蚁群算法原理与应用1
- 格式:ppt
- 大小:483.50 KB
- 文档页数:61
蚁群算法报告及代码一、狼群算法狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。
算法采用基于人工狼主体的自下而上的设计方法和基于职责分工的协作式搜索路径结构。
如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。
二、布谷鸟算法布谷鸟算法布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS也采用相关的Levy飞行搜索机制蚁群算法介绍及其源代码。
具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。
应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能三、差分算法差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。
算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。
然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。
如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。
在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。
四、免疫算法免疫算法是一种具有生成+检测的迭代过程的搜索算法。
从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。
五、人工蜂群算法人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。
c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。
智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。
路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。
最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。
近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。
A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。
随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。
蚂蚁算法(Ant Colony Algorithm)和蚁群算法(Ant Colony Optimization)是启发式优化算法,灵感来源于蚂蚁在觅食和建立路径时的行为。
这两种算法都基于模拟蚂蚁的行为,通过模拟蚂蚁的集体智慧来解决组合优化问题。
蚂蚁算法和蚁群算法的基本原理类似,但应用领域和具体实现方式可能有所不同。
下面是对两者的简要介绍:蚂蚁算法:蚂蚁算法主要用于解决图论中的最短路径问题,例如旅行商问题(Traveling Salesman Problem,TSP)。
其基本思想是通过模拟蚂蚁在环境中寻找食物的行为,蚂蚁会通过信息素的释放和感知来寻找最优路径。
蚂蚁算法的核心概念是信息素和启发式规则。
信息素(Pheromone):蚂蚁在路径上释放的一种化学物质,用于传递信息和标记路径的好坏程度。
路径上的信息素浓度受到蚂蚁数量和路径距离的影响。
启发式规则(Heuristic Rule):蚂蚁根据局部信息和启发式规则进行决策。
启发式规则可能包括路径距离、路径上的信息素浓度等信息。
蚂蚁算法通过模拟多个蚂蚁的行为,在搜索过程中不断调整路径上的信息素浓度,从而找到较优的解决方案。
蚁群算法:蚁群算法是一种更通用的优化算法,广泛应用于组合优化问题。
除了解决最短路径问题外,蚁群算法还可应用于调度问题、资源分配、网络路由等领域。
蚁群算法的基本原理与蚂蚁算法类似,也是通过模拟蚂蚁的集体行为来求解问题。
在蚁群算法中,蚂蚁在解决问题的过程中通过信息素和启发式规则进行路径选择,但与蚂蚁算法不同的是,蚁群算法将信息素更新机制和启发式规则的权重设置进行了改进。
蚁群算法通常包含以下关键步骤:初始化:初始化蚂蚁的位置和路径。
路径选择:根据信息素和启发式规则进行路径选择。
信息素更新:蚂蚁在路径上释放信息素,信息素浓度受路径质量和全局最优解的影响。
全局更新:周期性地更新全局最优解的信息素浓度。
终止条件:达到预设的终止条件,结束算法并输出结果。
蚁群算法的基本原理蚁群算法 (Ant Colony Optimization, ACO) 是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为,被广泛应用于求解组合优化问题、路径规划等领域。
蚁群算法的基本思路蚁群算法的基本思路是通过模拟蚂蚁在寻找食物的过程中释放信息素来获取全局最优解。
具体过程如下:1.初始化信息素: 首先,需要在所有可行解的路径上放置一些信息素。
在开始时,信息素值可以选择为等量的值或一些默认值。
2.蚁群搜索: 一开始,所有的蚂蚁都分别随机选择一个节点作为起点,并开始在网络中搜索。
蚂蚁行动的过程中,会根据路径上信息素浓度的大小来选择下一步的方向。
同时,每只蚂蚁都会记录其所经过的路径和信息素值。
3.信息素更新: 每只蚂蚁到达终点之后,计算其所经过路径的费用,然后根据一定的规则更新路径上的信息素。
较优的路径上将会添加更多的信息素,使下一次蚂蚁选择该路径的概率更大。
4.重复搜索: 重复上面的步骤,直到满足一个停止条件为止。
一种常见的停止条件是达到预定的迭代次数。
蚁群算法的优势蚁群算法在解决组合优化问题时,具有以下的优势:1.全局优化能力极强: 因为每只蚂蚁都只关注自己所经过的路径上的信息素值,所以可以同时搜索并更新多个路径,从而有可能找到全局最优解。
2.能够避免陷入局部最优: 蚁群算法可以通过信息素的挥发、说长存、信息素值的启发式更新等手段来避免陷入局部最优解。
3.易于扩展和并行化: 蚁群算法通常是一种并行的算法,可以很轻松地应用于分布式计算环境中。
蚁群算法的应用蚁群算法在解决组合优化问题、路径规划、调度等方面有着广泛的应用,如下所示:1.旅行商问题: 蚁群算法可以用于解决旅行商问题。
2.线性规划问题: 蚁群算法可以用于求解线性规划问题。
3.路径规划问题: 蚁群算法可以用于车辆路径规划问题。
4.调度问题: 蚁群算法可以用于作业车间调度问题。
蚁群算法是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为。
蚁群算法简介蚁群算法是一种优化技术,受到自然界中蚂蚁寻找食物的行为的启发。
这种算法模拟了蚂蚁的信息共享和移动模式,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。
一、蚁群算法的基本原理在自然界中,蚂蚁寻找食物的行为非常有趣。
它们会在路径上留下信息素,后续的蚂蚁会根据信息素的强度选择路径,倾向于选择信息素浓度高的路径。
这样,一段时间后,大多数蚂蚁都会选择最短或最佳的路径。
这就是蚁群算法的基本原理。
二、蚁群算法的主要步骤1.初始化:首先,为每条边分配一个初始的信息素浓度。
通常,所有边的初始信息素浓度都是相等的。
2.路径选择:在每一步,每个蚂蚁都会根据当前位置和周围信息素浓度选择下一步的移动方向。
选择概率与信息素浓度成正比,与距离成反比。
这意味着蚂蚁更倾向于选择信息素浓度高且距离短的路径。
3.释放信息素:当蚂蚁完成一次完整的路径后,它会在其经过的边上留下信息素。
信息素的浓度与解决问题的质量成正比,即如果蚂蚁找到了一条更好的路径,那么这条路径上的信息素浓度会增加。
4.更新:经过一段时间后,信息素会随时间的推移而挥发,这使得那些不再被认为是最优的路径上的信息素浓度逐渐减少。
同时,每条边上的信息素浓度也会随着时间的推移而均匀增加,这使得那些从未被探索过的路径也有被选择的可能性。
5.终止条件:算法会在找到满足条件的最优解或达到预设的最大迭代次数后终止。
三、蚁群算法的优势和局限性蚁群算法的优势在于其对于组合优化问题的良好性能和其自然启发式的搜索过程。
这种算法能够有效地找到全局最优解,并且在搜索过程中能够避免陷入局部最优解。
此外,蚁群算法具有较强的鲁棒性,对于问题的规模和复杂性具有较强的适应性。
然而,蚁群算法也存在一些局限性。
首先,算法的性能高度依赖于参数的设置,如信息素的挥发速度、蚂蚁的数量、迭代次数等。
其次,对于一些复杂的问题,可能需要很长的计算时间才能找到最优解。
此外,蚁群算法可能无法处理大规模的问题,因为这可能导致计算时间和空间的复杂性增加。
第一章绪论1。
1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。
群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。
群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。
当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。
群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。
在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。
它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。
群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。
可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。
由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。
因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。
随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。
人工蜂群算法和蚁群算法人工蜂群算法(Artificial Bee Colony Algorithm,简称ABC 算法)和蚁群算法(Ant Colony Algorithm,简称ACA)都是基于自然界中生物行为的启发式搜索算法。
它们在解决优化问题方面具有较强的通用性,被广泛应用于工程、自然科学和社会科学等多个领域。
一、人工蜂群算法(ABC算法)人工蜂群算法是由土耳其学者Karaboga于2005年首次提出,灵感来源于蜜蜂寻找花蜜的过程。
该算法通过模拟蜜蜂的搜索行为来寻找最优解。
算法步骤:1. 初始化一群蜜蜂,每个蜜蜂代表一个潜在的解决方案。
2. 蜜蜂根据蜂王释放的信息素和自己的飞行经验,选择下一个搜索位置。
3. 评估每个位置的花蜜量(即解的质量)。
4. 根据花蜜量和蜜罐位置更新信息素。
5. 经过多次迭代,直至满足终止条件,如达到最大迭代次数或找到满足要求的解。
二、蚁群算法(ACA)蚁群算法是由意大利学者Dorigo、Maniezzo和Colorni于1992年提出的,灵感来源于蚂蚁在寻找食物过程中释放信息素并利用这种信息素找到最优路径的行为。
算法步骤:1. 初始化一群蚂蚁,每个蚂蚁随机选择一个节点开始搜索。
2. 蚂蚁在选择下一个节点时,会根据当前节点的信息素浓度和启发函数(如距离的倒数)来计算转移概率。
3. 每只蚂蚁遍历整个问题空间,留下路径上的信息素。
4. 信息素随时间蒸发,蚂蚁的路径越短,信息素蒸发得越慢。
5. 经过多次迭代,直至满足终止条件,如达到最大迭代次数或找到满足要求的解。
三、比较原理不同:ABC算法基于蜜蜂的搜索行为,而ACA基于蚂蚁的信息素觅食行为。
应用领域:ABC算法适用于连续优化问题,而ACA在组合优化问题中应用更为广泛。
参数调整:ABC算法的参数较少,调整相对容易;ACA的参数较多,调整和优化难度较大。
局部搜索能力:ABC算法具有较强的局部搜索能力;ACA通过信息素的蒸发和更新,能够避免早熟收敛。
蚁群算法(C语⾔实现)蚁群算法(ant colony optimization, ACO),⼜称蚂蚁算法,是⼀种⽤来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的中提出,其灵感来源于蚂蚁在寻找⾷物过程中发现路径的⾏为。
蚁群算法是⼀种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进⾏了⽐较,数值仿真结果表明,蚁群算法具有⼀种新的模拟进化优化⽅法的有效性和应⽤价值。
预期的结果: 各个蚂蚁在没有事先告诉他们⾷物在什么地⽅的前提下开始寻找⾷物。
当⼀只找到⾷物以后,它会向⼀种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到⾷物!有些蚂蚁并没有象其它蚂蚁⼀样总重复同样的路,他们会另辟蹊径,如果令开辟的道路⽐原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过⼀段时间运⾏,可能会出现⼀条最短的路径被⼤多数蚂蚁重复着。
原理: 为什么⼩⼩的蚂蚁能够找到⾷物?他们具有智能么?设想,如果我们要为蚂蚁设计⼀个⼈⼯智能的程序,那么这个程序要多么复杂呢?⾸先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到⾷物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且⽐较它们的⼤⼩,⽽且更重要的是,你要⼩⼼翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没⼈能够完成这样繁琐冗余的程序。
然⽽,事实并没有你想得那么复杂,上⾯这个程序每个蚂蚁的核⼼程序编码不过100多⾏!为什么这么简单的程序会让蚂蚁⼲这样复杂的事情?答案是:简单规则的涌现。
事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关⼼很⼩范围内的眼前信息,⽽且根据这些局部信息利⽤⼏条简单的规则进⾏决策,这样,在蚁群这个集体⾥,复杂性的⾏为就会凸现出来。