人教版五年级下册数学知识点总结
- 格式:doc
- 大小:119.00 KB
- 文档页数:9
人教版五年级数学下册知识点;
班级:姓名:
第一单元观察物体;;
1、由几个大小相同的小正方体摆成的立体图形,从同一个方向观察,看到的图形可
能是相同的,也可能是不同的。
根据一个方向看到的图形摆立体图形,有多种摆法。
2、从同一个方向观察物体最多只能看到三个面。
几何视图一般是根据三个方向观察到的形状进行绘制。
3、根据两个方向观察到的形状能确定所用小正方体的个数。
根据三个方向观察到的
形状摆小正方体结果只有一种。
第二单元因数和倍数;
1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
)
2、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是自然数(一般不
包括0)
3、找因数的方法:①乘法②除法;找倍数的方法:逐次乘自然数。
4、①一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大的倍数。
②一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
一个数的最大因数和最小倍数是相等的都是它本身。
③1是所有非0自然数的因数。
也是任一自然数(0除外)的最小因数。
④一个数的因数至少有1个,这个数是1。
⑤一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。
5、因数<或=它本身、倍数>或 = 它本身、最大的因数=最小的倍数=它本身。
一个数的倍数一定比它的因数大这种说法是错误的。
一个数越大它的因数个数就越
- 1 -。
人教版小学五年级数学下册知识点总结和复习要点一、数与代数分数的加法和减法概念:分数的加法和减法是指对两个或多个分数进行相加或相减的运算。
性质:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,然后按照同分母分数相加减的法则进行计算。
特点:分数的加减运算需要注意分子、分母的变化。
举例:2/3 + 1/3 = 3/3 = 1;5/6 - 1/6 = 4/6 = 2/3。
分数的乘法和除法概念:分数的乘法和除法是指两个或多个分数进行相乘或相除的运算。
性质:分数乘整数,分母不变,分子乘整数;分数乘分数,用分子乘分子,用分母乘分母;分数除以一个数等于乘以这个数的倒数。
特点:分数的乘除法运算需要理解乘法与倒数的概念。
举例:2/3 × 4 = 8/3;3/4 ÷ 2 = 3/4 ×1/2 = 3/8。
因数与倍数概念:因数与倍数是整数之间的一种关系,一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:理解因数和倍数的概念对于解决与整除相关的问题至关重要。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
二、空间与几何长方体和正方体的认识概念:长方体是由六个长方形围成的立体图形;正方体是六个面都是正方形的特殊长方体。
性质:长方体有6个面,12条棱,8个顶点;正方体有6个面,12条棱,8个顶点,且所有面都是正方形。
特点:长方体和正方体是常见的立体图形,具有特定的形状和性质。
举例:日常生活中的纸箱、书本等可以近似看作长方体;骰子是典型的正方体。
长方体和正方体的表面积概念:长方体和正方体的表面积是指它们所有面的面积之和。
性质:长方体的表面积= 2 ×(长×宽+ 长×高+ 宽×高);正方体的表面积= 6 ×边长^2。
五年级下册知识点班级:五(2)班XX:X雨阳一观察物体〔三〕1、根据从一个方向观察到的平面图形不可以确定几何体的唯一形状。
1、根据从三个方向观察到的平面图形可以确定几何体的唯一形状。
3、能根据给定几何体画出前面、上面和侧面的平面图。
二因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
因数与倍数是相对存在,不能脱离开来:2是4的因数,4是2的倍数因数与倍数指的通常是整数,不能针对小数。
2.4×5=12,所以5是12的因数〔×〕2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。
最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。
“1〞既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个〔2、3、5、7、11、13、17、19〕4、分解质因数:用短除法分解质因数〔一个合数写成几个质数相乘的形式〕5、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
1----用短除法求两个数或三个数的最大公因数〔除到互质为止,把所有的除数连乘起来〕几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:〔1〕1和任何自然数互质;〔2〕相邻两个自然数互质;〔3〕两个质数一定互质;〔4〕2和所有奇数互质;〔5〕质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
人教版五年级数学下册知识点归纳总结五年级数学下册是孩子们学习数学的重要阶段,本册内容涵盖了各个方面的数学知识。
为了使孩子们更好地掌握和运用这些知识,下面将对人教版五年级数学下册的知识点进行归纳总结。
1. 分数的认识与应用:1.1 分数的基本概念:分数的定义、分子和分母的含义;1.2 分数的读法与写法;1.3 分数的比较与排序;1.4 分数的加法与减法;1.5 分数的乘法与除法。
2. 矩形与平行四边形:2.1 矩形的特征与性质;2.2 矩形的周长与面积计算;2.3 平行四边形的特征与性质;2.4 平行四边形的周长与面积计算。
3. 数量的估算与计算:3.1 近似数的概念与应用;3.2 数量的估算方法;3.3 多位数的有序增长与有序减少;3.4 三位数的加减法与乘法;3.5 金额的加法与减法。
4. 分数与小数的互换:4.1 分数与小数的关系与转换;4.2 分数转换为小数;4.3 小数转换为分数;4.4 分数和小数在实际生活中的应用。
5. 三角形:5.1 三角形的特征与性质;5.2 三角形的分类;5.3 三角形的周长与面积计算。
6. 时、分、秒的计时:6.1 时、分、秒的基本单位;6.2 时钟的读法与设置;6.3 时、分、秒的加减法;6.4 简单的时间问题解答。
7. 数据的收集与处理:7.1 数据的收集方式;7.2 数据的整理、展示与分析;7.3 折线图的绘制;7.4 图表的读取与分析。
8. 乘法的技巧与运用:8.1 乘法口诀的记忆与运用;8.2 大数的乘法计算;8.3 乘法的分配律与结合律。
9. 除法的技巧与应用:9.1 除法口诀的记忆与运用;9.2 除法的列竖式计算;9.3 除法的计算应用。
10. 数轴与有理数:10.1 数轴的认识与应用;10.2 有理数的基本概念;10.3 正数、负数与零的认识与应用。
以上是人教版五年级数学下册的知识点归纳总结。
通过系统学习和掌握这些知识点,孩子们将能够更好地理解和运用数学,提高数学解题的能力。
最全面人教版数学五年级下册知识点归纳总结数学在小学阶段是一门非常重要的学科,它培养了学生的逻辑思维和数学运算能力。
今天,我们就来总结一下人教版数学五年级下册的知识点,帮助同学们更好地复习和掌握这些知识。
一、整数的加减运算整数的加减运算是五年级下册的一个重要内容。
在这个章节中,我们学习了同号相加、异号相减的规则,并掌握了整数在数轴上的表示方法。
同学们要注意符号的运用,掌握好正数和负数的加减运算。
二、小数的认识和运算小数的认识和运算也是五年级下册的一项重要内容。
我们学习了小数的读法、写法和大小比较,并且掌握了小数的加减乘除运算规则。
同学们要注意小数点的位置和运算规则,灵活运用小数进行实际问题的解决。
三、图形的认识和计算图形的认识和计算是数学中的基础知识,也是五年级下册的重点内容。
在这个章节中,我们学习了各种常见图形的性质和计算方法,例如长方形、正方形、三角形等。
同学们要学会用适当的公式计算图形的面积和周长,同时还要了解图形在生活中的应用。
四、时间、温度和长度的度量时间、温度和长度的度量是数学中的实际应用内容。
在这个章节中,我们学习了钟表的读法、温度的读法和长度的度量方法。
同学们要掌握好24小时制和12小时制的换算,能够熟练地读取温度计上的温度,并且能够用标尺进行长度的测量。
五、数据的统计和分析数据的统计和分析是数学中的一项非常重要的内容。
在这个章节中,我们学习了收集数据、整理数据和表示数据的方法,并且了解了频数、频率和平均数的计算。
同学们要懂得如何统计数据,并能够正确地分析数据,作出合理的结论。
六、多边形的认识和计算在五年级下册,我们还学习了多边形的认识和计算。
多边形是指有三条及以上边的图形,我们要学会分辨和计算各种多边形的性质,例如正多边形、不规则多边形等。
同学们要学会用适当的公式计算多边形的周长和面积,提高自己的计算能力。
七、任意形式的变量代数式在五年级下册最后一个章节,我们学习了任意形式的变量代数式。
人教版数学五年级下册:知识点归纳总结第一单元观察物体(三)1、根据一个方向观察到的形状摆小正方体,有多种摆法,无法确定立体图形的形状。
2、根据三个方向观察到的形状摆小正方休,只有1 种摆法。
3、只要对着原来物体的前面或后面的任意1个正方体添1个正方体,从正面看到的形状就都不变。
4、从正面、左面、上面3个不同的方向观察同一组物体而画出的图形就是三视图。
5、综合三视图的形状,可以确定出立体图形中小正方体的摆放位置,通常只有一种摆法。
6、由三视图拼摆正方体的方法:俯视图打地基,主视图疯狂盖,左视图拆违章。
7、先摆出符合正面的立体图形,再摆出符合上面的立体图形,最后确定立体图形。
根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。
8、想象不出来时,用小正方体摆一摆就简单了。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
最小的自然数是02、因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例:12÷2=6, 12是6的倍数,6是12的因数。
为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。
数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
一个数的最大因数=最小倍数=它本身3、2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
①自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数,叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
五年级下册数学知识点整理第一单元观察物体(三)1.根据从一个方向观察到的平面图形不可以确定几何体的唯一形状。
2.根据从三个方向观察到的平面图形可以确定几何体的唯一形状。
第二单元因数与倍数1.【因数和倍数的概念】3×4=12,12是3和4的倍数,3和4是12的因数;15÷3=5,15是3和5的倍数,3和5是15的因数;因数和倍数是相互依存的,因数和倍数只针对非0自然数,如:1,2,3,…。
2.【找一个数因数的方法】列除法算式求:用这个数分别除以大于等于1且小于等于它本身的数,商没有余数,这时,除数和商就是这个数的因数;如:求18的因数:18÷1=18,18÷2=9,18÷3=6,所以1,18,2,9,3,6是18的因数。
3.【因数的特征】一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
4.【找一个数倍数的方法】列乘法算式求:用这个数×非0自然数,得到的积,就是这个数的倍数。
如:求2的倍数:2×1=2,2×2=4,2×3=6,2×4=8,2×5=10,…。
所以,2的倍数有:2,4,6,8,…。
5.【倍数的特征】一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大公倍数。
6.【奇(jī)数和偶数的概念】整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇(jī)数。
7.【2的倍数特征】个位上是0,2,4,6,8的数,都是2的倍数。
【5的倍数特征】个位上是0或5的数,都是5的倍数。
【2和5的倍数特征】个位上是0的数,既是2的倍数,又是5的倍数。
【3的倍数特征】一个数各位上的数的和是3的倍数,这个数就是3的倍数。
8.【质数与合数的概念】质数:只有1和它本身两个因数的数,叫质数(或素数),其中,2是最小的质数。
合数:除了1和它本身还有别的因数的数,叫合数,其中,4是最小的合数。
第二单元因数和倍数1、因数、倍数:①一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
②一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
③一个数的最大因数和最小倍数都是它本身。
如15的最大因数和最小倍数都是15。
2例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(),最小的是()②在能被3整除的数中,最大的是(),最小的是()③在能被5整除的数中,最大的是(),最小的是()2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能()种填法。
分别是。
3、质数和合数(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断题:①所有的奇数都是质数。
()如②所有的偶数都是合数()如③在1,2,3……自然数中,除了质数以外都是合数。
()如④两个质数的和是偶数。
()如(2)质数×质数=合数每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
(3)20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是就是合数,不是的就是质数。
4、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4最小的自然数是:0;连续的两个质数是2、3。
例题:猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数,又是4的因数 E ——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是附:判断(1)因为7×8=56,所以56是倍数,7和8是因数()因为(2)1是1,2,3,4,5…的因数()(3)14比12大,所以14的因数比12的因数多()(4)因为1.2÷0.6=2,所以1.2是0.6的倍数。
人教版小学五年级下册数学知识点总结 一、因数与倍数 1. 因数和倍数的定义 • 因数:如果整数a能被整数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数。 • 倍数:一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数。 2. 找一个数的因数 • 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 3. 找一个数的倍数 • 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。 4. 2、5和3的倍数的特征 • 个位上是0、2、4、6、8的数,都是2的倍数。 • 个位上是0或5的数,都是5的倍数。 • 一个数各位上的数的和是3的倍数,这个数就是3的倍数。 5. 质数和合数 • 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数有无限个。 • 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数有无限个。 6. 奇数和偶数 • 奇数:不能被2整除的数叫做奇数。 • 偶数:能被2整除的数叫做偶数。 二、分数的意义和性质 1. 分数的意义 • 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。 • 分数的单位:把单位“1”平均分成几份,表示这样一份的数叫做分数的单位。 2. 分数与除法的关系 • 被除数÷除数=被除数/除数 • 除法中的被除数相当于分数的分子,除数相当于分数的分母。 3. 真分数和假分数 • 真分数:分子比分母小的分数叫做真分数。真分数小于1。 • 假分数:分子比分母大或分子和分母相等的分数叫做假分数。假分数大于或等于1。 4. 分数的基本性质 • 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 5. 约分和通分 • 约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。 • 通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 6. 分数和小数的互化 • 分数化成小数:用分子除以分母,除不尽时要按要求保留几位小数。 • 小数化成分数:一看,二分,三化,四约。 三、长方体和正方体 1. 长方体和正方体的特征 • 长方体:长长方方的,有6个面,面有大有小。 • 正方体:四四方方的,有6个面,每个面都一样大。 2. 长方体和正方体的表面积 • 长方体的表面积=长×宽×2+长×高×2+宽×高×2 • 正方体的表面积=棱长×棱长×6 3. 长方体和正方体的体积 • 长方体的体积=长×宽×高 • 正方体的体积=棱长×棱长×棱长 四、分数的加法和减法 1. 同分母分数加、减法 • 同分母分数相加、减,分母不变,只把分子相加减。 2. 异分母分数加、减法 • 异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。 3. 分数加减混合运算 • 分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。 五、图形的运动(三) 1. 轴对称图形 • 把一个图形沿着一条直线对折,如果直线两旁的部分能够完全重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴。 2. 成轴对称的图形的性质 • 成轴对称的两个图形全等。 • 对称点到对称轴的距离相等。 3. 旋转 • 物体绕某一点运动,这种运动现象叫做旋转。 六、分数的加法和减法(二) 分数的加法和减法(二) 1. 分数的简便计算
人教版五年级数学下册全册知识点总结
本文档旨在对人教版五年级数学下册的全册知识点进行总结,
并提供简明扼要的介绍,以方便学生复和查阅。
Unit 1: 数与数的运算
- 数的认识:整数、自然数、负数、零等基本概念。
- 认识整数的绝对值。
- 整数之间的比较与排序。
- 负数与正数之间的关系。
Unit 2: 分数的认识与认识
- 分数的初步认识:分子、分母、真分数、假分数等基本概念。
- 分数的读法和大小的比较。
- 分数的相等关系。
- 分数的加减法。
Unit 3: 认识平面图形
- 点、线、面的基本概念。
- 认识多边形,如三角形、四边形等。
- 利用直尺和圆规画出简单的几何图形。
- 计算图形的周长。
Unit 4: 长度、质量和容量
- 认识长度的基本单位和换算关系。
- 认识质量的基本单位和换算关系。
- 认识容量的基本单位和换算关系。
- 运用知识解决实际问题。
Unit 5: 数据的处理
- 了解调查、收集数据的方法。
- 运用统计图表展示数据。
- 分析数据:最大值、最小值、众数、等概念。
- 数据的整理和解读。
以上是人教版五年级数学下册的知识点总结。
希望本文档对您的研究和复有所帮助。
五年级数学下册知识点汇总 第一单元 观察物体 1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。 2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。 由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。 3、从一个方向看到的图形摆立体图形,有多种摆法。 4、从多个角度观察立体图形 先根据平面图分析出要拼搭的立体图形有几层; 然后确定要拼搭的立体图形有几排; 最后根据平面图形确定每层和每排的小正方体的个数。 二 因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。 2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 例:12是6的倍数,6是12的因数。 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,最小的倍数是它本身。 2、3、5的倍数特征 个位上是0,2,4,6,8的数都是2的倍数。 一个数各位上的数的和是3的倍数,这个数就是3的倍数。 个位上是0或5的数,是5的倍数。 能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。 同时满足2.3.5的倍数,实际是求2×3×5=30的倍数。 3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。 如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等 4:自然数按能不能被2整除来分:奇数、偶数。 奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。 偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。 最小的奇数是1,最小的偶数是0. 奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。 5、自然数按因数的个数来分:质数、合数、1 质数(素数):只有1和它本身两个因数 合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数) 1: 只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,也是唯一的偶质数;除2外,其他的质数都是奇数,但奇数不完全是质数;最小的合数是4,连续的两个质数是2、3。 每个合数都可以由几个质数相乘得到,质数相乘一定得合数。 20以内的质数:有8个(2、3、5、7、11、13、17、19) 100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97 100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。 6、最大、最小 A的最小因数是:1; 最小的奇数是:1; A的最大因数是:A; 最小的偶数是:0; A的最小倍数是:A; 最小的质数是:2; 最小的自然数是:0; 最小的合数是:4; 7、分解质因数:把一个合数分解成多个质数相乘的形式。 用短除法分解质因数 (一个合数写成几个质数相乘的形式)。 比如:30分解质因数是:(30=2×3×5) 8、互质数:公因数只有1的两个数,叫做互质数。 两个质数的互质数:5和7 两个合数的互质数:8和9 一质一合的互质数:7和8 两数互质的特殊情况: ⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质; ⑷2和所有奇数互质; ⑸质数与比它小的合数互质; 9、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。 用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。 如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 10、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。 11、求最大公因数和最小公倍数方法 用12和16来举例 1、 求法一:(列举求同法) 最大公因数的求法:12的因数有:1、12、2、6、3、4 16的因数有:1、16、2、8、4 最大公因数是4 最小公倍数的求法: 12的倍数有:12、24、36、48、… 16的倍数有:16、32、48、… 最小公倍数是48 2、求法二:(分解质因数法) 12=2×2×3 16=2×2×2×2 最大公因数是:2×2=4 (相同乘) 最小公倍数是:2×2 × 3×2×2= 48 (相同乘× 不同乘) 三 长方体和正方体 1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 长方体特点: (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。 (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。 2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。 正方体特点: (1)正方体有12条棱,它们的长度都相等。 (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。 (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。 3、长方体、正方体有关棱长计算公式: 长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4 长=棱长总和÷4-宽 -高 a=L÷4-b-h 宽=棱长总和÷4-长 -高 b=L÷4-a-h 高=棱长总和÷4-长 -宽 h=L÷4-a-b 正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12 4、长方体或正方体6个面和总面积叫做它的表面积。 长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab 无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh) 正方体的表面积=棱长×棱长×6 S=a×a×6 5、物体所占空间的大小叫做物体的体积。 长方体的体积=长×宽×高 V=abh 长=体积÷宽÷高 a=V÷b÷h 宽=体积÷长÷高 b=V÷a÷h 高=体积÷长÷宽 h= V÷a÷b 正方体的体积=棱长×棱长×棱长 V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a) 长方体或正方体底面的面积叫做底面积。 长方体(或正方体)的体积=底面积×高 用字母表示:V=S h (横截面积相当于底面积,长相当于高)。 注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。 注意:用刀分开物体时,每分一次增加两个面。 6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。 固体一般就用体积单位,计量液体的体积,如水、油等。 常用的容积单位有升和毫升也可以写成L和ml。 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 长方体或正方体容器容积的计算方法,跟体积的计算方法相同。 但要从容器里面量长、宽、高。 对于同一个物体,体积大于容积。 *形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。 ① 容器的底面积×上升那部分水的高度。 被浸没物体的体积等于 上升那部分水的体积
排水法的公式:V物体 =V现在-V原来 也可以 V物体 =S×(h现在- h原来) V物体 = S×h升高 8、【体积单位换算】 大单位 小单位 小单位 大单位 进率: 1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升 1立方厘米=1毫升 1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米 重量单位进率,时间单位进率,长度单位进率 长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积单位:1平方千米=100公顷 1平方米=100平方分米 1平方分米=100平方厘米 1公顷=10000平方米 质量单位:1吨=1000千克 1千克=1000克 人 民 币:1元=10角 1角=10分 1元=100分 四 分数的意义和性质
×进率 ÷进率
被浸没物体的体积等于上升那部分水的体积
① 容器的底面积×上升那部分水的高度。
计算方法 ② 放入物体后的体积 — 原来水的体积 1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。 2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。) 3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如54的分数单位是51。 4、分数与除法 分数与除法 :分子(被除数),分母(除数),分数值(商)。 A÷B=BA(B≠0,除数不能为0,分母也不能够为0) 例如: 4÷5=54 5、真分数和假分数、带分数 1、真分数:分子比分母小的分数叫真分数。真分数<1。 2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1 3、带分数:带分数由整数和真分数组成的分数。带分数>1. 4、真分数<1≤假分数 真分数<1<带分数 6、假分数与整数、带分数的互化 (1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:
510=10÷5=2 521=21÷5=451
(2)整数化为假分数,用整数乘以分母得分子 如: 2=48)( 2×4=8 (8作分子) (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如: 551=526)( 5×5+1=26 (4)1等于任何分子和分母相同的分数。如: 1=22=33=44=55=…=100100=… 7、分数的基本性质: 分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。 8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。 一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。