【高中数学必修二】高中数学 1.1.4直观图画法课件 苏教版必修2
- 格式:ppt
- 大小:455.00 KB
- 文档页数:12
1.1.4 直观图画法学习目标 1.掌握斜二测画法的作图规则.2.会用斜二测画法画出简单几何体的直观图.知识点 斜二测画法思考1 边长为2 cm 的正方形ABCD 水平放置的直观图如下,在直观图中,A ′B ′与C ′D ′有何关系?A ′D ′与B ′C ′呢?在原图与直观图中,AB 与A ′B ′相等吗?AD 与A ′D ′呢?★★答案★★ A ′B ′∥C ′D ′,A ′D ′∥B ′C ′,A ′B ′=AB , A ′D ′=12AD .思考2 正方体ABCD -A 1B 1C 1D 1的直观图如图所示,在此图形中各个面都画成正方形了吗?★★答案★★ 没有都画成正方形.梳理 (1)用斜二测画法画水平放置的平面图形的直观图的规则(2)立体图形直观图的画法规则画立体图形的直观图,在画轴时,要多画一条与平面x ′O ′y ′垂直的轴O ′z ′,且平行于O ′z ′的线段长度不变,其他同平面图形的画法.类型一 平面图形的直观图例1 画出如图水平放置的直角梯形的直观图.解 (1)在已知的直角梯形OBCD 中,以底边OB 所在直线为x 轴,垂直于OB 的腰OD 所在直线为y 轴建立平面直角坐标系.画出对应的x ′轴和y ′轴,使∠x ′O ′y ′=45°,如图①②所示.(2)在x ′轴上截取O ′B ′=OB ,在y ′轴上截取O ′D ′=12OD ,过点D ′作x ′轴的平行线l ,在l 上沿x ′轴正方向取点C ′使得D ′C ′=DC .连结B ′C ′,如图②. (3)所得四边形O ′B ′C ′D ′就是直角梯形OBCD 的直观图,如图③.引申探究若将本例中的直角梯形改为等腰梯形,其直观图如何?解 画法:(1)如图①所示,取AB 所在直线为x 轴,AB 中点O 为原点,建立直角坐标系,画出对应的坐标系x ′O ′y ′,使∠x ′O ′y ′=45°.(2)以O ′为中点在x ′轴上取A ′B ′=AB ,在y 轴上取O ′E ′=12OE ,以E ′为中点画出C ′D ′∥x ′轴,并使C ′D ′=CD . 连结B ′C ′,D ′A ′,如图②所示.(3)所得的四边形A ′B ′C ′D ′就是水平放置的等腰梯形ABCD 的直观图,如图③所示.反思与感悟 在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键之一,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.确定多边形顶点的位置是关键之二,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连结即可.跟踪训练1如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.★★答案★★2 2解析正方形的直观图如图所示.由直观图的画法知,O′A′=1,又∠A′O′C′=45°,过点A′作A′D′⊥O′C′,垂足为D′,∴点A′到x′轴的距离为A′D′=O′A′·sin 45°=2 2.又A′B′∥x′轴,∴点B′到x′轴的距离也是2 2.类型二直观图的还原与计算命题角度1由直观图还原平面图形例2如图所示,△A′B′C′是水平放置的平面图形的斜二测直观图,将其还原成平面图形.解①画出直角坐标系xOy,在x轴的正方向上取OA=O′A′,即CA=C′A′;②过B′作B′D′∥y′轴,交x′轴于点D′,在OA上取OD=O′D′,过D作DB∥y 轴,且使DB=2D′B′;③连结AB,BC,得△ABC.则△ABC即为△A′B′C′对应的平面图形,如图所示.反思与感悟 由直观图还原平面图形的关键(1)平行x ′轴的线段长度不变,平行y ′轴的线段扩大为原来的2倍.(2)对于相邻两边不与x ′、y ′轴平行的顶点可通过作x ′轴,y ′轴的平行线确定其在xOy 中的位置.跟踪训练2 如图所示,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________.★★答案★★ 菱形解析 如图所示,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2(cm),∴OC =OD 2+CD 2=(42)2+22=6(cm), ∴OA =OC ,故四边形OABC 是菱形.命题角度2 原图形与直观图的面积的计算例3 如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形的形状,并求出原图形的面积.解 如图,建立直角坐标系xOy ,在x 轴上截取OD = O ′D 1=1,OC =O ′C 1=2.在过点D 的y 轴的平行线上截取DA =2D 1A 1=2. 在过点A 的x 轴的平行线上截取AB =A 1B 1=2.连结BC ,即得到了原图形.由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰的长度AD =2,所以面积为S =2+32×2=5.反思与感悟 (1)由原图形求直观图的面积,关键是掌握斜二测画法,明确原来实际图形中的高,在直观图中变为与水平直线成45°角且长度为原来一半的线段,这样可得出所求图形相应的高.(2)若一个平面多边形的面积为S ,它的直观图面积为S ′,则S ′=24S . 跟踪训练3 如图所示,一个水平放置的三角形的斜二测直观图是等腰直角三角形A ′B ′O ′,若O ′B ′=1,那么原三角形ABO 的面积是________.★★答案★★2解析 直观图中等腰直角三角形的直角边长为1,因此面积为12.又直观图与原平面图形面积比为2∶4,所以原图形的面积为 2. 类型三 简单几何体的直观图例4 用斜二测画法画长、宽、高分别为4 cm 、3 cm 、2 cm 的长方体ABCD —A ′B ′C ′D ′的直观图.解 (1)画轴.如图,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中点,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32 cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连结A ′,B ′,C ′,D ′(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.反思与感悟 直观图中应遵循的基本原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.(3)直观图画法口诀“一斜、二半、三不变”.跟踪训练4 用斜二测画法画出六棱锥P -ABCDEF 的直观图,其中底面ABCDEF 为正六边形,点P 在底面上的投影是正六边形的中心O .(尺寸自定)解 (1)画出六棱锥P -ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在的直线为x 轴,对称轴MN 所在的直线为y 轴,两轴相交于点O ,如图(1),画出相应的x ′轴、y ′轴、z ′轴,三轴相交于O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°,如图(2);②在图(2)中,以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以点N ′为中点,画出B ′C ′平行于x ′轴,并且等于BC ,再以M ′为中点,画出E ′F ′平行于x ′轴,并且等于EF ;③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画出正六棱锥P -ABCDEF 的顶点.在z ′轴正半轴上截取点P ′,点P ′异于点O ′. (3)成图.连结P ′A ′,P ′B ′,P ′C ′,P ′D ′,P ′E ′,P ′F ′,并擦去x ′轴、y ′轴和z ′轴,便可得到六棱锥P -ABCDEF 的直观图P ′-A ′B ′C ′D ′E ′F ′,如图(3).1.利用斜二测画法画出边长为3 cm 的正方形的直观图,正确的是图中的________.(填序号)★★答案★★ ③解析 正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.2.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积为__________.★★答案★★ 16或64解析 等于4的一边在原图形中可能等于4,也可能等于8,所以正方形的面积为16或64. 3.已知两个底面半径相等的圆锥,底面重合在一起(底面平行于水平面),其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为________ cm. ★★答案★★ 5解析 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5(cm),在直观图中与z 轴平行的线段长度不变,仍为5 cm.4.如图所示为一平面图形的直观图,则此平面图形可能是下图中的________.(填序号)★★答案★★ ③解析 在x 轴上或与x 轴平行的线段在新坐标系中的长度不变,在y 轴上或与y 轴平行的线段在新坐标系中的长度变为原来的12,并注意到∠xOy =90°,∠x ′O ′y ′=45°,因此由直观图还原成原图形为③.5.画出一个正三棱台的直观图.(尺寸:上,下底面边长分别为1 cm,2 cm ,高为2 cm) 解 (1)作水平放置的下底面等边三角形的直观图△ABC ,其中O 为△ABC 的重心,BC =2 cm ,线段AO 与x 轴的夹角为45°,AO =2OD .(2)过O 作z 轴,使∠xOz =90°,在z 轴上截取OO ′=2 cm ,作上底面等边三角形的直观图△A ′B ′C ′,其中B ′C ′=1 cm ,连结AA ′,BB ′,CC ′,得正三棱台的直观图.1.画水平放置的平面图形的直观图,关键是确定直观图的顶点.确定点的位置,可采用直角坐标系.建立恰当的坐标系是迅速作出直观图的关键,常利用图形的对称性,并让顶点尽量多地落在坐标轴上或与坐标轴平行的直线上.2.用斜二测画法画图时要紧紧把握住:“一斜”、“二测”两点:(1)一斜:平面图形中互相垂直的Ox、Oy轴,在直观图中画成O′x′、O′y′轴,使∠x′O′y′=45°或135°.(2)二测:在直观图中平行于x轴的长度不变,平行于y轴的长度取一半,记为“横不变,纵折半”.课时作业一、填空题1.在斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.★★答案★★(4,2)解析由直观图画法“横不变,纵折半”可得点M′的坐标为(4,2).2.如图,△A′B′C′是水平放置的△ABC的直观图,A′B′∥y′轴,B′C′∥x′轴,则△ABC的形状是______三角形.★★答案★★直角解析∵A′B′∥y′轴,B′C′∥x′轴,∴在原图形中,AB∥y轴,BC∥x轴,故△ABC为直角三角形.3.给出以下说法,其中不正确的是________.(填序号)①水平放置的矩形的直观图可能是梯形;②水平放置的梯形的直观图可能是平行四边形;③水平放置的平行四边形的直观图可能是矩形;④水平放置的菱形的直观图可能是平行四边形.★★答案★★①②解析由斜二测画法规则可知①②不正确.4.下面各组图形中2个边长为1的正△ABC的直观图不是全等三角形的一组是________.(填序号)★★答案★★③解析可分别画出各组图形的直观图,观察可得结论.5.如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是________.(填序号)★★答案★★①解析直观图中正方形的对角线长为2,故在平面图形中平行四边形的高为22,只有①满足条件,故①正确.6.如图所示,△A′B′O′为水平放置的△ABO的直观图,由图判断△ABO中,AB,BO,BD,OD由小到大的顺序是____________.★★答案★★OD,BD,AB,BO解析由题图可知,在△ABO中,OD=2,BD=4,AB=17,BO=25,故OD<BD<AB<BO.7.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法正确的是________.(填序号)①原来相交的仍相交;②原来垂直的仍垂直;③原来平行的仍平行;④原来共点的仍共点.★★答案★★ ①③④解析 根据斜二测画法,原来互相垂直的线段未必垂直.8.一个长方体的长,宽,高分别是4,8,4,则画其直观图时对应的长度依次为____________. ★★答案★★ 4,4,4解析 根据斜二测画法规则可知,水平线段长度不变,平行于y 轴的线段长度减半,竖直线段长度不变,所以其长度分别为4,4,4.9.在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在坐标系xOy 中,原四边形OABC 为______(填形状),面积为________ cm 2.★★答案★★ 矩形 8解析 由题意并结合斜二测画法,可得四边形OABC 为矩形,其中OA =2 cm ,OC =4 cm ,∴四边形OABC 的面积为S =2×4=8(cm 2).10.如图所示,四边形OABC 是上底为2,下底为6,底角为45°的等腰梯形,用斜二测画法画出这个梯形的直观图O ′A ′B ′C ′,则在直观图中,梯形的高为________.★★答案★★ 1解析 作CD 、BE ⊥OA 于点D 、E ,则OD =EA =OA -BC 2=2(cm),∴OD =CD =2 cm ,∴在直观图中梯形的高为12×2=1(cm).二、解答题11.如图所示,画出水平放置的四边形OBCD 的直观图.解 (1)过点C 作CE ⊥x 轴,垂足为E ,如图①所示.画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°,如图②所示.(2)如图②所示,在x ′轴的正半轴上取点B ′,E ′,使得O ′B ′=OB ,O ′E ′=OE ;在y ′轴的正半轴上取一点D ′,使得O ′D ′=12OD ;过E ′作E ′C ′∥y ′轴,使E ′C ′=12EC . (3)连结B ′C ′,C ′D ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图③所示,四边形O ′B ′C ′D ′就是所求作的直观图.12.如图,△A ′B ′C ′是水平放置的平面图形的直观图,试画出原平面图形△ABC .解 (1)过C ′,B ′分别作y ′轴的平行线交x ′轴于点D ′,E ′.(2)在直角坐标系xOy 中,在x 轴上取两点E ,D ,使OE =O ′E ′,OD =O ′D ′,再分别过E ,D 作y 轴的平行线,取EB =2E ′B ′,DC =2D ′C ′,连结OB ,OC ,BC ,并擦出辅助线及x 轴,y 轴,即求出原△ABC .13.如图所示,在△ABC 中,AC =12 cm ,AC 边上的高BD =12 cm ,求其水平放置的直观图的面积.解 方法一 画x ′轴,y ′轴,两轴交于O ′,使∠x ′O ′y ′=45°,作△ABC 的直观图如图所示,则A ′C ′=AC =12 cm ,B ′D ′=12BD =6 cm , 故△A ′B ′C ′的高为22B ′D ′=3 2 cm , 所以S △A ′B ′C ′=12×12×32=182(cm 2). 即水平放置的直观图的面积为18 2 cm 2.方法二 △ABC 的面积为12AC ·BD =12×12×12=72(cm 2). 由平面图形的面积与直观图的面积间的关系,可得△ABC 水平放置的直观图的面积是24×72=182(cm 2).三、探究与拓展14.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是______三角形.★★答案★★ 钝角解析 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形.15.用斜二测画法画出正三棱柱ABC —A ′B ′C ′的直观图.解 (1)画轴.如图,画出x 轴,y 轴,z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.作水平放置的三角形的直观图△ABC .(3)画侧棱.过A ,B ,C 各点分别作z 轴的平行线,并在这些平行线上分别截取线段AA ′,BB ′,CC ′,使得AA ′=BB ′=CC ′.(4)成图.顺次连结A ′,B ′,C ′,并擦去辅助线,将被遮住的部分改为虚线,得到的图形就是几何体的直观图.。
江苏省射阳县盘湾中学高中数学 直观图画法教案 苏教版
必修2 教学目标:了解什么叫直观图;了解斜二测画法的规则;掌握简单几何体的直观图的画法。
教学重点:用斜二测画法画出立体图形的直观图
教学难点:用斜二测画法画出立体图形的直观图
教学过程: 一、问题情境:
问题:观察下列图形,哪些是中心投影,哪些是平行投影?思考中心投影与平行投影的不同作用。
二、学生活动:
中心投影和平行投影的应用:
1、中心投影 主要用于____________.
正投影 画__________________.
2、平行投影
斜投影 画___________________.
思考:阳光透过窗子在地面上留下的影子有何特征?
三、知识建构:
1、消点:
2、斜二测画法及其规则:
四、知识运用:
例1、画边长为4cm的正三角的水平放置的直观图.
小结:
例2、画棱长为2cm的正方体的直观图。
小结:
练习:书P16 1-6
五、回顾反思:
知识:思想方法:
作业布置:
书P18 习题1.1 5、6、7、8。
1.1.4 直观图画法1.了解斜二测画法的基本特征.2.理解斜二测画法的规则.3.掌握斜二测画法的基本步骤.1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴与y ′轴,两轴交于点O ′,且使∠x ′O ′y ′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x 轴或y 轴的线段在直观图中分别画成平行于x ′轴或y ′轴的线段.(3)长度规则:已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z 轴,直观图中与之对应的是z ′轴.(2)平面x ′O ′y ′表示水平平面,平面y ′O ′z ′和x ′O ′z ′表示竖直平面.(3)已知图形中平行于z 轴(或在z 轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.1.判断(正确的打“√”,错误的打“×”)(1)相等的角,在直观图中仍相等.( )(2)长度相等的线段,在直观图中长度仍相等.( )★★答案★★:(1)× (2)×2.下列关于用斜二测画法画直观图的说法中,正确的是( )A .水平放置的正方形的直观图不可能是平行四边形B .平行四边形的直观图仍是平行四边形C .两条相交直线的直观图可能是平行直线D .两条垂直的直线的直观图仍互相垂直解析:选B.因斜二测画法保持平行性不变,A 错,B 正确;因斜二测画法中相交性不变,故C 错;两条垂直直线的直观图应为夹角为45°的两条相交直线,故D 错.3.关于斜二测画法,下列说法不正确的是( )A .原图形中平行于x 轴的线段,其对应线段平行于x ′轴,且长度不变B .原图形中平行于y 轴的线段,其对应线段平行于y ′轴,且长度变为原来的12C.画与直角坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同★★答案★★:C4.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连结B′C′,则△A′B′C′就是原图形.画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.解:(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD 所在直线为y轴建立平面直角坐标系.画相应的x′轴和y′轴,使∠x′O′y′=45°,如图①②所示.(2)在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连结B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.(1)在已知图中建立直角坐标系时尽量利用原有图形的对称性和垂直关系.(2)画水平放置的平面多边形的直观图的关键是确定多边形的顶点位置.顶点位置可以分为两类:一类是在轴上或在与轴平行的线段上,这类顶点比较容易确定;另一类是不在轴上且不在与轴平行的线段上,这类顶点一般通过过此点作与轴平行的线段,将此点转到与轴平行的线段上来确定.1.用斜二测画法画如图所示的水平放置的正三角形的直观图.解:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高AO所在的直线为y 轴,建立平面直角坐标系.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上取O′B′=O′C′=OB=OC,在y′轴上取O′A′=12OA,连结A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.画几何体的直观图已知一个正四棱台的上底面边长为2 cm,下底面边长为6 cm,高为4 cm,用斜二测画法画出此正四棱台的直观图.解:(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz =90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6 cm,在y轴上取线段GH,使得GH=3 cm,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连结AD、BC,这样就得到了正四棱台的下底面ABCD的直观图.(3)画上底面.在z轴上截取线段OO1=4 cm,过O1作O1x′∥Ox、O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中重复(2)的步骤画出上底面A1B1C1D1的直观图.使得A1B1=2 cm,B1C1=1 cm.(4)连结AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).利用斜二测画法画空间图形的直观图应遵循的基本原则:(1)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.(2)画法规则可简记为:两轴夹角为45°,竖轴垂直仍不变,平行不变,长度变,横竖不变,纵折半.2.用斜二测画法画长、宽、高分别是 4 cm 、3 cm 、2 cm 的长方体ABCD -A ′B ′C ′D ′的直观图.解:(1)画轴.如图所示,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中心,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32 cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连结A ′,B ′,C ′,D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.关于直观图的计算问题如图是四边形ABCD 的水平放置的直观图A ′B ′C ′D ′,则原四边形ABCD 的面积是( )A .14B .102C .28D .14 2解析:因为A ′D ′∥y ′轴,A ′B ′∥C ′D ′,A ′B ′≠C ′D ′,所以原图形是一个直角梯形,如图所示.又A ′D ′=4,所以原直角梯形的上、下底及高分别是2,5,8,故其面积为S =12×(2+5)×8=28.★★答案★★:C求直观图的面积的关键是依据斜二测画法,求出相应的直观图的底边和高.在原来实际图形中的高线,在直观图中变为与水平直线成45°角且长度为原来的一半的线段, 以此为依据来求出直观图中的高线即可.直观图的面积是原图形面积的24倍. 3.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 解析:选D.如图①②所示为实际图形和直观图.由②可知,B ′C ′=BC =a ,O ′A ′=12OA =34a ,在图②中作A ′D ′⊥B ′C ′于点D ′,则A ′D ′=22O ′A ′=68a .所以S △A ′B ′C ′=12B ′C ′·A ′D ′=12×a ×68a =616a 2.1.斜二测画法中的建系原则在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线或图形的对称直线为坐标轴,图形的对称点为原点或利用原有互相垂直的直线为坐标轴等.2.直观图中的“变”与“不变”平面图形用其直观图表示时,(1)平行关系不变;(2)点的共线性不变;(3)线的共点性不变;(4)角的大小有变化(特别是垂直关系有变化);(5)有些线段的度量关系也发生变化.一梯形的直观图是一个如图所示的等腰梯形,且梯形OA ′B ′C ′的面积为2,求原梯形的面积.【解】 如图,由斜二测画法原理知,原梯形与直观图中的梯形上下底边的长度是一样的,不一样的是两个梯形的高,原梯形的高OC是直观图中OC′长度的2倍,OC′的长度是直观图中梯形的高的2倍,由此知原梯形的高OC的长度是直观图中梯形高的22倍,故其面积是梯形OA′B′C′面积的22倍,又梯形OA′B′C′的面积为2,所以原梯形的面积是4.由于直观图中的等腰梯形只知道面积,不知道高和上下底边的长,所以要求原梯形的面积,关键是根据斜二测画法的规则将图形还原,确定原梯形与直观图中的梯形在高和上下底边长两方面的关系.在解答本题过程中易得原直角梯形的高为h的错误,导致该种错误的原因是忽视了在直观图中平行于y轴的线段长是原图中线段长的一半.1.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是________.解析:根据把模型放在水平视线的左上角绘制的特点,并且由几何体的直观图画法及立体图形中虚线的使用,知①正确.★★答案★★:①2.若正方形的边长为2,以正方形相邻两边所在直线分别作为x轴、y轴,则用斜二测画法画出的直观图是边长分别为________的四边形.解析:如图(1)为原图形OABC,则用斜二测画法画出的直观图为如图(2)所示的O′A′B′C′,其边长分别为O′A′=C′B′=2,O′C′=A′B′=1.★★答案★★:2,2,1,13.若用斜二测画法画出的直观图是△A′B′C′,且∠A′B′C′=45°,A′B′=1,B′C′=2,则原图形为________.解析:按斜二测画法规则,原图形△ABC满足∠ABC=90°,AB=2A′B′=2,BC=B′C′=2,故原图形为两直角边都为2的等腰直角三角形.★★答案★★:两直角边都为2的等腰直角三角形[A基础达标]1.如图,A′B′∥O′y′,B′C′∥O′x′,则直观图所示的平面图形是() A.任意三角形B.锐角三角形C.直角三角形D.钝角三角形解析:选C.因为A′B′∥O′y′,且B′C′∥O′x′,所以原平面图形中AB⊥BC.所以△ABC为直角三角形.第1题图第2题图2.正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 cm B.8 cmC.(2+32)cm D.(2+23)cm解析:选B.如图,OA=1 cm,在Rt△OAB中,OB=2 2 cm,所以AB=OA2+OB2=3 cm.所以四边形OABC的周长为8 cm.3.已知两个圆锥,底面重合在一起(底面平行于水平面),其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cmC.2.5 cm D.5 cm解析:选D.圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5(cm),在直观图中与z轴平行的线段长度不变,仍为5 cm,故选D.4.如图所示,一个水平放置的平面图形的斜二测直观图是一个底角为45°、腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ) A.12+22 B .1+22 C .1+ 2D .2+ 2解析:选D.因为A ′D ′∥B ′C ′,所以AD ∥BC .因为∠A ′B ′C ′=45°,所以∠ABC =90°.所以AB ⊥BC .所以四边形ABCD 是直角梯形,如图所示.其中,AD =A ′D ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =2+ 2.5.如图所示为一个平面图形的直观图,则它的原图形四边形ABCD 的形状为________.解析:因为∠D ′A ′B ′=45°,由斜二测画法规则知∠DAB =90°,又因四边形A ′B ′C ′D ′为平行四边形,且A ′B ′=2B ′C ′,所以AB =BC ,所以原四边形ABCD 为正方形.★★答案★★:正方形6.如图所示,一个水平放置的正方形ABCD ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图A ′B ′C ′D ′中,顶点B ′到x ′轴的距离为________.解析:正方形的直观图A ′B ′C ′D ′如图所示.因为O ′A ′=B ′C ′=1,∠B ′C ′x ′=45°,所以顶点B ′到x ′轴的距离为1×sin 45°=22. ★★答案★★:22 7.如图,平行四边形O ′P ′Q ′R ′是四边形OPQR 的直观图,若O ′P ′=3,O ′R ′=1,则原四边形OPQR 的周长为________.解析:由四边形OPQR 的直观图可知原四边形是矩形,且OP =3,OR =2,所以原四边形OPQR 的周长为2×(3+2)=10.★★答案★★:108.如图所示,已知用斜二测画法画出的△ABC 的直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析:过C ′作C ′M ′∥y ′轴,且交x ′轴于M ′.过C ′作C ′D ′⊥x ′轴,且交x ′轴于D ′,则C ′D ′=32a .因为∠C ′M ′D ′=45°,所以C ′M ′=62a .所以原三角形的高CM =6a ,底边长为a ,其面积为S =12×a ×6a =62a 2(或S 直观=24S 原,所以S 原=42·34a 2=62a 2). ★★答案★★:62a 2 9.用斜二测画法画出下列水平放置的平面图形的直观图(不写画法,保留作图痕迹).解:(1)如图所示,四边形O ′A ′B ′C ′是四边形OABC 的直观图.(2)如图所示,△O ′A ′B ′是△OAB 的直观图.10.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,求原平面图形的面积.解:过A 作AE ⊥BC ,垂足为E ,又因为DC ⊥BC 且AD ∥BC ,所以四边形ADCE 是矩形,所以EC =AD =1,由∠ABC =45°,AB =AD =1知BE =22,所以原平面图形是梯形且上下两底边长分别为1和1+22,高为2,所以原平面图形的面积为12×⎝⎛⎭⎫1+1+22×2=2+22. [B 能力提升] 1.如图所示的是水平放置的三角形ABC 的直观图△A ′B ′C ′,其中D 是A ′C ′的中点,在原三角形ABC 中,∠ACB ≠60°,则原图形中与线段B ′D 的长相等的线段有( )A .0条B .1条C .2条D .3条解析:选C.先按照斜二测画法把直观图还原为真正的平面图形,然后根据平面图形的几何性质找出与线段B ′D 长度相等的线段.把三角形A ′B ′C ′还原后为直角三角形,则D 为斜边AC 的中点,所以AD =DC =BD .故选C.2.如图,Rt △O ′A ′B ′是一平面图形的直观图,直角边O ′B ′=1,则这个平面图形的面积是________.解析:因为O ′B ′=1,所以O ′A ′=2,所以在Rt △OAB 中,∠AOB =90°,OB =1,OA =22,所以S △AOB =12×1×22= 2. ★★答案★★: 23.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,求这个平面图形的面积.解:与y 轴平行的那条边和在x 轴上的边垂直,且与y 轴平行的那条边长应是原长的2倍,故其面积应为12×|-2|×⎝⎛⎭⎪⎫2×|-2|2=2 2. 4.(选做题)如图为一几何体的展开图,沿图中虚线将它们折叠起来,请画出其直观图.解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.。