support, relying on demands that people be more `entrepreneurial' rather than deliver systematic and intelligent sectoral strategy. This is why it has let a 250-year-old world famous ceramics company一Wedgewood一go bankrupt. China has some things to learn from the UK, but its deep resources of intelligent and pragmatic policy will be ultimately decisive. Most important, policy makers should not loose sight of the importance of culture for collective meaning and identity. This is much more diverse, fluid and open to new influences, and the Chinese government has increasingly stood back from direct intervention. In the search for the new economic benefits of the cultural creative industries their deeper cultural contexts should not be neglected.译文:中国要有自己的创新之道Justin 0'Connor 贾斯丁奥·康纳人们总是说中国需要赶超西方或发达国家,这似乎意味着是唯一的道路。
中文译文基于IE技术的工时定额确定摘要工时定额是核算企业运营成本与工人收入的基础,直接关系着企业的生产效率与工人的生产积极性。
针对中小型企业的工时定额建立方法缺乏标准性与科学性,并严重依赖技术人员的经验.本文提供了一种基于IE技术的综合性工时定额确定方法。
工时定额由辅助时间、人机操作时间、工作时间等组成.辅助时间可以通过基于基本工作分解的模特排时法来确定,工作时间由工时定额标准时间来确定。
此外,学习曲线被应用于优化计算结果。
文章的最后用一个实例来验证该方法的有效性。
关键词:工时定额;工时定额标准数据;模特排时法;学习曲线引言工时定额是工厂制定生产计划与进行经济核算所依据的一种主要指标,它的确定方法对于工厂的成本计算是非常重要的.大部分中小型企业采用多品种、小批量的生产方式,产品的规格经常改变,因此工时定额的确定是非常困难的。
现阶段的企业通常采用经验估工法、标准数据法以及既定时间标准设定法来计算工时定额,这需要经验丰富的技术人员与管理人员经过长期的修正才能确定。
无疑,这需要一个比较长的工作周期以及比较高的工作量,而且,工时定额的最终结果很容易被主观因素所影响,从而很难保证准确性与科学性。
所有的这些因素都会为生产计划制定与成本控制造成不利影响。
近年来,学者对这一课题进行了广泛的研究并取得了比较大的进展。
一些研究表明,标准时间可以基于典型操作来进行计算,并阐述了选择典型操作方法的规则.另外一些学者提出了一种包含基于范例推理与基于知识推理的混合推理模型。
这个模型已经成功应用于装配复杂且影响因素众多的一个框架.参考文献3针对提高私营企业生产效率这一目标建立了一种对所有动作进行分类的工时定额基础数据。
另外,使用神经网络来进行工时定额计算是一种新的思路.我们可以发现,工时定额的建立没有统一的规范与标准,所以,寻找出一种更科学,更有效的工时定额确定方法是十分有意义的.本文应用基础的IE知识以及基本元素分解法与模特排时法来详细说明各项基本操作,接下来用更加更合理与人性化的方法来计算工时定额。
附件1:外文原文The world's Latest Mechanical Design ConceptsAbstract: According to scholars at home and abroad to carry out mechanical design product design features of the main ideas, product design method of the program summarized as systematic, modular structure, based on product characteristics of knowledge and wisdom. The characteristics of these methods and their organic connection between them and put forward to achieve the computer product design direction.Key words: Mechanical Product Design Method Development TrendsDesign documents will be Semantic Web as a design tool in the design of its Semantic Web activity of the development of ASK, using nodes and lines to describe the design a network, nodes that components of the cell (such as design tasks, functions, components or processing equipment, etc. ), used to adjust the lines and definitions between nodes of different semantic relations, thus the design process all the activities and results of pre-built models so that the definition of the early design requirements to the specific description of each structure can be defined by the relationship between the expression, achieved a computer-aided design process, the leap from the abstract to the concrete.A systematic design methodThe main features of a systematic design method are: the design as designed by a number of elements of a system, the independence of each design elements, each element of an organic link between the existence of, and is layered, with all the design elements , you can design systems to achieve the required task.Systematic design idea in the 70's by the German scholar Professor Pahl and Beitz, the system based on the theory they developed a general pattern of the design, advocacy design work should have organized. German Engineers Association, on the basis of this design concept to develop a standard VDI2221 technology systems and product development design methods.1. The user needs functional characteristics as a product concept, structure design and part design, process planning, job control, etc. based on the macro from the productdevelopment process of starting the use of quality function deployment method and system to user demand information reasonably and efficiently converted to the various stages of product development, technical goals and operational control procedures method.2. The level of the product life of the organism as a system, and means of living systems theory, the product design process can be divided into successful hierarchy of needs to achieve the functional requirements of the conceptual level and product level of the specific design. At the same time life-support systems used to express the abstract icons of the product functional requirements, system structure formation of product features.3. The mechanical design of the application of systems science into two basic questions: First, to be designed as a system dealing with the products, the best way to determine its component parts (modules) and their mutual relations; 2 is the product design process as a a system, according to design objectives, a correct and reasonably determine the various aspects of the design work and various design stage.Because each designer's point of research questions and to consider the question of emphasis, to design a specific research methods used is also different. Here are some representative of the systematic design methods.4. Design Element MethodWith the five design elements (functions, effects, effects vector, shape, elements, and surface parameters) describe the "product solutions" that a product to determine the value of the five design elements, the product of all the features and characteristics of the value of i.e. determined. Scholars in China have adopted similar methods designed to describe the product's original understanding.5. Graphic modeling methodAnd developed a "design analysis and guidance systems" KALEIT, with the level of clear graphic description of a product's functional structure and its associated abstract information, to the system structure and function relationship of graphical modeling, and functional connection between the layers [ 2].Assistance will be designed to be divided into two aspects of methodology and exchange of information using the Nijssen Information Analysis Method can be usedgraphic symbols, with a rich semantic model structure, can be described as integration conditions, can be divided into types of constraints can be achieved in relations between any combination of characteristics , the design method to solve integration and information technology to realize the design process of information between different abstraction layers between the graphical modeling.6. "Concept" - "Design" methodProduct's design is divided into "concept" and "design" in two stages. "Concept" phase of the task is to find, choose and mix to meet the requirements of the original understanding of design tasks. "Design" stage of work is a concrete realization of the original understanding of the conceptual stage.Of the program's "idea of" specific described as: In accordance with the appropriate functional structure, seeking to meet the design requirements of the original understanding of the task. The functional structure of the sub-function is performed by the "structural elements" to achieve, and "structural elements" of the physical connection between the definition of a "feature vector", "feature vector" and "structural elements" further the interaction between the formation of the functional diagram ( mechanical diagram). The program "design" is based on functional diagram, the first qualitative description of all of the "feature vector" and "structural elements", and then quantitatively describe all the "structural elements" and the connection parts ( "feature vectors"), the shape and location to be structure diagram [3]. Roper, H. using graph theory, by means of which he defines as the "total design unit (GE)", "structural elements (KE)", "functional structural elements (FKE)", "connect structural elements (VKE)", "Structural Parts (KT)", "structure element part (KET)" concepts, as well as describe the structure element size, location, and transmission parameters of the interactions between a number of kinds of schematics, the intuitive design professionals have done a formal design method a description of the formation of an effective application of existing knowledge, methods, and applied to "ideas" and "design" stage.7. Bond Graph MethodFunction of the composition of system components will be divided into produce energy, consumed energy, changing energy forms, such as various types of energy transfer, and to use bond graphs to express the function component solution, hoping tofunction-based model and bond graph combine to achieve functional structure the automatic generation and functional structure with the bond graph automatic conversion between the search for bond graph generated by a number of design methods.To promote the product on the basis of functional analysis, the product has some features broken down into one or several modular basic structure, by selection and combination of the basic structure of these modular form into different products. These basic structures can be parts, components, or even a system.The structure should have a standardized interface (connection and co-operation department), and is serialized, universal, integrated, hierarchical, agile, economic-oriented, with interchangeability, compatibility and relevance. China's combination of software component technology and CAD technology, variant design combined with the modular design, according to modular principle of classification, will be divided into descending Machining Center Machine Tool product level, component level, component level and component level, and use expert knowledge and CAD technology to combine them into different species, different specifications of functional blocks, and then by the combination of these functions into different modules of the overall program processing center.To design a directory as an alternative variation of the mechanical structure of the tool, the solution proposed by the design elements of a complete, structured layout, the formation of the solution set design catalogs. And in the solution set designed to comment on each one listed in the directory solution additional information, is very beneficial to design engineers select solution elements.The vigorous development of network technology, collaborative design and manufacturing, as well as the product from the user's functional requirements → design → processing → assembly → finished product of this realization of concurrent engineering possible. However, an important prerequisite to achieve these goals one of the conditions is to realize the effect of product design three-dimensional visualization. To this end, three-dimensional graphics software, more and more intelligent design software programs used in the product design, virtual reality technology and multimedia, hypermedia tools for product design is also its first debut. At present, Germany and other developed countries are focused on research hypermedia technology, product dataexchange standard STEP, as well as standard virtual reality modeling language based on a standard exchange format for virtual environments) in the product design applications.Mechanical product design is moving in computer-aided realization of intelligent design and to meet the needs of distributed collaborative design and manufacture of direction, due to the computer product design Study on the implementation started late, not yet mature, to achieve the above objectives program design tools [4]. Author believes that the integrated use of paper, four types of design method is an effective way to achieve this goal. Although the integrated use of these methods are more involved in the field, not only with the mechanical design of the field-related knowledge, but also to the systems engineering theory, artificial intelligence theory, computer hardware and software engineering, network technology areas such as domain knowledge, it is still product design must be working for. Abroad in research in this area has achieved initial success, our scholars have been aware of CAD design technology and the importance of international exchange and cooperation, and its measures to be taken.Feature-based design methodology of knowledge The main features are: using a computer can identify the language to describe the characteristics of the product and its design experts in the field of knowledge and experience to establish the appropriate knowledge base and inference engine, re-use of stored domain knowledge and the establishment of the inference mechanism to bring computer-aided product design.The mechanical system design is mainly based on the characteristics of a product, and design experts in the field of knowledge and experience to push volume and decision-making, the completion of body type, the number of synthesis. To achieve this stage of computer-aided design, must study the automatic acquisition of knowledge, expression, integration, coordination, management and use. To this end, the design and scholars at home and abroad program for the mechanical system design knowledge of the automated processing done a lot of research work, the approach can be summarized into the following several.附件2:外文资料翻译世界最新机械设计理念摘要:根据目前国内外设计学者进行机械产品设计时的主要思维特点,将产品方案的设计方法概括为系统化、结构模块化、基于产品特征知识和智能。
回转工作台设计外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:Design and research direction of the rotary table Abstract:this paper introduces the basic content and the principle of the rotary table design, put forward the research direction of the rotary table, broaden the design idea of designer.Improve the efficiency of the rotary table design, shorten the development cycle of new type rotary table, through the study of this article is for the quality of products of pre-assessment, determine the scope of the production and processing of precision index provides an important basis.Keywords:rotary table;design and research;new ideas;developments0IntroductionOn April 11 to 16, 2011, the theme of "science and technology innovation to meet the crisis generation" of the 12th China international machine tool exhibition (CIMT2011) was held in Beijing. In an economic crisis haze dissipating, slow recovery under the background of international economy, China's economy healthy and rapid development pattern, is attracting more and more attention. In this exhibition, the knowledge of machine tools, tools, manufacturing enterprises at home and abroad Gather in Beijing, as the economic crisis after the baptism of machinery industry brought a feast full of imagination and creativity of science and technology. Is the exhibition of machine tool accessories exhibition In terms of product, high efficiency, high precision, high reliability, high life still is to develop the theme of pursuit. As for the machine tool accessories rotary table is no exception. Rotary table is divided into indexing table, and rotary table. Indexing table can only be completed dividing movement, there is no function of feed. Can be used with work as a whole, can also be used alone. Common positioning pin and rat tooth plate; Nc rotary table is the ideal matching accessories of all kinds of CNC milling machine and machining center. Turn back to the table design Process includeThe basic types of rotary table s not only the mechanical drive mechanism, and it also involves the mechanical and electrical control system, the design idea of the two parts as the demand of the market and customers, constantly update and perfect, therefore, the design and research direction of the rotary table directly affect the benefit and the rise and fall of theturntable production enterprises.1 The basic types of rotary table1.1General turntableRotary table is boring machine, drilling machine, milling machine and the slotting machine, and other important accessories, used for processing and there is a requirement for dividing hole, slot and slope, turn the workbench when processing, can be processing arc surface and groove, etc. According to the structure is divided into different levels turntable general turntable, lie the turntable and universal turntable.(1) water flat turntable: on the frustum of a cone with central hole workpiece positioning and clamping with T slots. Mesa engraved with 360 °on the outer periphery of uniform scribed line. Mesa between base and a worm pole - worm gear pair, ratio of 90:1 or 120:1, to drive and dividing, worm out from base with dial and segment at the end of the handwheel. Turn the handwheel to drive mesa, and the mesa cylindrical week scale (in degrees) and subdivision dial readout rotation Angle. Dividing accuracy is commonly + 60 ". Levels turntable worm out side can also be used coupling connected to machine transmission device, in order to realize the dynamic drive.(2) lie turntable, the base has two perpendicular installation base, make mesa can be level Also can be vertically.(3) the universal turret: mesa can be within the scope of 0 ° ~ 90 ° inclined at any Angle, make the workpiece at any Angle of space can be accurately adjusted.1.2 precision turntablePrecision turntable Used for processing or Angle measurement on precision machine tools. Common optical turntable, digital display turntable and super precision contrate gear plate of turntable.Optical rotary table: (1) on the spindle is equipped with glass or metal precision dial, the optical system to subdivide scale, amplification, through the eyepiece or screen Angle value.(2) digital turntable: mounted on the turntable spindle precision circular grating or round inductosyn and display unit by the number of words the Angle value. Theabove two precision turntable dividing precision up to + / - 1 ".(3) the ultra-precision end tooth disc turntable: use a pair of precision of research on 1440, 720 or 360 tooth face tooth disc dividing positioning, the indexing accuracy up to + / - 0.01 ", make a precise Angle measurement.2 The design parameters and the working principle of rotary tableRotary table design parameters include: rotary table, table size, total table high degree, bearing table, feed speed, turning back to speed range, fast speed rotary speed, electric power, rotary table, dividing precision and measurement system, etc. This study is based on mechanism of shaanxi institute of technology laboratory of general rotary work Stage, through to tear open outfit, clear the turntable within the department of mechanical transmission mechanism, it is a mesa, pedestal, worm gear, worm, positioning3 Rotary table of research ideas and methodsRotary precision of the rotary table is a main technical bottlenecks, if technology and breakthrough in the continent before it has problems, design and manufacture of our country turntable will by "manufacturing power" to "manufacturing power" transformation of a major step forward.3.1 mechanical partsMainly the mesa rotary table with body contact structure design and optimization, generally adopts the sliding and rolling two ways; Second worm and worm wheel design and optimization. In short, the mechanical design involves the various parts of the turntable and parts of process structure, mechanical properties and movement characteristics, etc. Our basic CAD/CAM/CAE technique was used to realize, such as using Pro/E5.0, SolidWorks, CAXA three-dimensional parameterized modeling software to a part of the rotary table zero structure simulation design and research; By using Pro/E5.0, MasterCAMX to make the simulation of machining parts and nc code generation, etc.; Using ANASYS parts for various parts for the turntable mechanical performance analysis, further optimize the structure of the process.3.2 control partTurntable control system design is also a key technical problems, implementation approach are: PLC control system, single-chip microcomputer control system andindustrial control system, three categories. Turn our manufacturing control system in the manual, mechanical and electrical automation, digital control stage of development, is climb the new peak, are at a higher level of information control intelligent direction development. Intelligent machine research and development and extensive application, will promote the rapid, healthy and sustainable development of turntable industry in China, and lead a profound change in the future manufacturing, turn back to the workbench products with new image and concept to attract the customers is the focus of every enterprise instead.3.3 rotary table of green manufacturing design and manufacture of rotary table should also adopt a variety of energy conservation and emissions reduction technology, to the userAnd advocating the meaning of low carbon and green manufacturing way. Traditional thinking and the change of production pattern is experiencing a deep carved, more and more machine tool accessories manufacturing enterprises have to shoulder social morality and responsibility given by the low carbon way, step into the governance and development of the road of scientific development, a green industry Revolution is here is machine tool industry rise. Through technical innovation, process optimization, reduce material and oil-water separation automatic recovery, dust collection and recycling, self-lubricating material application, such as less oil lubrication technology measures to reduce emissions, reduce the impact on the environment.4 ConclusionThe equipment manufacturing industry is the cornerstone of a country's industry, it is a new technology, the development of new products, and provided an important means of modern industrial production, is an indispensable strategic industries.Even the developed industrialized countries, also attaches great importance to.Mechanical, electrical and data processing system and the combination of numerical control technology, leading the new production and processing.In 2011, is China's first year of "twelfth five-year" plan. "Twelve five" period, I have to to the national economy in various fields to carry out the scientific outlook on development as the theme, to speed up the transformation of the mode of economic development as the main line,in-depth technical innovation and development mode change. Rotary table no longer so "machinery", become more and more" Bright", let us together look forward to the birth of intelligent rotary work table!Reference[1] Cui Xufang, zhou, the principle of nc rotary table and design [J], brick and tile, 2008, NO. 6:23-27;[2] Zhao Qun, processing center of rotary table parts structure analysis [J], equipment design and maintenance, 2002, NO. 5:35-36;[3] Yang jian, Liu Hu, dividing the experience of using rotary table [J], machinery manufacturing, 1998, NO. But - 6;[4] Yang Chunhua, Xu Yaokun, general improvement of rotary table [J], motorcycle technology, 2003, NO. So - 27;[5] Sun Dezhou, double wedge ring - a new type of rotary table ball positioning [J], technology and equipment, 2005, NO. 4:8 2-84;[6] JiaoZhiXian Gu Ruihua, rotary table index [J], for the improvement of mechanical technicians, 1995, NO. I - 23.[7] Yang Huizhong, large rotary table in the installation and debugging of error separation and compensation technology research [J], machinery, VOL32, NO. Did - 24;[8] PangZhiWei, CNC boring machine adjustment [J] rotary table maintenance, equipment management and maintenance, 2007, NO. 59 3:59 -;[9]Chen Jiangang, the rotary table control system based on programmable controller design [J], machinery manufacturing, 2008 46-48 (1) : 36 to 39.[10] De Garmo EP, Black JT. Material and manufacturing process. Prentice - Hall, New York, 1957[11] Shigley JE. Mechanical engineering design. McGraw Hill, New York, 1986[12] the knowledge of the five-axis linkage CNC machine tools, machine 66 navigation network, 2007-12-28;[13] five-axis linkage CNC machine tools for die &mold the significance of (a), good mechanical and electrical network, the 2007-12-05;[14]Hwang,JiSeon,PhD.Five-axisNCmachiningofcompoundsculpturedsurfaces[M].P URDUEUNIVERSITY,1997.译文:回转工作台的设计与研究方向摘要:本文主要介绍了回转工作台设计的基本内容和思路,提出了回转工作台的研究方向,拓宽了设计人员的设计思路。
机械设计外文文献翻译、中英文翻译unavailable。
The first step in the design process is to define the problem and XXX are defined。
the designer can begin toXXX evaluated。
and the best one is XXX。
XXX.Mechanical DesignA XXX machines include engines。
turbines。
vehicles。
hoists。
printing presses。
washing machines。
and XXX and methods of design that apply to XXXXXX。
cams。
valves。
vessels。
and mixers.Design ProcessThe design process begins with a real need。
Existing apparatus may require XXX。
efficiency。
weight。
speed。
or cost。
while new apparatus may be XXX。
To start。
the designer must define the problem and XXX。
ideas and concepts are generated。
evaluated。
and refined until the best one is XXX。
XXX.XXX。
assembly。
XXX.During the preliminary design stage。
it is important to allow design XXX if some ideas may seem impractical。
they can be corrected early on in the design process。
中文5000字The Design Response to a Wash of Green: Whole Systems and Life Cycle ThinkingSimon LockreyWhat a great idea: a 'green' product to make a difference, make one happy, and assist in performing the menial tasks that litter an otherwise hectic day. Or is it? Consumer decision-making is beginning to follow a distinctly 'green' trend, which is fantastic in principle but often contrived in reality. What does this mean for the designer who imagines, designs and creates these goods that cater for growing consumer demand in 'sustainability?' There lies the contradiction between designing for the consumption obsessed market and designing to the core principles of sustainability, where environmental, economic and social aspects are somewhat detached from a consumer driven market.According to Ezio Manzini, design theorist from the famed Politecnico di Milano, we have a crisis of the commons (common areas, goods, etc), a lack of contemplative time (a time poor existence, longer hours at work, etc), and most relevant to designers, a proliferation of remedial goods (Manzini 2003). The latter sees products solving every perceived problem imaginable. Whether it is a toothbrush that oscillates the plaque off in half the time, or a breakfast bar filling the five-minute bus ride, we have become increasingly, unconsciously used to products feeding our increasing wants, without a thoughtas to how that consumption impacts the environment. Last century, the raw materials consumed by one person in the US increased five fold (Matos and Wagner 1998). This looks more ominous when combined with the fact that only around 15-20 % of the world is highly developed to a US or western style of consumption (UN, 2009). One approach is for design to lower the user's consumption, without degrading the consumer's experience. The question is whether the new breed of 'eco' products adds to the crisis, or makes a real difference.They may be adding to the crisis if the design method follows the 'rules of thumb' for that infiltrated the design community in last two decades. The reality is that these techniques do have potential to make a difference, but are often ineffective. Take design for disassembly. A designer in an appliance company designs a product for disassembly although there is no effective product stewardship scheme to collect the parts from reclaimed models. The design driven benefit is not delivered, rendering the methodology a waste of time. It is also well and good to reduce the weight of components and thus the embodied energy of the same appliance, however if the bulk of the impacts are generated during use from electricity (like an electric kettle), then the strategy most likely has negligible benefit in reducingenvironmental load. Likewise by making parts from commonised, recyclable materials, the likelihood is that there is no post consumer recycling stream or infrastructure in place to handle the majority of parts and materials, due to the commercial reality of recycling. This design for environment mentality has long been detached from the benefit it has aimed to deliver upon.There is a light at the end of this tunnel. There are ways to make a difference, and there is evidence these methods are filtering through the design world. Life cycle thinking or applying a 'whole systems' approach can make 'paradigm shifts' in the reduction of environmental impacts of a product or service, without reducing perceived quality, or increasing cost.As these ideas infiltrate design methodology, certain products shine as considered, sustainable shifts in the current 'wash of green'.Cheviot Bridge's sustainable wine packaging.Cheviot BridgeThe romantics among us would never have thought Shiraz would prosper in a Tetra Pak, a packagingform traditionally reserved for juice and milk. However some producers such as have, with a reduced packaging weight of almost 10 times a conventional bottle (unfilled). This dematerialisation enables huge embodied energy, carbon and water use reductions on the packaging, not to mention reduced haulage impact after filling (particularly for export, 1.05 kg rather than 1.5 kg per unit), and a smart palletisation shape for shipping and storage. The decision to move to a paper board packaging mode derived from extensive life cycle research, cost comparison and product testing (which funnily enough, contrary to some stigma, highlighted longer shelf life) to measure the potential benefits. The weight reduction, combined with an additional 250 mL of wine to the customer (the product is delivered in 1 L), delivers a quality driven outcome, with a raft of environmental and economic benefits due to life cycle thinking.Dyson's Airblade.DysonJames Dyson didn't go places by creating a better bag, he decided to create a cyclonic vacuum cleaner based on a saw mill, and the rest is history. This whole systems approach led Dyson to design highlyefficient, miniature digital motors for the appliance market around ten years ago. The use life cycle impacts of an electrical appliance generally dwarf the respective material and manufacture impacts. This relates back to the energy, fuels and raw materials consumed in operation of an appliance. By identifying the original motor as a major contributor to inefficiency within the product system, an opportunity for a technology leap was found. Carbon producing, large, heavy, inefficient, failure-prone, brushed motors were replaced by highly efficient, light, fast, small, digital ones.Last year saw the latest Dyson products incorporate a tiny Dyson Digital Motor (DDM) V2 resulting in substantial dematerialisation coupled with ergonomic weight benefits. Handheld vacuums were launched with the DDM, replacing the traditional carbon brushed motor. The cost difference between base models is negligible, while functional and environmental credentials have improved markedly. The new models are smaller and lighter, and remain almost half the weight of competitor machines. The DDM V2 size allows for high speed rotation, not achievable in larger, heavier motors. This produces around twice the power output at around half the weight of traditional motors, the new base model handheld pulling the same suction power as the previous model, using two less batteries.The Dyson Airblade™, which incor porates the first iteration of the DDM, is the first hand dryer to earn the coveted Carbon Reduction Label from the UK Carbon Trust. This achievement relates back to efficiency and whole systems design. By reverting to a polymer chassis compared to aluminium on the first Airblade™ release, Dyson cut carbon emissions in raw material, product manufacture and transport by over half, however this is not the preeminent story. Airblade™ 'strips' the water off the hands, rather than heating air up and 'evaporating' water like a conventional warm air hand dryer. Airblade™ drops the drying time to around 10 seconds, as opposed to up to 30 seconds with competitors which use inefficient carbon brush motors and heated air. Things start to look substantially thrifty without even crunching the numbers. In a press release, the comparison is up to 80% less energy used compared to traditional warm hand dryers (Carbon Trust 2010), which directly relates to carbon emission reductions. This giant gap in energy consumption, combined with product longevity, and a product stewardship scheme, delivers environmental benefits that directly reduce impacts in new Dyson models.The Keep Cup and its many color combinations.Keep Cup: An LCA Case StudyWhilst operating a chain of cafés in Melbourne, Abigail and Jamie Forsyth saw a need and responsibility to address disposable packaging waste generated both to reduce environmental impacts and costs. They estimated that in Australia at least 500 million disposable cups are used and discarded each year with large numbers of adults in urban communities consuming a disposable coffee on a daily basis (National Coffee Association of America found that in 2007, 14% of adults in the United States drank gourmet coffee daily). Although disposable cups are a low margin, the wider impacts of the daily 'take away coffee set' seemed one problem that did not justify the convenience. Others have attempted to either incorporate Post Consumer Recycled (PCR) content or sell reusable products such as 'travel mugs' designed to keep coffee hot for hours. The former has issues with food regulations; the latter is cumbersome and impractical for the savvy, on-the-go consumer, not designed to fit the needs of quality cafébaristas. The duo engaged industrial design consultancy Niche, with government funding, to create a solution dropping environmental impacts without reducing the consumer's experience.The result was KeepCup, a reusable cup for the takeaway espresso market. It is the world's first barista standard reusable cup, consisting Polyethylene (PE) lid, Polypropylene (PP) cup, Thermoplastic Polyurethane (TPU) plug, and Silicone ring. It mimics the core geometry and functions of disposable paper cups, including coffee machine modularity, waterproofing, sip slot, lid, individual coffee detailing, and adds hand insulation (avoiding double cupping), steam plug, branding, and most importantly ergonomics to allow for convenience ie light weight, bag storable, etc. The concept has gained momentum, the cup used all over the Melbourne CBD, Australia, and now globally. 300,000 KeepCups have been sold in twelve months of trading, as adoption of the KeepCup by end users has generated revenue and costs savings for café owners. But is it really making a difference?We did some research here at RMIT Centre for Design. Disposable paper cups (combined with a PE film) have little post consumer demand from reprocessors, and generally end up in Australian landfill. Although the KeepCup promotes recyclability, the fact still remains that the same system is more likely going to spit the various polymers it is made from to landfill, even if the components are separated by the consumer. With this in mind we modeled the 8 oz KeepCup (it is available in various sizes) againsta comparable disposable paper cup using Life Cycle Assessment (LCA) methodology in a streamlined fashion. The functional unit was 1 take away coffee per day delivered to the consumer over a year, with the cups disposed of to landfill over or at the end of that period. We used raw material, manufacturing, transport, and end of life data from the Australian Life Cycle Inventory (LCI) 2009 and European Ecoinvent 2.0 database. Regional transport routes were considered (shipping from Asia for the disposable cup, lid, and the ring from the KeepCup, trucking from port to consumer), as well as tertiary packaging, and a wash cycle per use for the KeepCup, ranging from a quick rinse with warm water, a fully loaded dishwasher, half loaded dishwasher, and sink washing, the latter three with detergent. We also modeled coffee cultivation, production and brewing in Spain from a study out of Switzerland (Humbert, Loerincik et al. 2009) to see what bearing the KeepCup had in context to the 'whole productThe results were determined using the LCA Australian Impact Method. The KeepCup compared to the disposable paper cup (not including the coffee) depending upon the wash type (the sink seeing thesmallest through to quick rinse seeing the biggest environmental impact reductions), sees a 71-92% reduction in global warming potential, a 71-95% reduction in water use, and a 95-96% reduction in landfill waste over the year. Although the 'take away latté set' consumer will still purchase the coffee whether in a disposable or reusable option, it is interesting to see how the previously stated savings compare when included with the impacts relating to coffee, which would in general dilute the savings of the container on its own. The KeepCup compared to disposable paper cup (including coffee) sees a 36-47% reduction in global warming, a 64-85% reduction in water use, and a 91-92% reduction in landfill waste annually.Although these are streamlined results using existing LCI data (a full LCAs may be more accurate, although often results are of a similar quantum), the figures indicate Keepcup would drastically reduce environmental impacts of consumers in drinking coffee, although in the grand scheme of things this would account for a very small proportion of a consumers overall impacts annually. This just seems like common sense, reusing rather than disposing, although this begs the question how the Keepcup strategy could apply to more resource intensive services such as heating, cooling, cooking, food,housing, and transport; if social rituals adapt. The KeepCup aesthetics are clean, and functionally it is thoughtfully designed, evident in the now global appeal. Although KeepCup is most likely not going to be recycled in the Australian context, the shift from disposable to reusable adds environmental credibility, significantly reduces waste, cuts the economics down to size, and enables a social shift, a welcome change for a society now used to throwaway culture.Paris VélibWide spread change in avoiding behaviours that embody high consumption may be some way off. Design has been instrumental in delivering some of the first tentative steps in facilitating individual and community action in this respect. Take the Paris Vélib, a bike share program introduced in 2007 to promote cycling as opposed to other transport modes throughout Paris for short journeys. By diverting investment traditionally earmarked for carbon intensive transport modes, like more roads, a highly design oriented system delivers the low consumption alternative. If success is measured in use alone, 42 million rentals by 2009 speak loudly. The system works as a whole, with infrastructure, communications and servicing the key in delivering this success, producing a product that wouldcontinue to be used and reduce impacts inherent in other transport modes.The bikes, stands and 1451 bike stations (one every 300 meters) designed by JC Decaux stay true to core design principles of 'form follows function' and user centred methodology. Stations release only functioning bikes to users, a smart system alerting well resourced and mobile service staff of faults through diagnostic checks when bikes 'check-in'. This computer monitoring system is also used to monitor bike location for potential theft and station overloading, with bikes actively moved too and from understocked and overloaded stations. Locks guarantee integrated bike and station security. Bespoke components and economic deterrents dissuade potential thieves; with credit cards debited a deposit on a user's non return of a bike. Economic incentives also drive timely travel, with free bike use in the first half hour. Compared to short trip alternatives such as cars or public transport, this product driven system delivers substantial dematerialisation through lower embodied energy and shared amenities, as well as massive comparative drops in fuel and electricity use. Social interaction is generally inherent in the cycling fraternity; however this is also aided through infrastructure design. Finally, the Vélib negates the problem of storage required when a bike is owned in a bustling city. Likeany public system, there have been problems with vandalism and theft; however the success of the Vélib is evident as use patterns remain high and similar bike sharing schemes flourish across Europe, and are proliferating globally.Paris Vélib bicycle rental system. Picture by austineven.Vélib is an elegantly integrated, cost effective design solution allowing users to enact behaviours needed if environmental impacts are to be reigned in, as well as reinvigorating the social fabric of the city. Vélib rejects the remedial with long lasting functional infrastructure, claims back the common in a shared public service, and provides amenities that go some way in reducing congestion and providing aconvenient, communal conveyance that gifts back the free time Manzini believes we have long being lacking in our fast paced, consumer oriented urban existence.People are not going to stop consuming any time soon; however behavior will eventually need to shift if society is serious about being truly sustainable. In the interim, analyse the bigger picture, both as a designer and a consumer. So often designers get caught up in the details, but now stepping back and taking a life cycle and whole systems approach facilitates a future in delivering functional 'paradigm shift' benefits for a product, service, client, and the environment. Ecological parameters are 'locked in' at the design stage, so designers can reduce impacts through materials, efficiency, or in some cases the grander scenario of changing consumer behavior. Designing for low consumption, without increasing price or reducing quality is achievable, and presents a powerful and bright design landscape. To achieve this, designers will have to draw upon their ability to combine technical skills in research, conceptualization, prototyping, and testing, with their greatest weapon, their creativity, because that's what they have done, and will always do best.Acknowledgments to Thomas Blower (Dyson, UK), Hugh Cuthbertson (Cheviot Bridge), AbigailForsyth (KeepCup), Andrew Carre (CfD), and Stephen Clune (CfD)Simon Lockrey is a Research Fellow at RMIT Centre for Design in Melbourne设计对绿色风潮的响应:整体系统和生命周期思想作者西蒙·洛克雷一个伟大的想法,“绿色”产品使情况与众不同,让人们感到快乐,并且帮助人们执行重要的任务以避免人们被忙碌的生活搅乱。
The Design Response to a Wash of Green: Whole Systems and Life Cycle Thinking, by Simon LockreyThe Keep Cup, a reusable cup for the takeaway espresso market.What a great idea: a 'green' product to make a difference, make one happy, and assist in performing the menial tasks that litter an otherwise hectic day. Or is it? Consumer decision-making is beginning to follow a distinctly 'green' trend, which is fantastic in principle but often contrived in reality. What does this mean for the designer who imagines, designs and creates these goods that cater for growing consumer demand in 'sustainability?' There lies the contradiction between designing for the consumption obsessed market and designing to the core principles of sustainability, where environmental, economic and social aspects are somewhat detached from a consumer driven market.According to Ezio Manzini, design theorist from the famed Politecnico di Milano, we have a crisis of the commons (common areas, goods, etc), a lack of contemplative time (a time poor existence, longer hours at work, etc), and most relevant to designers, a proliferation of remedial goods (Manzini 2003). The latter sees products solving every perceived problem imaginable. Whether it is a toothbrush that oscillates the plaque off in half the time, or a breakfast bar filling the five-minute bus ride, we have become increasingly, unconsciously used to products feeding our increasing wants, without a thought as to how that consumption impacts the environment. Last century, the raw materials consumed by one person in the US increased five fold (Matos and Wagner 1998). This looks more ominous when combined with the fact that only around 15-20 % of the world is highly developed to a US or western style of consumption (UN, 2009). One approach is for design to lower the user's consumption, without degrading the consumer's experience. The question is whether the new breed of 'eco' products adds to the crisis, or makes a real difference.They may be adding to the crisis if the design method follows the 'rules of thumb' for that infiltrated the design community in last two decades. The reality is that these techniques do have potential to make a difference, but are often ineffective. Take design for disassembly. A designer in an appliance company designs a product for disassembly although there is no effective product stewardship scheme to collect the parts from reclaimed models. The design driven benefit is not delivered, rendering the methodology a waste of time. It is also well and good to reduce the weight of components and thus the embodied energy of the same appliance, however if the bulk of the impacts are generated during use from electricity (like an electric kettle), then the strategy most likely has negligible benefit in reducing environmental load. Likewise by making parts from commonised, recyclable materials, the likelihood is that there is no post consumer recycling stream or infrastructure in place to handle the majority of parts and materials, due to the commercial reality of recycling. This design for environment mentality has long been detached from the benefit it has aimed to deliver upon.There is a light at the end of this tunnel. There are ways to make a difference, and there is evidence these methods are filtering through the design world. Life cycle thinking or applying a 'whole systems' approach can make 'paradigm shifts' in the reduction of environmental impacts of a product or service, without reducing perceived quality, or increasing cost.As these ideas infiltrate design methodology, certain products shine as considered, sustainable shifts in the current 'wash of green'.Cheviot Bridge's sustainable wine packaging.Cheviot BridgeThe romantics among us would never have thought Shiraz would prosper in a Tetra Pak, a packaging form traditionally reserved for juice and milk. However some producers such as have, with a reduced packaging weight of almost 10 times a conventional bottle (unfilled). This dematerialisation enables huge embodied energy, carbon and water use reductions on the packaging, not to mention reduced haulage impact after filling (particularly for export, 1.05 kg rather than 1.5 kg per unit), and a smart palletisation shape for shipping and storage. The decision to move to a paper board packaging mode derived from extensive life cycle research, cost comparison and product testing (which funnily enough, contrary to some stigma, highlighted longer shelf life) to measure the potential benefits. The weight reduction, combined with an additional 250 mL of wine to the customer(the product is delivered in 1 L), delivers a quality driven outcome, with a raft of environmental and economic benefits due to life cycle thinking.Dyson's Airblade.DysonJames Dyson didn't go places by creating a better bag, he decided to create a cyclonic vacuum cleaner based on a saw mill, and the rest is history. This whole systems approach led Dyson to design highly efficient, miniature digital motors for the appliance market around ten years ago. The use life cycle impacts of an electrical appliance generally dwarf the respective material and manufacture impacts. This relates back to the energy, fuels and raw materials consumed in operation of an appliance. By identifying the original motor as a major contributor to inefficiency within the product system, an opportunity for a technology leap was found. Carbon producing, large, heavy,inefficient, failure-prone, brushed motors were replaced by highly efficient, light, fast, small, digital ones.Last year saw the latest Dyson products incorporate a tiny Dyson Digital Motor (DDM) V2 resulting in substantial dematerialisation coupled with ergonomic weight benefits. Handheld vacuums were launchedwith the DDM, replacing the traditional carbon brushed motor. The cost difference between base models is negligible, while functional and environmental credentials have improved markedly. The new models are smaller and lighter, and remain almost half the weight of competitor machines. The DDM V2 size allows for high speed rotation, not achievable in larger, heavier motors. This produces around twice the power output at around half the weight of traditional motors, the new base model handheld pulling the same suction power as the previous model, using two less batteries.The Dyson Airblade™, which incorporates the first iteration of the DDM, is the first hand dryer to earn the coveted Carbon Reduction Label from the UK Carbon Trust. This achievement relates back to efficiency and whole systems design. By reverting to a polymer chassis compared to aluminium on the first Airblade™ release, Dyson cut carbon emissions in raw material, product manufacture and transport by over half, however thi s is not the preeminent story. Airblade™ 'strips' the water off the hands, rather than heating air up and 'evaporating' water like a conventional warm air hand dryer. Airblade™ drops the drying time to around 10 seconds, as opposed to up to 30 seconds with competitors which use inefficient carbon brush motors and heated air. Things start to look substantially thrifty without even crunching the numbers. In a press release, the comparison is up to 80% less energy used compared to traditional warm hand dryers (Carbon Trust 2010), which directly relates to carbon emission reductions. This giant gap in energy consumption, combined with product longevity, and a product stewardship scheme, delivers environmental benefits that directly reduce impacts in new Dyson models.The Keep Cup and its many color combinations.Keep Cup: An LCA Case StudyWhilst operating a chain of cafés in Melbourne, Abigail and Jamie Forsyth saw a need and responsibility to address disposable packaging waste generated both to reduce environmental impacts and costs. They estimated that in Australia at least 500 million disposable cups are used and discarded each year with large numbers of adults in urban communities consuming a disposable coffee on a daily basis (National Coffee Association of America found that in 2007, 14% of adults in the United States drank gourmet coffee daily). Although disposable cups are a low margin, the wider impacts of the daily 'take away coffee set' seemed one problem that did not justify the convenience. Others have attempted to either incorporate Post Consumer Recycled (PCR) content or sell reusable products such as 'travel mugs' designed to keep coffee hot for hours. The former has issues with food regulations; the latter is cumbersome and impractical for the savvy, on-the-go consumer, not designed to fit the needs of quality café baristas. The duo engaged industrial design consultancy Niche, with government funding, to create a solution dropping environmental impacts without reducing the consumer's experience.The result was KeepCup, a reusable cup for the takeaway espresso market. It is the world's first barista standard reusable cup, consisting Polyethylene (PE) lid, Polypropylene (PP) cup, Thermoplastic Polyurethane (TPU) plug, and Silicone ring. It mimics the core geometry and functions of disposable paper cups, including coffee machine modularity, waterproofing, sip slot, lid,individual coffee detailing, and adds hand insulation (avoiding double cupping), steam plug, branding, and most importantly ergonomics to allow for convenience ie light weight, bag storable, etc. The concept has gained momentum, the cup used all over the Melbourne CBD, Australia, and now globally. 300,000 KeepCups have been sold in twelve months of trading, as adoption of the KeepCup by end users has generated revenue and costs savings for café owners. But is it really making a difference?We did some research here at RMIT Centre for Design. Disposable paper cups (combined with a PE film) have little post consumer demand from reprocessors, and generally end up in Australian landfill. Although the KeepCup promotes recyclability, the fact still remains that the same system is more likely going to spit the various polymers it is made from to landfill, even if the components are separated by the consumer. With this in mind we modeled the 8 oz KeepCup (it is available in various sizes) against a comparable disposable paper cup using Life Cycle Assessment (LCA) methodology in a streamlined fashion. The functional unit was 1 take away coffee per day delivered to the consumer over a year, with the cups disposed of to landfill over or at the end of that period. We used raw material, manufacturing, transport, and end of life data from the Australian Life Cycle Inventory (LCI) 2009 and European Ecoinvent 2.0 database. Regional transport routes were considered (shipping from Asia for the disposable cup, lid, and the ring from the KeepCup, trucking from port to consumer), as well as tertiary packaging, and a wash cycle per use for the KeepCup, ranging from a quick rinse with warm water, a fully loaded dishwasher, half loaded dishwasher, and sink washing, the latter three with detergent. We also modeled coffee cultivation, production and brewing in Spain from a study out of Switzerland (Humbert, Loerincik et al. 2009) to see what bearing the KeepCup had in context to the 'whole productThe results were determined using the LCA Australian Impact Method. The KeepCup compared to the disposable paper cup (not including the coffee) depending upon the wash type (the sink seeing the smallest through to quick rinse seeing the biggest environmental impact reductions), sees a 71-92% reduction in global warming potential, a 71-95% reduction in water use, and a 95-96% reduction in landfill waste over the year. Although the 'take away latté set' consumer will still purchase the coffee whether in a disposable or reusable option, it is interesting to see how the previously stated savings compare when included with the impacts relating to coffee, which would in general dilute the savings of the container on its own. The KeepCup compared to disposable paper cup (including coffee) sees a 36-47% reduction in global warming, a 64-85% reduction in water use, and a 91-92% reduction in landfill waste annually.Although these are streamlined results using existing LCI data (a full LCAs may be more accurate, although often results are of a similar quantum), the figures indicate Keepcup would drastically reduce environmental impacts of consumers in drinking coffee, although in the grand scheme of things this would account for a very small proportion of a consumers overall impacts annually. This just seems like common sense, reusing rather than disposing, although this begs the question how the Keepcup strategy could apply to more resource intensive services such as heating, cooling, cooking, food, housing, and transport; if social rituals adapt. The KeepCup aesthetics are clean, and functionally it is thoughtfully designed, evident in the now global appeal. Although KeepCup is most likely not going to be recycled in the Australian context, the shift from disposable to reusable adds environmental credibility, significantly reduces waste, cuts the economics down to size, and enables a social shift, a welcome change for a society now used to throwaway culture.Paris VélibWide spread change in avoiding behaviours that embody high consumption may be some way off. Design has been instrumental in delivering some of the first tentative steps in facilitating individual and community action in this respect. Take the Paris Vélib, a bike share program introduced in 2007 to promote cycling as opposed to other transport modes throughout Paris for short journeys. By diverting investment traditionally earmarked for carbon intensive transport modes, like more roads, a highly design oriented system delivers the low consumption alternative. If success is measured in use alone, 42 million rentals by 2009 speak loudly. The system works as a whole, with infrastructure, communications and servicing the key in delivering this success, producing a product that would continue to be used and reduce impacts inherent in other transport modes.The bikes, stands and 1451 bike stations (one every 300 meters) designed by JC Decaux stay true to core design principles of 'form follows function' and user centred methodology. Stations release only functioning bikes to users, a smart system alerting well resourced and mobile service staff of faults through diagnostic checks when bikes 'check-in'. This computer monitoring system is also used to monitor bike location for potential theft and station overloading, with bikes actively moved too and from understocked and overloaded stations. Locks guarantee integrated bike and station security. Bespoke components and economic deterrents dissuade potential thieves; with credit cards debited a deposit on a user's non return of a bike. Economic incentives also drive timely travel, with free bike use in the first half hour. Compared to short trip alternatives such as cars or public transport, this product driven system delivers substantial dematerialisation through lower embodied energy and shared amenities, as well as massive comparative drops in fuel and electricity use. Social interaction is generally inherent in the cycling fraternity; however this is also aided through infrastructure design. Finally, the Vélib negates the problem of storage required when a bike is owned in a bustling city. Like any public system, there have been problems with vandalism and theft; however the success of the Vélib is evident as use patterns remain high and similar bike sharing schemes flourish across Europe, and are proliferating globally.Paris Vélib bicycle rental system. Picture by austineven.Vélib is an elegantly integrate d, cost effective design solution allowing users to enact behaviours needed if environmental impacts are to be reigned in, as well as reinvigorating the social fabric of the city. Vélib rejects the remedial with long lasting functional infrastructure, clai ms back the common in a shared public service, and provides amenities that go some way in reducing congestionand providing a convenient, communal conveyance that gifts back the free time Manzini believes we have long being lacking in our fast paced, consumer oriented urban existence.People are not going to stop consuming any time soon; however behavior will eventually need to shift if society is serious about being truly sustainable. In the interim, analyse the bigger picture, both as a designer and a consumer. So often designers get caught up in the details, but now stepping back and taking a life cycle and whole systems approach facilitates a future in delivering functional 'paradigm shift' benefits for a product, service, client, and the environment. Ecological parameters are 'locked in' at the design stage, so designers can reduce impacts through materials, efficiency, or in some cases the grander scenario of changing consumer behavior. Designing for low consumption, without increasing price or reducing quality is achievable, and presents a powerful and bright design landscape. To achieve this, designers will have to draw upon their ability to combine technical skills in research, conceptualization, prototyping, and testing, with their greatest weapon, their creativity, because that's what they have done, and will always do best.Acknowledgments to Thomas Blower (Dyson, UK), Hugh Cuthbertson (Cheviot Bridge), Abigail Forsyth (KeepCup), Andrew Carre (CfD), and Stephen Clune (CfD)Simon Lockrey is a Research Fellow at RMIT Centre for Design in Melbourne设计对绿色风潮的响应:整体系统和生命周期思想作者西蒙·洛克雷一个伟大的想法,“绿色”产品使情况与众不同,让人们感到快乐,并且帮助人们执行重要的任务以避免人们被忙碌的生活搅乱。
How Much Do We Need? ——Materials KnowledgeThe information superhighway has paved the way to a wealth of information for designers. Computerized databases, the Internet and the availability of“virtual libraries”on-line provide resources once available to only the largest corporations.But while technology has changed the way designers work, many still rely on old habits; especially in the selection of materials and processing technology. Material specifications are almost an afterthought or“someone else’s task,”in part because we prefer to work on the intangible qualities of a product.The marketplace demands more. Today, the material often becomes the product. We know that materials can help to differentiate our product’s character, add value, enhance performance and make the difference between success and failure. In a world where new processes and new materials keep appearing in a sea of acronyms coined to define endless combinations, we need to constantly challenge ourselves. We need to take more risks, do more research, explore more alternatives and learn how to optimize our selections.We know what we want, we just have trouble asking the right questions to find the correct answers and resources. Take the following examples:“What’s so great about this material, and why is it so gummy?”I remember an industrial designer asking this question as he proceeded to explain that he required a material that was both stiff and flexible in certain circumstances.“Can you help specify a material without modifying our design?”A well-known design company insisted on modeling a computer housing with zero draft on all four sides, regardless of cost. Needless to say, the manufacturer eventually discontinued the project because of its bad economics.“We need a material that has a medium to high level of comfort.”This request came from a furniture designer for a new office chair. The project required categorizing levels of comfort“by the seat”of this designer’s parts.The role of education in this“knowledge gap”cannot be discounted. Design curricula have dome little to foster the exploration of materials and production methods. On a recent tour of the Bayer facility, a design student asked me the difference between a polymer and a monomer. Although this and similar questions reflect an appalling ignorance of materials, they also show an encouraging interest among students as well as professionals.To address this interest, IDSA has created a Materials and Processes Special Interest Section. Our goals are to spark and nurture the natural curiosity of designers with regard to manufacturing processes; cultivate a better understanding of the differences, and demonstrate how we can apply them to the success of our products. We strongly believe that a basic understanding of materials and processes should be a fundamental part of a designer’s entry-level education, and we will work with IDSA’s Eudcation Committee to define the minimum requirements of such know-how a design student should possess upon graduation.The section also has formalized an alliance with the Society of the Plastics Industry(SPI)Structural Plastics Division(SPD) to share communication and programs. To that end, we’ve agreed to host our spring meeting at the annual SPI conference, scheduled for Atlanta thisyear. We have expanded our activity there to include a full day’s preconference. We’re also working similar relationships with the Society of Plastics Engineers’Product Design and Development Division and the American and Iron and Steel Institute.Within IDSA, the section has established a strong working relationship with the Environmental Responsibility Section including archiving speaker presentations on video as a resource for IDSA members and benefit for those not able to attend, We will host a section Web page at the IDSA Chicago Chapter site and enhance our communication by posting section activities, reference information and a list of member“key contacts”and their field of expertise.Many section members share an enthusiasm for materials and production methods and feel a sense of responsibility to share their expertise. With this type of networking members of IDSA gain not only resource recommendations, but also the benefit of another member’s experience in that area. It’s designers talking with other designers to find the solutions.Today, we do not need a vast working knowledge of material and processes. All we need is to know how to find that knowledge. And most of it exists within the framework of IDSA, through the experiences of its members, their personal contacts and resources. The networking, programs and education of IDSA’s special Interest Section on Materials and Processed tap this knowledge base and put the information we need literally at our fingertips.我们需要多少钱?——材料知识信息高速公路为设计师提供了丰富的信息。
The impact of “3r” principles to industrial designAbstractWhile industrial design creates modem life and living surroundings for people,it also accelerates the exhaustion of the natural resources and the energy resources.Besides,it has done harm to the ecological balance,and threatened the existence and the sustainable development of human beings.Confront with this situation,the strategy of sustainable development,proposed in 1990s,is accepted by many people.Recycling economy and its key point,“3r” prin ciple,were born for this situation and become important principle in all kinds of economic activities and in the area of design and manufacture.By decoding the connotation of “3r” principle,the article analyzes the influence and the guidance over industria l design of “3r” principle.Furthermore,the article tries to discuss the conception of redesign,which is the extension of the “3r” principle in the area of industrial design,and explicates 4R principle of industrial design for recycling economy at last.Key words3 R principle;industrial design;recycling economy;Redesign1 IntroductionIndustrial design as a cross-cutting technology and the arts disciplines,it is closely related to the economy and to maintain its development and progress of society. It can be summarized:First,it services for industrial mass production,making industrial products enhance the value and value-added. Second,It leads the fashion,to effectively stimulate consumption,so that consumers not only use the product at the same time,but also enjoy the new technology and material;Third,it puts technology to link up with the market,making products enhance competitiveness;Last but not the least,it can bring the innovation into the enterprise. Therefore,the economic development needs industrial design which has become indispensable to the country's economic construction .However,along with the traditional industrial design creating high-quality modern lifestyle and living environment and promoting economic development ,it also speeds up the consumption of resources and energy. What is more ,it dose harm to the ecological balance of the Earth and brings about a serious of great damage to human survival and sustainable development. Especially the excessive commercialization of industrial design,utilitarian and excessive pursuit of profit,the implementation of "merchandise has plans to abolish the system"without taking into account production,use,process waste,such as the environment,the impact of resources. It can be said that people are in inappropriate and excessive consumption patterns of life,the industrial design objectively becomes essential medium to encourage people to uncontrolled consume,which is countered to the essence of industrial design—creating a science and healthy way of life.Facing the threat of human survival and sustainable development,in the 20th century,people began to question the sustainable development of humanity ,to carry out a profound reflection on sustainable development and to put forward a suitable model of circular economy ,the principle of circular economy is “3r” (i.e. Reduce,Reuse,Recycle) which is of great significance to the implementation and promotion of socio-economic stability,sustainable development Against this background,the concept of sustainable development into rapid economic development is inextricably linked to the design,based on this ongoing exploration and practice. “3r” principles intended to sort out this article on various aspects of industrial design and the guiding role,and attempts to explore the “3r” principles of industrial design at the extension.2 Cycle economic model and the principle of “3r”Economy is engaged in production,consumption and reproduction activities,which is to meet human material needs of their own material .Recycling economy is considered following the original economy,the agricultural economy,industrial economy after the time of the post-industrial economy,with the industrial economy is different between the resources and environment relationship. Following the economic cycle refers to the natural ecosystem of the material circulation and energy flow reconstruction of the economic system so that it harmoniously into the natural ecosystems of the material energy recycling process to product clean production,resource recycling and efficient recycling characterized eco-economic development patterns,also known as eco-economy,green economy.2.1 The relationship between economic model,environment and the resourcesHuman survival and economic activities rely on the resources and the environment. On one hand ,it is the source of the human beings material system;on the other hand,it bears the economic activities of human waste generated by the various roles. The Earth can provide resources but are limited,even though it must have the ability to purify,however it is subject to human economic activity the ability of emissions is also limited.Industrial economic development patterns are from "One Product One resource pollution" posed by one-way flow of material and an open economy,this openness has led to a global depletion of resources and waste,as well as the serious deterioration of the ecological environment.Circular economy development pattern is from "one of resources of renewable resources,one of green products" posed by the material energy of the closed-loop feedback loop process,this closed loop system,can maintain economic production of low,high-quality,low-waste,which will be economic activity of natural resources and environmental impacts to minimize damage.2.2 Interpretation of the circular economy mode “3r” principle“3r” principle is the basic manifestation of the economic cycle,and its specific contents are as follows:"Reduction" principle is the first principle of circular economy,that is the source of control method,which requires the source of economic activity - the design stage,pay attention to the use of resources-saving and pollution reduction requirements with fewer resources to achieve the established purpose of the production or consumption In the production areas,usually the energy-saving production processes,materials and conservation of resources,the products of small size and lightweight,and easy and simple packaging requirements in order to achieve the purpose of reducing waste emissions;In the consumer area,reduction of the supremacy of the principle of a change in consumer lifestyles and advocate moderate consumption and green consumption. "Reuse" principle is the second principle of circular economy,that is,process control methods,with the aim to improve the products and resources use efficiency,it calls for product design to initial the form of packaging for multiple items to prevent premature become waste. In the design,to the use ofstandard-sized parts,repair and upgrade in order to replace,thus prolonging the service life of products;In the consumer area,to promote the purchase of durable consumer goods,to reduce the use of disposable products,such as after-sales service by strengthening the means to extend the product life as possible and not waste."Recycling" principle is the third principle of circular economy,that is,terminal control method of production and consumption in the process of waste generated,through the "resources" of the means of its re-processing of raw materials can be re-used or product,put it back on consumption. Resources of the so-called class of resources usually include the originaland secondary resources. The original class of resources is the waste of resources after the formation of the same with the original products,sub-resource is the waste of resources into different types of after the new products. To promote waste recycling economy will be the source of the original and sub-class of combining resources in order to fully realize the recycling use of resources.3. The impact of the “3r” principle of to industrial design“3r” principle is not only on products from the design,production,sales,use,disposal and so on throughout the life cycle have an impact on all aspect,but also on the industrial design itself,a more extensive and profound changes:3.1 The impact of design conceptIn modern industrial economy,the product design is often to serve the people,just from the people to meet needs and solve the problem as the starting point,and do not consider the follow-up products,use of resources and energy consumption and emissions on the environment and other ecological problems. “3r” principle in the design concept under the influence from the "people-oriented" towards the "harmony between man and nature" of green design,while respecting the needs of people,but also consider the safety of the ecosystem. Cycle economic model of the industrial design under the design concept,put people and nature live in harmony and common development in the first place,the use of systems theory and Calibration of all acts of industrial design,from product design at the beginning of themacro-environment had priority to consider and pay attention to the coordination of products that run the various elements of the process in order to achieve system optimization. Here,the environmental factors are the starting point of the whole design and end points,through the design,efforts to improve and reduce the products in the production,use,recycling process,such as the adverse impact of the environment. So Green Design Products are in the "harmony between man and nature" under the guidance of thought to the harmonious development of man and nature,the principle of human - machine system one considers the environment,a comprehensive optimization of the industrial design of a new concept.3.2 The impact of design styleSimple is an aesthetic pursuit of extremists on the design of easy style,popular in the 20th century,in the United States age 80. If we say that in the industrial economic model,the simple style of product design aesthetic is a subjective pursuit of people,then in the recycling economy mode,the structure of the simplest and most parsimonious of the materials,the mostbeautiful modeling,the most pristine appearance simplicity of product design,sustainable development concept is a concrete manifestation. “3r” Products doctrine of the meaning of this simple style more in-depth,specific,practical significance.First,the premise of ensuring the functionality as far as choice of materials can be recycled,such as biological materials,so less material on refined,appropriate;Second,to promote. Small is beautiful ". Less Is More",the lightweight and pleasant form of products. Third,the design features of the object collation,evaluation,definition,must always focus on the merger,to simplify,optimize,and makes the core functions briefly products;Fourth,the product is intended to be simple and clear language;Fifth,the structure of simple,easy to create;Sixth,the choice of degradable material,the structure of easy solutions,such as withholding together.3.3 The impact of design methodThe impact of the “3r” principle a nd under the guidance of the implementation of green design methods are:modular design,removable design,recyclable design,long-life design.Modular design is at a certain range of different functions or different functions the same performance,different specifications of the products on the basis of functional analysis,and design into a series of functional modules,through the selection and combination of modules can constitute different products to designed to meet the different needs of the Ways. The benefits of modular design:First,make products with good performance Recycling demolition,settled design different types of products and waste of resources;Second,it will be able to be easy to use or duplicate the functions of independent recovery,enhance the versatility of the components,once the end-of-life products,they can re-use or recycling;Third,improve the repair of products can extend the life of the product.Product design is removable at the design stage,so that parts of the Products has a good performance of the demolition. Conducive to the re-use of components or recycled materials to save not only protect the environment and Materials. The demolition of the design requirements,Product First,connect the various parts and components,as far as possible the use of detachable connection,such as threaded connections,unified type fasteners,reducing the number of fasteners,try not to use welding,riveting,bonding and other non-removable the connection;Second,in the selection and processing of raw materials,the demolition of the connection;to use and reuse of recyclable materials,the types of materials,such as less as possible.Recyclable design refers to product design,to take full account of the various materials Product components the possibility of recycling,recovery treatment,recycling and product recovery of costs related to a series of questions,thus saving materials and reducing waste,minimum of environmental pollution for the purpose of a design method. Long-life design is the design of products based on life in the economic indicators to ensure that products,value and environmental requirements at the same time try to make our products to extend the life to achieve the slow resource consumption of a design method. Specifically include the following:First,improving product reliability and durability;Second,products are easy to repair and maintenance;Third,using standard,modular product structure3.4 The impact of design material“3r” principle in guidance and norms,product design,material selection should be taken into consideration:First of all,minimize the use of materials. Try using high quality materials to enhance the service life of products;the prohibition of the use of contaminated material against big,look for the corresponding sound material substitution;Reuse as much as possible the use of recyclable materials. Secondly,the preferred sound of the ecological environment of the material,after the preferred decomposition of waste and the natural world to absorb the material,preferred low power,low cost,low-polluting materials,preferred easy processing,and processing of non-polluting or less polluting materials,preferred materials recycling. Finally,to reduce the use of the types of materials in order to reduce the cost of Recycling Materials;maintain original material,as far as possible the use of simple materials,the use of alloy materials,to avoid material harm to the environment of the surface treatment;Marked parts Products material composition for the materials to facilitate recycling and so on.4. From “3r” to 4RIn the recycling economy mode,the product life cycle from the previous end-of-life for the end product,after the extension to the end-of-life recycling. It should be noted that starting from the waste products for the consideration of a second use for them,so that the product design is no longer a product before,but the other products. Therefore,the design process we will call it "re-engineering (Redesign)"4.1 The concept of re-engineeringThe so-called re-engineering,that is,through the product components as well as their overall utilization of the re-design method to save resources. Given the United Kingdom Environmental Design Alliance is defined as:"Materials by Product,the structure of ameaningful way to re-use,in order to save resources for the purpose of the premise,to extend the product life cycle,and tap the potential ecological value of the design method." In short,the product re-engineering refers to the product life cycle after the re-use design.Whether they are re-engineering the design of a new trend,or the design of a self-activity changes,which are related to the sustainable development strategy in line belong to the scope of green design. If it is said that green design is usually considered the entire product life-cycle environmental impact,and re-design considerations are at the end of product life-weeks to reduce the environmental impact of problem,it is the “3r” principle in the extension of the field of industrial design. Therefore,the re-engineering in conjunction with the “3r” principle,as a mode of circular economy 4R principles of industrial design.4.2 The form of re-engineeringProduct re-engineering is aimed at new products to effectively use the original parts and components products and materials. Product re-engineering have a variety of forms,for the same product re-engineering can have a variety of forms,can be divided into assimilation and alienation of the re-engineering.Assimilation refers to re-design is a before and after re-engineering products,have been recycling their own re-engineering of the parts not changed before and after. For example,before the re-design car audio,re-engineering the home was converted into sound.Alienation refers to the re-engineering re-design before and after are different products,re-use of components was necessary in order to be used transformation. For example,re-engineering before the cell phone components,into a walkie-talkie after the re-engineering of an important part of;In another example,the re-engineering of old jeans before,byre-engineering can be turned into shorts,vest and so on.5. ConclusionsCircular economy is to achieve sustainable human development of new economic development model,“3r” principle is the core substance of the economic cycle,the idea of circular economy is the fundamental expression. "Re-design" are able to make the best of “3r” in the extension of the field of industrial design and development,is a matter of deep study and practice the new task,it should be,together with the “3r” principle,become a model of circular economy are industrial 4R principles of design.As the international chairman of the Federation of Societies of Industrial Design,Mr. Peter said "the design of human development as an important factor,with the exception ofself-destruction might be the ruin of mankind,human arrival may also become a shortcut to a better world." Today,in the framework of national sustainable development strategies,the role of industrial design is changing,and actively looking for a new direction for the development of circular economy at all levels play a role. Industrial design will become a powerful for cycling of our country economic.“3r”原则对的工业设计的影响摘要在工业设计为人类创造了现代生活和生活环境的同时,也进一步加速自然资源和能源资源的消耗。