当前位置:文档之家› 高强度螺栓的重复使用次数及疲劳寿命问题

高强度螺栓的重复使用次数及疲劳寿命问题

高强度螺栓的重复使用次数及疲劳寿命问题
高强度螺栓的重复使用次数及疲劳寿命问题

提高弹簧使用寿命的几种方法

提高弹簧使用寿命的几种方法 随着工业产品的增加弹簧产品也变的丰富起来,弹簧用量的逐渐增加了,弹簧相关的技术也慢慢成熟起来。如何增加弹簧寿命是弹簧生产企业所需面临的问题,下面中国弹簧交易网给大家分享一下常用的几种方法。 (1)形变热处理 形变热处理是将钢的变形强化与热处理强化两者结合起来,进一步提高钢的强度和韧性。形变热处理有高温、中温和低温之分。高温形变热处理是在稳定的奥氏体状态下产生形变后立即淬火,也可与锻造或热轧结合起来,即热成型后立即淬火。60Si2Mn钢制造的汽车板簧,经高温形变热处理(930℃+热性变量18%,油淬)后,采用650℃×3.25min的高温快速回火,其强度和疲劳寿命都得到很大提高。 (2)弹簧的等温淬火 对于直径较小或淬透性足够的弹簧可采用等温淬火,它不仅能减少变心,而且还能提高强韧性。在等温淬火后最好再进行一次回火,可提高弹性极限,回火温度与等温淬火温度相同。 (3)喷丸处理 喷丸处理是目前应用最广泛的改善弹簧表面质量的方法之一。弹簧要求有较高的表面质量,划痕、折叠、氧化脱碳等表面缺陷往往会成为弹簧工作时应力集中的地方和疲劳断裂源。若用细小的钢丸高速喷打弹簧表面,进行喷丸处理,不仅改善弹簧表面质量,提高表面强度,使表面处于压应力状态,从而提高弹簧疲劳强度和使用寿命。 (4)弹簧的松弛处理 弹簧长时间在外力作用下工作,由于应力松弛,会产生微量的永久(塑性)变形,特别是高温工作的弹簧,在高温下应力松弛现象更为严重,使弹簧的精度降低,这对一般精密弹簧是不允许的。因此,这类弹簧在淬火、回火后应进行松弛处理。热处理工艺:对弹簧预先加载荷,使其变形量超过弹簧工作时可能产生的变形量。然后在高于工作温度20℃的条件下加热,保温8~24h。 (5)低温碳氮共渗 对于卷簧采用回火与低温碳氮共渗(软氮化)相结合工艺,能显着提高弹簧的疲劳寿命及耐蚀性。 最多最全的弹簧供应就在中国弹簧交易网。

各类高强度螺栓的相应规范与验收方法

各类高强度螺栓的相应规范与验收方法 一、主控项目内容: 1、钢结构制作和安装单位应按《钢结构工程施工质量验收规范》按规定分别进行高强度螺栓连接摩擦面的抗滑移系数试验和复验,现场处理的构件摩擦面应单独进行摩擦面抗滑移系数试验,其结果应符合设计要求。 检查数量:见《钢结构工程施工质量验收规范》 检验方法:检查摩擦面抗滑移系数试验报告和复验报告。 2、高强度大六角头螺栓连接副终拧完成1h后、48h内应进行终拧扭矩检查,检查结果应符合《钢结构工程施工质量验收规范》的规定。 检查数量:按节点数抽查10%,且不应少于10个;每个被抽查节点按螺栓数抽查10%,且不应少于两个。 检验方法:按《钢结构工程施工质量验收规范》的规定。 3、扭剪型高强度螺栓连接副终拧后,除因构造原因无法使用专用扳手终拧掉梅花头之外,未在终拧中拧掉梅花头的螺栓数不应大于该节点螺栓数的5%。对所有梅花头未拧掉的扭剪型高强度螺栓连接副应采用扭矩法或转角法进行终拧并作标记,且按第二条的规定进行终拧扭矩检查。 检查数量:按节点数抽查10%,但不应少于10个节点,被抽查节点中梅花头未拧掉的扭剪型高强度螺栓连接副全数进行终拧扭矩检查。 检验方法:观察检查及按《钢结构工程施工质量验收规范》的规定。 二、一般项目: 1、高强度螺栓连接副的施拧顺序和初拧、复拧扭矩应符合设计要求和国家现

行行业标准《钢结构高强度螺栓连接技术规程》的规定。 检查数量:全数检查资料。 检验方法:检查扭矩扳手标定记录和螺栓施工记录。 2、高强度螺栓连接副终拧后,螺栓螺纹外露应为2~3扣,其中允许有10%的螺栓螺纹外露1扣或4扣。 检查数量:按节点数抽查5%,且不应少于10个。 检验方法:观察检查。 3、高强度螺栓连接摩擦面应保持干燥、整洁,不应有飞边、毛刺、焊接飞溅物、焊疤、氧化铁皮、污垢等,除设计要求外摩擦面不应涂漆。 检查数量:全数检查。 检验方法:观察检查。 4、高强度螺栓应自由穿入螺栓孔。高强度螺栓孔不应采用气割扩孔,扩孔数量应征得设计同意,扩孔后的孔径不应超过1.2d(d为螺栓直径)。 检查数量:被扩螺栓孔全数检查。 检验方法:观察检查及用卡尺检查。 5、螺栓球节点网架总拼完成后,高强度螺栓与球节点应紧固连接,高强度螺栓拧入螺栓球内的螺纹长度不应小于1.0d(d为螺栓直径),连接处不应出现有间隙、松动等未拧紧情况。 检查数量:按节点数抽查5%,且不应少于10个。 检验方法:普通扳手及尺量检查。 三、高强度螺栓的分类和类型:

solidworkssimulation弹簧疲劳分析.docx

Simulation优化设计挑战 设计目的:采用 Solidworks Simulation 分析得出螺旋弹簧的压缩刚度,并对弹簧 零件进行疲劳分析。 1.打开名为“弹簧疲劳分析”的 solidWorks 零件 提示:为方便起见,夹具和外部载荷已经事先添加到弹簧两端的圆盘。圆盘 之间的距离对应于未压缩弹簧的当前长度。 2.设定 SolidWorks Simulation的选项 设定【单位系统】未【公制(Ⅰ)(MKS)】,【长度】单位为毫米,【应力】单位为 N/ (Pa)。 3.创建一个名为“研究 1”的【静态】算例。 4.查看材料属性 材料属性( Alloy Steel)将直接从 SolidWorks转移过来。 5.应用固定约束 在图 1 所示的 1 号圆盘端面应用【固定几何体】的 夹具。 2 1 图添加约束和载荷 6.应用径向约束 在 2 号圆盘的圆柱面上添加一个高级夹具,约束圆

盘的径向位移。 该约束只允许弹簧沿轴向压缩或伸长,且只能绕纵向轴转动,如图所示。 7.施加压力 对采用径向约束的圆盘端面添加的压力。 8.划分网格并运行分析 使用【高】品质单元划分网格。保持默认的【单元大小】为,【公差】为。显示 x 方向的位移。 9.如图 2 所示,图解显示轴向位移结果为。轴线方向为 x 方向。 图添加夹具图解 图位移图解计算得到的弹簧的轴向刚度为m(k=f/x) 以下为对该弹簧零件的疲劳分析 首先生成一个新的疲劳算例,命名为“疲劳分析”。 1.定义 S-N曲线 (1) 在 Simulation 管理器中右键单击,在弹出的菜单中选择 “添加事件”,如图所示。

影响扭簧疲劳寿命的关键因素

影响扭簧疲劳的关键因素 我们在加工扭簧时,必须要考虑几个影响它寿 命的重要因素: 一、原料的钢号和产地。 弹簧钢的种类有很多,其中抗疲劳性能较好的钢号 有:重要用途碳素弹簧钢丝(如琴钢线,T9A等)、油淬火-回火弹簧钢丝(如VDCrSi)、合金弹簧钢(50CrVA); 这些材料的抗疲劳特性是值得肯定的,一般小于2.0mm直径的弹簧,我们多采用重要用途碳素钢,大于2.0mm直径的弹簧,一般采用后两种材料。另外,除了钢号的选择,钢材自身的产地也是相当重要的,国内钢材比较好的有宝钢、武钢等知名钢厂;国外也有非常优秀的弹簧钢,如德国、日本和韩国等国家生产的弹簧钢,首先设计或制造一种扭簧,其疲劳寿命至关因素即是胚料。 二、加工工艺 谈到加工工艺,首先应考虑到成形技术、退火工艺和喷丸强度,另外还可以增加一些辅助工序,如添加润滑油等。 成形技术方面,现在应用比较广泛的是有芯卷制,可以参阅《弹簧手册》,里面有细致的介绍,其中成形设备也是相当关键,个人觉得转线机这种设备制作扭簧是非常理想的设备,主要原因是它在成形扭簧时,可以同步弹簧线向旋转,我们一般弹簧成形设备,送线和卷制是分开控制的,所以在成形时,无法解决弹簧线扭转,如果是圆线,还勉强可以成形,若是方线或非圆形线材,是无法成形扭簧的。重点问题是,这种能同步线向旋转的转线机,更能减少成形对线材内部结构

的伤害,从而保证成形出的扭簧寿命更加长一些。 三、退火温度与时间。 退火,是一种消除扭簧内部应力的工艺方法,它的作用效果主要有温度和时间两个因素决定。由于扭簧经弹簧机外力作用成形,其内部应力失去平衡,我们需借用退火工艺来消除它内部的大部分应力,对扭簧的性能也起优化作用。当然,退火工艺不仅仅是这么简单,对于不同钢号、不同钢胚和不同直径的弹簧钢,都需要用不同的退火温度和时间,我们在定温度和时间的时候,首先要接近钢材拉线后的退火温度,而时间一般不用太久,一般都在10-40分钟内,具体看弹簧线直径大小。退火温度高低和时间长短,对扭簧疲劳的影响是有一个峰值的,当温度和时间综合效果低于这个峰值时或高于这个峰值,最后得到的扭簧寿命都不是最好的,这个峰值就是一个临界点,只有通过多组退火试验,多次去测试,最后才能确定这个临界点。 四、喷丸强度。 喷丸,也是一种消除扭簧内部应力的工艺方法,而喷丸强度是喷丸效果的一种指标,影响喷丸强度的因素主要有钢丸的直径大小、硬度、喷丸的时间和所喷扭簧的量。不同直径的扭簧,我们需要的喷丸强度是不一样的。喷丸的最佳效果,是通过喷丸,在扭簧表面能形成一层强化膜,这必须是丸粒的轻微打击而形成的,不能伤害到扭簧表面,造成表面缺陷,更不能把这种破坏深入到钢的内部组织。 所以喷丸强度是很关键的因素,遵从的原则是柔和均匀。

某大桥高强度螺栓检测实施细则

一、总则 1、为了保质保量完成哈尔滨三环路西线跨松花江大桥工程的高强螺栓试验检测工作,根据国家、建设部、交通部、铁道部相关检测试验标准、规程、规范及设计的技术要求,使哈尔滨三环路西线跨松花江大桥工程高强度螺栓施工质量检测工作标准化、规范化,特制定本细则。 2、细则适用于哈尔滨三环路西线跨松花江大桥工程主桥钢结构安装。 3、我们的方针是科学、公正、严谨的检测,热忱、优质、高效的服务。希各相关方和现场试验人员按此细则执行。 二、试验室职责 2.1、试验室职责 1.在项目部总工程师领导下,在中交二航局第二工程有限公司质量检测所的指导下开展高强度螺栓的试验检测工作,并对高强度螺栓的试验检测工作质量负责。 2.建立健全高强螺栓试验管理制度、主要检测设备管理制度及操作规程,并认真执行。 3.负责高强螺栓试验检测设备的检定、测试和校验工作。 4.根据物资部门提供的委托单,做好高强螺栓的检验工作。 5.负责对高强螺栓施拧用电动扳手的标定工作。 6.认真执行技术规范、质量标准、试验规程和相关的法规。 7.负责螺栓试验检测资料、扳手标定资料的管理工作,试验记录、检测报告必须数字准确,字迹清晰,结论正确,手续齐全。 8.协助质检部、工程部,对复拧后的螺栓进行检查。 2.2、当班试验人员职责 1.在实验室主任领导下,开展高强度螺栓的试验检测工作,并对高强度螺栓的试验检测工作质量负责。 2. 负责对每日发出电动扳手按照编号进行标定,并做好记录; 3. 负责对每日交回的电动扳手按照编号进行标定,并做好记录; 4.负责螺栓施拧质量的检查工作。 5.负责螺栓试验检测工作。 三、工作流程 3.1、螺栓管理流程

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

影响弹簧疲劳强度的六个因素

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/e72311613.html,)影响弹簧疲劳强度的六个因素 弹簧是一种利用弹性来工作的机械零件。用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状。亦作“弹簧”。一般用弹簧钢制成。弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。 1、屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈 服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2、表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度 的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3、尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性 愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。

4、冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5、腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6、温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.doczj.com/doc/e72311613.html,/?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

高强度螺栓施拧细则

目录 第一章总则 (64) 第二章高强度螺栓的验收与保管 (64) 一、高强度螺栓的验收 (64) 二、高强度螺栓的保管 (65) 第三章工艺试验 (65) 第四章高强度螺栓的施拧 (66) 一、施拧工具 (66) 二、高栓施拧扭矩值计算 (68) 三、高栓施拧次序 (68) 四、施拧工具的校验与保管 (69) 五、施拧要求 (69) 六、注意事项 (71) 第五章施拧质量检查 (71) 第六章安全注意事项 (72)

第一章总则 1.主桥上部结构为栓焊钢桁梁,工地连接除桥面板接头有焊接外,其余均为高强度螺栓连接。本桥采用了M22、M24、M30共3种规格的螺栓,主桁节点为M30高强度螺栓,上平联、下平联、横联、横梁、桥面板横肋、轻轨托架为M24高强度螺栓,桥面板纵肋、轻轨纵梁为M22高强度螺栓。 2.高强度螺栓应符合《钢结构用高强度大六角头螺栓、大六角螺母、垫圈与技术条件》(GB/T 1228~1231-2006)规定中的级,M30螺栓材质选用35VB钢,M22、M24高强度螺栓材质选用20MnTiB。M22、M24、M30高强度螺栓设计预拉力分别为:200KN、240KN、360KN。 3.钢梁杆件栓接面采用厂内电弧喷铝,架设时其板面之间的抗滑移系数不得小于。 4.拼装用螺栓可直接用高栓,一次到位,无需进行更换。高栓施拧采用扭矩法施工。 第二章高强度螺栓的验收与保管 一、高强度螺栓的验收 高强度螺栓质量复验:生产厂应以批为单位,提供产品质量检验报告(含扭矩系数)及出厂合格证,施工现场应对高强度螺栓连接副,进行外形尺寸、形位公差、表面缺陷、螺纹参数、机械性能、螺纹脱碳、扭矩系数、标记与包装等检查和复验,并做好记录,不合格产品不得使用。 1.外观检查:对螺杆、螺母、垫圈表面有无裂纹,锈蚀脱碳检查。 2.型式尺寸,形位公差检查:检查项目有螺杆螺纹的精度,螺杆垂直度;螺母的精度及支承面的垂直度;垫圈的平整度及表度;螺杆、螺母、垫圈的各部位尺寸以及螺杆、螺母能否自由配套等。 3.机械性能试验: (1)螺栓的楔负荷试验:主要是检验螺杆轴线与螺母支承面不垂直(夹角10°)情况下螺栓的承载能力。 (2)螺母保证荷载试验:主要是检验在荷载作用下螺母是否脱扣或断

弹簧疲劳试验方案

5.试样弹簧 5.1试样 试样应按规定程序批准的图样、技术文件制造,并经过尺寸和特性检验合格。 5.2试样抽取 试样应从同一批产品中随机抽取 5.3 试样数量 5.3.1 对于疲劳寿命验证试验,推荐的最少试样数量最少4件,当有特殊要求时,试样数量可自行确定。 6 试验条件 6.1 试验机 6.1.1 推荐采用机械式或电液伺服试验机,也可安装在配套阀上进行试验。 6.1.2 试验机位移精度应满足试验要求。 6.1.3 试验机得频率应在一定范围内可调。 6.1.4 试验机应具备试验时间或次数预置、自动计时或计数、自动停机及输出试验数据等功能。 6.2 试验频率 6.2.1 试验频率可根据试验机得频率范围和弹簧实际工作频率等情况确定。整个试验过程中试验频率应保持稳定。 6.2.2 试验频率Fr 应避开单个弹簧的固有自振频率F ,一般应满足如下关系式: 10F F r 其中:钢制弹簧固有频率F 按如下公式计算: F=3.56×105×d/nD 2 6.3 试验振幅 振幅分为位移幅(Ha )和载荷幅(Fa )。对于螺旋弹簧的疲劳寿命验证试验一般使用位移幅作为试验振幅。 6.4 试验环境 试验一般在室温下进行,但试验时样件的温升应不高于实际工况最高温度。 7 试验方法 7.1试样的安装 7.1.1试样的安装方法 为了避免试样承受偏载和附加应力,压缩弹簧试样安装时要保证试样两端平整接触,应将试样安放再固定的支座上;拉伸弹簧试样的安装应满足工况要求。 7.1.2 试验。高度 对定型的产品,试样试验的最大高度为实际使用要求的最大高度H1,试验的最小高度为实际使用要求的最小高度H2.试验的平均高度为实际使用工况的最大高度H1与最小高度H2二者之和的平均值。 7.1.3安装高度允许偏差 用多工位试验机,或者多台试验机同时对一批试样进行试验时,应将试样调整到同样的试验安装高度,其最大允许偏差为3%Ha 。 7.2 加载 7.2.1 正常情况下,按试验机的加载方式进行加载。 7.2.2 在有必要情况下,可模拟产品实际工作负载进行加载。 7.3 试验机运转及数据记录

扭簧受力分析及寿命预测问题

扭簧受力分析与应力松弛问题 弹簧是一种广泛使用的机械零件,它利用材料的弹性和结构特点,在工作中产生变形,把机械功转变为变形能;反之,把变形能转变为机械功或动能。由于这种特性,它适用于:1)缓冲或减振,如破碎机的支承弹簧和车辆的悬架弹簧等;2)机械储能,如钟表、仪表和自动控制机构上的原动弹簧;3)控制运动,如汽门、离合器、制动器和各种调节器上的弹簧;4)测力装置,如弹簧秤和动力计上的弹簧。除此之外,在机械设备、仪表、日用电器以及生活用具上也有着各式各样的弹簧元件。弹簧的破坏或任何形式的失效将使机组出现不同程度的故障,甚至诱发机毁人亡的恶性事故,造成重大损失。而“应力松弛”是影响弹簧或弹性元件质量、寿命诸多因素中的核心问题。应力松弛是指在恒应变条件下,金属材料或元件的应力随时间延续而减小的现象。深入研究弹簧材料应力松弛性能的变化规律、寻求有效的预防技术,对提高基础件的质量、延长它们的使用寿命、节约特殊钢及合金的消耗、使整套设备运行时安全可靠、充分发挥其生产效率等,都有重要的技术经济意义。 弹簧品种、材料及结构形式各式各样,加工方法也十分繁多,因此对弹簧的应力松弛分析必须针对于具体的类型和具体的使用条件而定。本问题主要针对于弹簧的一个重要的类型——扭簧做做相应的数学建模及分析。对扭簧而言,基本形状也较多,见附件1的示意图。 现有某一型号的扭簧,示意图参见附件2,其工作原理示意图可参见附件3,要求:对该扭簧在多种工作状态下的受力情况进行数学建模分析,通过材料力学、热力学、动力学等相关学科的专业背景知识,分析弹簧应力松弛机理,找出弹簧受力状态与其寿命的解析表达式。包括 (1)静载荷及扭角一定的条件下,扭簧所受扭力的计算分析的数学模型。(2)动态载荷下(分为周期载荷和冲击载荷)及扭角一定的条件下,扭簧所受扭力的动态变化的数学模型。 (3)扭簧所受扭力与引起其失效的应力松弛的数学模型。 (4)扭簧的受力状态与其疲劳寿命的数学模型。

柔性结构疲劳寿命的预测方法

文章编号:167325196(2008)0420170203 柔性结构疲劳寿命的预测方法 董黎生,程 迪 (郑州铁路职业技术学院机车车辆系,河南郑州 450052) 摘要:讨论柔性构架结构疲劳寿命的预测方法,建立刚柔耦合多体动力学模型,计算结构危险点的动载荷时间历程;利用有限元准静态分析法,获得应力影响因子;利用模态分析技术获得结构固有频率和模态振型,确定结构的危险点位置。基于危险应力分布的动载荷历程,结合材料特性曲线以及线性损伤理论,进行标准时域的柔性结构应力应变的循环计数,损伤预测和寿命估计.应用该方法对构架结构进行疲劳寿命预测,结果表明,该预测方法预测精度有效,可以有效提高结构耐久性设计质量. 关键词:多体系统;柔性结构;有限元;疲劳寿命预测 中图分类号:O346 文献标识码:A Prediction method of fatigue life of flexible structure DON G Li2sheng,C H EN G Di (Locomotive and Rolling Stock Depart ment,Zhengzhou Railway Vocational&Technical College,Zhengzhou 450052,China) Abstract:Prediction met hod of fatigue life of flexible f ramed st ruct ure was discussed,dynamic model of rigidity2flexibility co upled multi2body was established,and time history of dynamic load at t he critical point of t he st ruct ure was comp uted.Influential factors of st resses were obtained by using t he finite element analysis met hod for quasi2static conditions.The nat ural frequency and vibration modes of t he struct ure as well as t he location of it s critical point were determined by using t he model analysis technique.Based on t he dynamic load history of critical st ress distribution and employing t he material characteristic curves and it s linear damage t heory,t he cyclic counting of stresses and st rains,damage p rediction,and life estimation of t he flexible st ruct ure were performed in standard time domain.The fatigue life prediction of t he f ramed st ruct ure was conducted wit h t his met hod and it was shown by t he result t hat t he prediction accuracy was valid and t he design quality of struct ure durability would be effectively imp roved. K ey w ords:multi2body system;flexible st ruct ure;finite element;fatigue life prediction 预测结构寿命最有效方法是通过室内工作台或线路耐久性试验获得危险点的动应力历程数据.对一些复杂结构,要在室内进行耐久性试验几乎是不可能的.而在实际线路上进行耐久性试验,耐久性试验费用昂贵,试验周期也长,受到运行路线和时间等诸多条件限制,只能在有限的线路和时段内进行构架结构危险部位的动应力测试,进而通过应力应变数据的有效采集和雨流法统计处理,最后根据相关损伤累计理论进行结构寿命估计. 文献[1]中首次在国内外提出通过动力学仿真及有限元分析混合技术手段进行车体结构疲劳寿命 收稿日期:2008202229 作者简介:董黎生(19622),男,山西万荣人,副教授.的评估.就机车车辆而言,在运行过程中反复承受随机轨道不平顺传递的持续小幅振动载荷、过曲线、过道岔以及启动制动时的冲击等复合载荷的作用,导致结构关键部位,如关键位置处的焊接接头以及焊接区域局部应力集中发生,从而导致裂纹萌生和扩展等结构疲劳现象的发生.针对这些疲劳问题,现场一般采用设置局部加强筋、开设止裂板等措施来提高其局部静强度和分化应力集中导致的影响.但是这些措施并没有从整车系统动态特性的角度考虑问题,因此可能再次导致结构刚度的分布不均,从而使得结构其他部位再次出现新的疲劳问题.在文献[1~8]的基础上,本文提出一种柔性结构疲劳寿命的预测方法,对机车车体结构进行寿命预测. 第34卷第4期2008年8月 兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.4 Aug.2008

弹簧疲劳试验机

弹簧疲劳试验机机型详解济南铂鉴弹簧疲 劳试验机机型描述 弹簧疲劳试验机根据弹簧的种类不同可以分为弹簧拉压疲劳试验机,弹簧扭转疲劳试验机,高低温弹簧疲劳试验机。 ●弹簧拉压疲劳试验机 弹簧拉压疲劳试验机主要用于各种弹簧、弹性体、弹性元件等零部件的拉压疲劳寿命试验。 功能特点 (1)根据各种弹簧、弹性体、弹性元件的技术要求,调整各种弹簧、弹性体、弹性元件的振幅和频率。 (2)液晶汉字显示,试验次数和频率根据要求可输入程序,自动完成。 (3)由电机、减速机连接凸轮带动连杆做往复运动,实现对各种弹簧、弹性体、弹性元件的压缩运动。 (4)试验空间的调整采用电机调节,方便快捷。 (5)试验区增加了防护网,保证了试验的安全性。 (6)预置试验次数自动停机。 (7)弹簧断裂自动停机。 (8)操作简单,运行可靠稳定。 主要技术指标 型号: TPL-1000N-TPL-20000N 最大试验力: 1000N-20000N 工作方式:电机自动加载 数据处理: 能够保存、自动停机 试件最大长度: 400mm(可根据客户要求定制)

试件最大外径:Φ100mm(可根据客户要求定制) 试验频率: 0~5Hz; 最大振幅: 50mm; 计数容量: 99999999 试验工位:四个工位 试验机尺寸:约800*580*2100 mm 试验机重量: 500Kg 外观、装配:应符合GB/T2611要求 保护功能:程序保护 供电电源: 220V,50Hz ●弹簧扭转疲劳试验机 弹簧扭转试验机主要用于各种开关厂及钟表行业、健身器材等厂家所需的各种扭转试样的疲劳寿命试验。 功能特点: (1)试验频率可调,扭转试验次数根据要求设计。 (2)设置试验次数自动停机。 (3)数字显示试验次数、试验频率。 (4)操作简单,运行可靠,性能稳定。 主要技术指标 型号: TPN-2000Nmm-TPL-5000Nmm 最大试验力: 2000Nmm-5000Nmm 工作方式:电机自动加载 数据处理: 能够保存、自动停机 试件最大外径:Φ120mm(可根据客户要求定制) 试验频率: 0~5Hz; 测试角度: 1-360°任选;

影响弹簧疲劳强度的几个因素

影响弹簧疲劳强度的几个因素 阅读:2748人次更新时间:2011-5-23 9:09:19 1.屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2.表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3.尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。 4.冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5.腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6.温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 有关以上这些影响疲劳强度因素的具体数值,参看有关资料。 弹簧的强化工艺技术 阅读:2491人次更新时间:2011-5-23 9:07:26 (1)弹簧的热处理强化工艺技术 1)保护气氛热处理。在我国,线材小于 15mm的弹簧、油淬火回火钢丝及韧化处理钢的热处理都采用了保护气氛热处理。保护气氛热处理能够消除表面脱碳和氧化,提高材料的表面质量。

钢梁高强度螺栓施拧工艺

高强螺栓施拧工艺 目录 一、编制依据 (1) 二、工程概况 (1) 三、高强度螺栓的验收 (1) 四、高强度螺栓的储存管理 (3) 五、高强度螺栓试验 (4) 六、高强度螺栓的施工 (6) 七、施工质量的检查 (9) 八、高强度螺栓的涂装 (10) 九、施工工具的使用、维护和管理 (10) 十、安全措施 (11)

一、编制依据 1、《钢结构用高强度大六角头螺栓》(GB/T 1228-2006) 2、《钢结构用高强度大六角螺母》(GB/T 1229-2006) 3、《钢结构用高强度垫圈》(GB/T 1230-2006) 4、《钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件》(GB/T 1231-2006) 5、《铁路钢桥高强度螺栓连接施工规定》(TBJ214-92) 6、《铁路桥涵施工规范》 TB10203-2002 7、《铁路桥涵工程施工质量验收标准》(TB 10415-2003) 8、《客货共线铁路桥涵工程施工技术指南》(TZ 203-2008); 9、《铁路工程基本作业施工安全技术规程》TB10301-2009; 10、《铁路桥涵工程施工安全技术规程》TB10303-2009; 二、工程概况 主桁均采用整体节点,弦杆、拱肋、吊杆均采用箱形截面,腹杆多采用H形截面。全桥钢桁架拱连接均采用高强螺栓摩擦型连接,其中主桁采用M30高强度螺栓连接,高强度度螺栓性能等级为10.9S,材质为35VB,设计有效预拉力360kN;桥面系纵梁、横梁、交叉型平联、平联横撑采用M24高强度螺栓连接,性能等级为10.9S,材质为20MnTiB,设计有效预拉力240kN;桥面板下U肋采用M22高强度螺栓连接,性能等级为10.9S,材质为20MnTiB,设计有效预拉力200kN。连接用的大六角头螺母性能等级均为10H级,高强度垫圈表面硬度为HRC35~45。全桥使用M30、M24、M22三种规格的10.9S的高强螺栓26余万套。其各项性能指标均应满足《钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件》(GB/T 1228~1231-2006)要求。 所用高强度螺栓均为表面磷化处理,分为两种类型,一种表面磷化处理后浸油,称为磷化螺栓;另一种表面磷化处理后加一层皂化膜,称为磷皂化螺栓。为了保证高强螺栓轴向预拉力的稳定,确保钢梁架设的施工质量,特编制《高强螺栓施拧工艺》。 三、高强度螺栓的验收 1、《高强螺栓施拧工艺》所称“高强度螺栓”系指“高强度螺栓连接

曲轴轴系的结构强度分析与疲劳寿命估算_朱永梅

Journal o f Mechanical Strength 2010, 32( 6) : 1018- 1021 p 研究简报 p 曲轴轴系的结构强度分析与疲劳寿命估算 X ANALYSIS OF STRUCTURAL STRENGTH AND PRED ICTION OF FATIGUE LIFE FOR CRANKSHAFT AND LINK MEC HANISM 朱永梅X X 王明强 刘艳梨 ( 江苏科技大学 机械工程学院, 江苏 镇江 212003) ZHU YongMei WANG MingQiang LIU YanLi ( School o f Mechanical Enginee ring , Jiangsu Unive rsity o f Scie nce and Tec hnology , Zhenjiang Jiangsu 212003, China ) 摘要 将多柔体动力学方法引入到曲轴计算中, 建立发动机曲轴轴系的动力学仿真模型, 对曲轴轴 系进行刚柔耦 合 多体运动学和动力学仿真, 为下一步疲劳寿命计 算提供可靠的载荷条 件; 然 后, 从曲 轴所受的 载荷中找 出三个 载荷比 较 大的 时刻, 计算得到其相应时刻的应力和应变分布规律, 找出曲轴受力的危险部位, 为曲轴的动态强度分析提 供数据; 最 后, 结合 Ansys 有限元分析软件和柯顿- 多兰( Certon - Dolan) 理论, 估算 连杆疲 劳寿命, 同 时分析多 级载荷 加载次 序对疲 劳 寿命的影响, 为零部件的主动寿命设计提供参考 数据和理论判据。 关键词 强度 疲劳寿命 动力学 曲轴轴系 中图分类号 TH123. 3 Abstract Introducing mult-i flexib1e body dynamics to crankshaft computing, a dynamics simulation model of crank and link mechanism of an engine is built. Based on the rigid and flex coupled model, ADAMS( automatic dynamic analysis of mechanical sys - tems) is used to do a kinematics and dynamic simulation to get dynamic loads. It also provides a reliable characteristic for the body v-i bration noise of next step. Then the bigger loads of three moments are identified from all loads. The distribution law of the stress and strain of correspondi n g moment are achieved and its dangerous parts are found to offer date of dynamic strength analysis. At las t, com - bining the Ansys and the theory of Certon -Dolan, the fatigue life of the link is calculated and the affection of loading order of multilevel loads to fatigue life is analyzed in detail, which have provided the referenced data and the theory of criterion for reliability desi g n. Key words Strength; Fatigue life; Dynamics; Crankshaft and link mechanism Cor res pon ding autho r : Z H U Yong Mei , E -mail : zymtt @ 163. com , Tel : + 86- 511- 84401198, Fa x : + 86-511- 84402269 The project supported by the Shipbuilding Industry Defense Technology Pre - research Foundation of China ( No . 07J2. 3. 2) . Manuscript received 20090722, in revi s ed form 20090908. 引言 曲轴轴系是发动机的主要组件之一, 其动力学特 性对发动机的工作可靠性、振动、噪声等有较大影响。 其受周期性变化的气缸压力和惯性力的共同作用, 并 对外输出转矩, 工作负荷非常 大, 容易发 生断裂等破 坏, 因此有必要对曲轴进行强度、模态和疲劳寿命等校 核。 虽然目前很多疲劳可靠性估算模型己经很成熟, 并有效地应用于很多领域, 但对于柴油机关键零部件, 如曲轴、活塞、连杆以及活塞销等, 在随机疲劳行为模 型及可靠性估算模型的理论研究和应用方面还是有欠 缺的。例如文献[ 1] 在实测应力累积频数分布图时忽 略应力的先后次序对疲劳的影响。文献[ 2] 提出基于 联合仿真的疲劳寿命预测方法预测部件的疲劳寿命, 其研究对象为单缸, 而实际应用中多缸发动机较多, 实 际情况复杂, 这样确定危险工况存在一定的误差。文 献[ 3] 针对某单缸发动机曲轴断裂问题, 通过材料的改 变计算最大载荷工况下的变形和应力, 但是在进行强 度分析之前没有考虑动力学特性的影响。 本文以某台四冲 程 V 型八缸发动机曲轴轴系为 研究对象, 建立动力学仿真分析模型, 其中曲轴作为柔 性体处理, 应用有限元分析 软件 Ansys 对其进行模态 分析, 生成 M NF ( modal neutral file) , 利用 ADAMS( auto - matic dynamic analysis of mechanical systems )P Vie w 模块, 将柔性体模态变形融入到多体系统的动力学仿真中。 通过 Ansys 分析找出曲轴、连杆等工作时的危险部位, 将应力值取出分别用 Miner 方 法和 Certon -Dolan 方法 X 20090722 收到初稿, 20090908 收到修改稿。船舶工业国防科技预研基金( 07J2. 3. 2) 。 XX 朱永梅, 女, 1969 年 9 月生, 江苏镇江人, 汉族。江苏科技大学机械工程学院副教授, 硕士, 从事机械设 计理论、机械强度、可靠性等研 究。 发 表论文十余篇。

相关主题
文本预览
相关文档 最新文档