当前位置:文档之家› Ips人工诱导多能干细胞研究综述

Ips人工诱导多能干细胞研究综述

Ips人工诱导多能干细胞研究综述
Ips人工诱导多能干细胞研究综述

Ips人工诱导多能干细胞研究综述

一.摘要

通过导入特定的转录因子可将分化的体细胞重编程为诱导性多能干细胞,这项技术

避免了干细胞研究领域的免疫排斥和伦理道德问题,是生命科学领域的一次巨大革命。与胚胎干细胞一样,iPS细胞能够自我更新并维持未分化状态。在体外,iPS细胞可定向

诱导分化出多种成熟细胞,因此,iPS细胞在理论研究和临床应用等方面都极具应用价值。iPS细胞的分化和移植在治疗血液疾病中有很大的用途,iPS细胞可治疗神经系统

疾病,提供体外的疾病模型,为研究疾病形成的机制、筛选新药以及开发新的提供了

新的治疗方法。利用iPS细胞作为核供体细胞,同适当的受体细胞融合后便可以直接

获得转基因动物。不仅可以提高动物的遗传本质,而且可以打破物种的界限,获得用

传统的交配方法无法得到的动物新性状。iPS细胞的研究一直受到人们广泛的关注, 是目前细胞生物学和分子生物学领域的研究热点。论文对ips细胞的定义,iPS细胞的获得,发展史,研究的意义,研究进展,iPS细胞的应用,面临的问题进行了综述,最后对iPS细胞就行了展望。

关键词:诱导性多能干细胞胚胎干细胞转录因子

二.引言

1、历史背景

上世纪八十年代小鼠ESC被成功分离和细胞体内重编程概念的建立,使再生医学得以建立和发展。由于胚胎干细胞有多向分化能力,可以有效修复退化的或是受损的组织,治疗一些疑难杂症。但是,基于胚胎干细胞的临床治疗面临着两个问题:1)植入异体胚胎干细胞可能导致机体的排异反应;2)每一个用于治疗的胚胎都有潜在发育成个体的能力,涉及到伦理问题。iPS细胞的出现有希望使这两个问题得以解决。iPS细

胞研究的重要历程2006年8月,Takahashi和Yamaaka将小鼠的成纤维细胞诱导为i PS细胞。次年11月,他们又利用4种同样的转录因子将人的皮肤成纤维细胞诱导为i PS细胞 j 。2007年1 2月,Thomson等人筛选出了另外一套用于诱导的基因组合Dc、S o x 2 、Nanog和Lin 28。.随后,他们利用这4种因子使人类新生儿成纤维细胞重

构为i P S细胞。这两项发现分别被《自然》和《科学》杂志评为 2007年第一和第二

大科学进展。2008年4月,Schemes + Lyland等将鼠皮肤细胞重编程为iPS细胞,并

成功地使其分化成心肌细胞、血管平滑肌细胞及造血细胞。2009年2月,E t本东京大学研究人员在培养iPS细胞的时候添加人类骨髓细胞以及催进细胞增殖的蛋白质等物

质使iPS细胞分化成了血小板的前身巨核细胞,进一步培育出血小板,同时也从技术

上说明了用iPS细胞培育人类红细胞和白细胞都是可能的。2 010年3月,iPS细胞研究相继迎来两项重大突破。3月1日,Nagy研究组和Kaji小组采用转座子介导的方法高效率制备了virus - flee鼠iPS细胞,获得iPS细胞后,又成功将先前导入的转录因

子基因从iPS细胞中移除。3月6日,Jaenisch小组将移除外源基因的人iPS细胞成功诱导成多巴胺神经元,且神经元细胞的基本功能不受影响。

2.iPS细胞的概述

IPS细胞是通过导入特定的转录因子可将分化的体细胞重编程为诱导性多能干细。

特定的转录因子为Oct4, Sox2, c-Myc和Klf4 4个因子(这4个因子也称为Yamanaka因子)可以有效地将胎鼠成纤维细胞(mouse embryonic fibroblast, MEF细胞)和小鼠尾尖成

纤维细胞诱导形成形态和生长特点类似ES细胞的克隆, 即iPS细胞。iPS细胞还可让普通体细胞“初始化”,使其具备干细胞功能。“iPS细胞”具有和胚胎干细胞类似的功能.不需要制造胚胎,就可以从任何组织的细胞,甚至皮肤组织的细胞,制造出具有干细胞

功能的细胞。iPS细胞和胚胎干细胞除了能生成胚胎以外,还可以产生所有的细胞,如果用于医疗,那么理论上可以治愈所有疾病—凡是不好的组织都去除,替换为重新生

长的正常组织。

3.IPS细胞的获得

Ips细胞可定向表达胚胎干细胞某些特定的标志基因,与胚胎干细胞一样具有发育全能性。目前获得iPS细胞的方法有多种,主要包括以下几个方面:

①体细胞核移植:将体细胞核导入到去核的卵母细胞 ,使体细胞核在去核的卵母细胞重新编程而获得类似于 ES细胞的发育多能性。

②细胞融合:将哺乳动物的成年体细胞和具有多能性的ES细胞融合可产生四倍体细胞,这种四倍体细胞具有发育的多能性。

③体细胞核直接重编程:即将 Oct4 ,Sox2 , Klf4 and c2Myc四种转录因子通过病毒或质

粒载体导入到体细胞中,使体细胞核重编程而获得发育的多能性。

④细胞培养:将生殖细胞置于特定培养条件下进行培养,可使生殖细胞重新编程变成

多能性细胞。由此可见多能性诱导因子可能在维持类似于胚胎干细胞的多能性中起非

常重要的作用。

4.研究iPS细胞的意义

成功建立 iPS细胞后,应用 iPS细胞来治疗疾病是人们的最终目标。iPS细胞不仅可用于分化和移植,还可以提供体外的疾病模型,以便于研究疾病形成的机制、筛选新药以及开发新的治疗方法。人类iPS细胞的建立被公认为2007年最重要的科技进展之一, 这项技术不仅可以从体细胞建立个体特异的多能干细胞系, 解决了细胞移植治疗中的免疫排斥问题, 而且为研究人类细胞的重编程的机理以及研究个体特异的疾病发生机理提供了有力的方法。在干细胞研究领域, iPS细胞技术的出现无疑是具有里程碑意义的突破, 多种体细胞经过体外培养和诱导均可转变成为具有多向分化潜能的干细胞, 并且证明了几种已知的转录因子可以使已分化的体细胞逆转为未分化的状态, 表明细胞的巨大可塑性。

三.iPS细胞的研究进展

体细胞核移植或细胞融合可以重编程高度分化的体细胞, 细胞重编程是指将成熟的细胞由分化的状态被逆转到一种未分化状态的过程有研究显示小鼠胚胎早在2-细胞期到4-细胞期的时候, 各个卵裂球很可能就已经体现出了不同的发育倾向。此后,细胞即向着不同的方向不断地发生分化。无论细胞分化的程度如何, 它们与未分化细胞在基因组成上都是一样的。然而, 在其发育过程中,它们的基因组发生了许多表观遗传修饰, 说明在卵母细胞以及ES细胞内可能含有一些可以启动细胞重编程的因子, 可诱导体细胞表观遗传发生变化而重新获得发育多潜能性, 就像受精卵那样重新开始分裂发育。iPS 细胞的来源全部取自体细胞。2006年这一概念第一次被提出时,山中伸弥使用的是小鼠表皮成纤维细胞和尾尖成纤维细胞。2007年,成人皮肤成纤维细胞也被成功诱导成iPS细胞。后来的研究中,以成纤维细胞为细胞源最为常见。2008年,从成年小鼠的肝脏和胃细胞诱导iPS细胞也获得了成功。在小鼠中,最常用的是表皮成纤维细胞和尾尖成纤维细胞,也有神经细胞、肌肉细胞、间充质干细胞等,2009年成熟的B细胞和T细胞也获得成功。人类中新生儿的包皮、口腔黏膜、成人真皮最为常用,角质细胞、间充质细胞、脐带血细胞等也有应用。有学者证明任意的体细胞都有被诱导成iPS 细胞的能力,与细胞种类及人的年龄、性别等没有关系。但是,iPS细胞的诱导产出率和培养方式与细胞种类是有关的。后来,iPS技术在其他如大鼠、狗、兔子等物种中也获得了成功,有人因而提出了iPS可以保护濒危物种的说法。

1.细胞因子的作用

传统的iPS技术要在目标细胞中导入四个细胞因子:Oct3/4,Sox2,Klf4,c-Myc(即OSKM)。山中伸弥首先筛选出24个与维持ES细胞干性有紧密联系的细胞

因子,将它们全部转入体细胞并诱导出iPS细胞,然后进一步减少转入因子的个数,

最终确定了必须将以上四个因子同时转入才能成功。

但是,考虑到临床应用前景,四个细胞因子之一的c-Myc作为一个癌症因子,因成瘤性很强而并不友好。2008年,山中伸弥团队通过改进细胞培养条件,在只转入Oct3/4,Sox2,Klf4三个因子的情况下,也得到了iPS细胞,且获得iPS细胞在所有细胞中的比例大大提高,质量也优于转入四个因子的情况。[7]两种iPS细胞植入小鼠体内后,有c-Myc的小鼠有6%死于癌症,而没有c-Myc的小鼠无一死亡。这一方法的唯一问题是c-Myc会使iPS产量大幅提高,该基因的缺失使原本就存在产量不足问题的iPS细胞更难以投入临床应用。

然而,这一问题在今年年初受到了中国一个团队的质疑。他们观察到在敲除了c-Myc后iPS细胞的产量反而提高了。该团队分析认为表观遗传改变要积累到一定程度才能顺利推动基因重编程,之前所认为的c-Myc的缺失导致细胞产量低是因为细胞增殖缓慢,而体细胞一味地增殖会影响表观遗传的改变,反而不利于iPS细胞的生成。因此,对早期体细胞增殖的抑制,可能更利于iPS细胞的产出。当然细胞培养环境也有影响,有报道称高糖低氧环境更有利于iPS细胞的产生。2011年,美国有学者提出了用miRNA的方法诱导iPS细胞,他们分别对小鼠和人进行了实验,将mir302/367转入体细胞,miRNA可以激活Oct4和Sox2 而无须加入任何的转录因子,同样可以获得iPS细胞,其多能性标记的表达和畸胎瘤的形成等性能都与OSKM获得的iPS细胞类似,对于小鼠还制成了嵌合体并植入生殖系统。

[11]另外他们发现同时加入丙戌酸钠抑制Hdac2通路,可以更进一步提高iPS细胞

产量。

2013年2月,又有德国学者提出只要抑制CD47膜蛋白,而无需其它任何基因或基因产物同样可以得到iPS细胞。原因是CD47的下调会导致c-Myc表达上升同时调控其它与干细胞有关的转录因子,从而得到iPS细胞。但该文章中并未提到c-Myc作为癌症基因,其表达量的上调会对机体造成的影响。

另外,近年来也有许多学者找到了一些其它细胞因子来代替OSKM,也有提出用激活wnt通路的方法作为代替的。可见获得iPS细胞的方法也不是唯一的。但总体来说,为获得iPS细胞,各重编程因子的平衡表达对iPS细胞的产出效率和质量很重要。研究表明,Oct3/4会增加重编程效率,而SOX2,Kfl4和c-Myc的高表达则会相对降低重编程效率。

2.高效快速建立iPS细胞

我国科学家从羊水细胞中快速建立人类iPS细胞。继前不久在世界上首次得到完全由诱导多能干细胞(即iPS细胞)发育的小鼠之后,我国科学家在iPS细胞研究领域又取得重大进展:首次从孕妇产前的羊水细胞中高效快速建立iPS细胞,所需

时间只有6天,为目前人类iPS细胞相关报道中最短。最近在线发表于国际权威杂志《人类分子遗传学杂志》上的这项成果,是由中科院上海生命科学院/上海交大医学院健康科学研究所金颖研究员带领的干细胞研究组与上海新华医院陈方教授合作完成的。据金颖研究员介绍,此前科学家已经成功地将小鼠、大鼠、猕猴、猪和人的体细胞诱导成为iPS细胞,诱导技术也产生了巨大革新,如减少外源转录因子的种类,使用非整合病毒,质粒法等等。“目前关于人类诱导多能干细胞的研究还处于起步阶段,所采用的供体细胞还仅仅局限在人包皮成纤维细胞、表皮细胞、毛囊细胞等少数细胞类型。更为棘手的是,这些细胞被重编程为iPS细胞所需要的时间比较长(通常为16~35天),且效率很低,这大大增加了在个过程中细胞的变异风险。”金颖说,“因此,如何找到一种理想的人类体细胞来源,是全世界科学家的重点关注课题。”据介绍,博士研究生李春亮等在金颖研究员指导下,从孕妇产前诊断时剩余的羊水细胞中发现一部分特殊类群,它们在病毒介导的四种因子诱导下,感染后第二天发生形态上的显著变化,第四天出现人胚胎干细胞类似形态的克隆,第六天就可以挑选后进行建系。研究人员对建立的8株人类诱导多能干细胞进行进一步鉴定后发现,这些细胞能够长期在体外稳定传代并保持体外长期传代核型正常,维持自我更新,蛋白和转录水平高表达全能性的标志基因。诱导多能干细胞的主要应用是分化和细胞移植。研究人员按照国际标准尝试了羊水细胞来源的iPS 细胞的体外、体内分化潜能,结果发现,iPS细胞能够分化成包括神经前体细胞在内的各种人体细胞。

3.iPS细胞的安全性

iPS研究先驱日本京都大学教授山中伸弥教授带领团队在新一期《自然·生物技术》杂志上报告说,动物实验证明,用不同种类的体细胞培育出的诱导多功能干细胞(iPS)移植后使实验鼠出现肿瘤的危险性存在很大差异。研究人员分别利用小鼠胚胎的皮肤

细胞、成年小鼠的胃细胞、尾巴的皮肤细胞以及肝脏细胞培育iPS细胞。利用不同的体细胞和培育方法,研究人员共培育出36种iPS细胞。接着,他们又使这36种iPS细胞都分化成具备演变成神经能力的细胞,并把这些细胞植入另一些实验鼠的大脑。结果显示,被植入分化细胞来自成年小鼠尾巴皮肤细胞的实验鼠中有83%体内出现了肿瘤;被植

入分化细胞来自于小鼠胚胎皮肤细胞的实验鼠中只有8%出现肿瘤;而如果实验鼠移植的分化细胞来自成年小鼠的胃细胞,其体内没有出现肿瘤。研究还发现,利用含有癌

症基因的体细胞培育iPS,对肿瘤的发生几率并无显著影响。诱导多功能干细胞能分化生成各种组织细胞,同时又回避了伦理问题,被视为未来再生医疗的重要材料。上述

研究表明,确保iPS细胞对治疗的安全性,最重要的是选择何种体细胞作为培育iPS细

胞的原料。

4.iPS细胞的应用

(1)iPS细胞在治疗血液疾病的应用

Xu等将iPS细胞诱导分化为内皮前体细胞,然后移植到患有血友病小鼠的肝脏中,使病鼠出血不止的症状得到了有效地改善。Hanna等人将患病小鼠尾尖成纤维细胞重

编程为iPS细胞,然后通过同源重组的方法用人野生型p A.珠蛋白基因替代了pass珠蛋

白基因,接着把遗传修饰后的iPS细胞定向分化为造血祖细胞(HPs),并将纯化后的HPs移植入hps /llps雄性小鼠中,Has有效地抑制了镰刀形红细胞贫血症症状。日本用人类iPS 细胞制成血小板,日本东京大学干细胞生物学教授中内启光最近成功地用人类诱导多

功能干细胞(iPS细胞)培养出血小板,这在世界尚属首次。中内启光等研究人员采用与日本京都大学教授山中伸弥同样的方法.向人类皮肤细胞植入基因,制成iPS细胞。在培养iPS细胞时,研究人员添加了人类骨髓细胞以及促进细胞增殖的蛋白质等物质结果iPS细胞分化成了血小板的前身巨核细胞;之后,巨核细胞进一步分化成血小板。血小板是哺乳动物血液的重要成分之一,具备收缩血管,形成止血栓,帮助止血等功能。

手术中使用的血小板现在主要通过献血采集,在这种情况下血小板只能保存几天,十

分不便。研究人员说.这项研究成果也表明,从技术上来说.用iPS细胞培育人类红细胞和白细都是有可能的。

(2)体细胞核移植技术

利用iPS细胞作为核供体细胞,同适当的受体细胞融合后便可以直接获得转基因动物。因此,将iPS细胞诱导技术同动物转基因技术相结合不仅可以提高动物的遗传本质,而且可以打破物种的界限,获得用传统的交配方法无法得到的动物新性状。2010年,

中国的两个研究团队在世界上首次建立了猪的iPS细胞系,填补了小鼠与人之间的空白。中国科学院广州生物医药与健康研究院裴端卿研究

团队从西藏微型猪的胚胎中分离成纤维细胞,再用逆转录病毒将转录因子导入成纤维

细胞中,成功诱导了猪的iPS细胞系Il”。中国科学院上海生物化学与细胞生物学研究所肖磊研究小组,运用可诱导(Tet-on/of系统)的慢病毒表达系统表达转录因子把猪

成体细胞成功地重编程到多能干细胞状态,经过进一步筛选、鉴定,最终也获得符合

多能干细胞标准的猪iPS细胞系ll。这是世界首次培育出驯化的有蹄类动物的多能干细胞。猪在生理上与人的差异相对较小,因此,猪iPS细胞的建立具有重要意义:

第一,我们可以使用诱导干细胞修改猪的与免疫有关的基因,从而让猪的器官与

人类免疫系统兼容;

第二,许多人类疾病是由基因表达障碍造成的,我们可以修改干细胞中猪的基因,并培育出携带同样基因障碍的猪,然后使用这种猪模型开发治疗这种疾病的法;

第三,利用iPS技术培育出一种准确的转基因猪,改善它对某种疾病的耐性,从而改善畜牧业。目前,在牛、羊等其它大家畜中尚无这方面的报道,如果我们能够建立

这些动物的iPS细胞,并应用其来生产基因打靶或转基因动物,必然会提高转基因动物的效率,为转基因研究开创一片更加广阔的天地。

(3)治疗神经系统疾病

Wemig等人将i P S细胞分化为神经前体细胞,然后把这些细胞移植入胎鼠脑中,

它们可整合到受体鼠的脑中,13.5d后形成神经胶质细胞和神经元细胞,包括谷氨酰胺能神经元、G A B A 能神经元、儿茶酚胺能神经元细胞。将由小鼠iPS细胞在体外诱导

分化来的多巴胺能神经元移植进帕金森病大鼠模型脑内,一段时间后可有效缓解大鼠

疾病症状和改善其行为。最近,利用帕金森症患者的皮肤细胞培育出iPS细胞后,又成功将其分化为多巴胺神经元细胞,这是帕金森症患者大脑中所缺少的一种重要细胞。

因此,其有望成为治疗帕金森症的一种方法。美国科学家成功培养出iPS细胞用于制造神经元。研究小组在iPS细胞的培养过程中采用了日本京都大学再生医学研究所的山中伸弥教授等确立的方法,即用逆转录病毒载体,将KLF4、SOX2、OCT4、c—MYC四种因子导入细胞。在检查培养的iPS细胞和患者是否携带相同基因变异的同时,也考察了基因表达谱和抗原一抗体反应谱,据此确认所得到的iPS细胞是ES细胞样细胞。iPS细

胞分化为运动性神经元和神经胶质细胞的程序,借用了小鼠和人细胞诱导分化的做法。虽然因使用逆转录病毒载体可能将外源基因在多处随机导入,但不会对诱导分化产生

影响。经过诱导分化处理之后,已经确认在运动性神经元细胞有特异性转录因子的表

达及在运动性神经元发生时发挥作用的转录因子等的表达。iPS细胞来源的运动性神经元,在脊髓上表达了与处于生长阶段的运动性神经元类似的前体细胞标记。另外,即

使在分化成神经胶质细胞的细胞上.也能够确认神经胶质细胞特异性标记物的表达。

5.iPS细胞面临的问题

经过了近5年既漫长又短暂的发展,iPS细胞技术已经取得了举世瞩目的进展。一

个个突破性的成果既给我们带来了喜悦,也带来了新的挑战,细胞重编程有望迎来一

个新的研究浪潮。尽管iPS细胞有着诱人的应用前景,然而,未来iPS细胞的研究也面

临着许多亟需解决的问题:

第一,效率问题。目前,诱导产生iPS细胞的率仍然很低,这与基因导人的方式整合位点、表观遗传学等多种因素有关。这已成为制约iPS从实验室走向临床的最大瓶颈。因此,如何提高iPS细胞的制备效率仍是人们普遍关注的问题。第二,安全性问题。现在诱导iPS细胞通常借助逆转录病毒为载体,将几种癌基因转入分化细胞诱导其成为iPS细胞,而这种方法就有可能会因为外源基因插入细胞基因组,干扰了内源基因的表达,从而诱发癌症。第三,机制问题。细胞的多能性受到转录因子网络和表观遗传学

的复杂调控,那么,仅仅依靠导人的几个转录因子是如何完成这一复杂的任务,从而

诱导出具有多能性的细胞呢?深入研究体细胞重编程的分子机制,调控机制以及体外定向诱导分化机制也是未来研究的重要任务之一。第一,逆转录病毒和慢病毒载体导致

肿瘤发生的潜在风险需要加以有效防范。第二,需要深入研究比较iPS细胞和hES细胞

在细胞生物学特性、定向分化机制等方面是否具有显著的差异。第三,需建立一种新的方法以避免基因转染或基因转导带来的潜在风险, 如通过某些化学药物或因子激活体细胞中固有的上述转录因子的方式以替换外源性基因转染的方式, 或者用某些因子的短暂性表达代替永久性导入。第四,提高制备iPS细胞的效率。需指出的是, iPS细胞研究的突破并不意味着ES细胞研究的衰亡, 因为iPS细胞所使用的转录因子正是来源于ES细

胞长期研究的积累。

6.小结

IPS细胞之所以引起人们的兴趣,是因为它解决了免疫排斥问题,并避免了伦理道德的制约,使实现细胞替代治疗又近了一步。但是,由于它自身的安全性问题,目前IPS

细胞还无法应用于临床治疗,但总的来说,iPS技术的确是一项开天辟地的成就,为再生医学的发展和疑难杂症的治疗带来的新希望。但是,这项技术离临床治疗还有很长

的距离要走,最重要的一点就是要保证细胞的安全性。如果这一问题得以解决,细胞

和基因治疗将在为来有更广阔的发展前景。

参考文献

1.金颖.多能干细胞研究进展[J].细胞生物学杂志

2.刘爽,段恩奎.诱导产生多能性干细胞(iPS细胞)的研究进展 [J]. 科学通报

3.吴湘玉 .普通生物学 .第2版北京:高等教育出版社

4. Takahashi K ,Yamanaka S .Induction of pluripotent stem cells

from mouse embnic and adult fibroblast culture by defined factots[J].Cell

5.刘林,陈凌恣,诱导多潜能干细胞(IPS)的研究现状

6. 张卫琴,曹鸿国.体细胞重编程为多能干细胞的研究进展[J];生命科学

7. 申红芬,姚志芳,肖高芳等.诱导性多潜能干细胞(iPS cells)——现状及前景展望[J];生

物化学与生物物理进展。

8.肖高芳,姚志芳,贾俊双等.携带人Oct4和EGFP基因慢病毒表达载体构建[J];热带医学杂志

9.苗向阳,IPS细胞研究的新进展及应用,期刊

10. 周一叶,曾凡一.体细胞诱导为多能干细胞的最新进展[J];生命科学

11. 夏小雨,褚建新,陈学进.分化细胞经特定因子诱导重编程为多能干细胞[J];生物工程学

12.徐燕宁,关娜,张庆华等.体细胞重编程为多潜能干细胞的研究进展[J];生命科学

13. 马宗源, 李祺福.胚胎干细胞的体外诱导分化模型[J]. 生物学通报

14. 李潇;胚胎干细胞携带病人DNA[J]. 中国生物化学与分子生物学报

15. 吴双,张飞云.诱导性多能干细胞(iPS)的应用和研究进展[J]. 生物技术通报

16.王晓宇,关伟军,马月辉,诱导多潜能干细胞的研究进展,期刊

17.伍丽静,韦曦,oct4调节成体干细胞多能性的研究进展,期刊

18.李伟升,康复时代,脊髓干细胞治疗,世界科学

19.张彤,曹均凯,IPS细胞目前存在问题及临床应用背景,期刊

20.吴迪,刘晓峰,诱导多能干细胞技术及应用前景,内蒙古医科大学学报

诱导性多功能干细胞——产生,发展,应用及展望

诱导性多功能干细胞 ——产生,发展,应用及展望 张博文,杨星九,李玖一,白末* 摘要:在胚胎干细胞研究因伦理道德和免疫排斥问题而受阻的时候,诱导性多功能干细胞(induced pluripotent stem cell,以下简称iPS细胞)的横空出世为干细胞研究指明了一条新的方向。近几年来iPS细胞研究取得了许多突破性的进展,其广泛的应用前景更向人们昭示着一个新的时代的到来。本文主要从iPS细胞的发展历程入手,综述了iPS细胞的理论及应用研究的关键进展,并对之后的研究进行了展望。 关键词:诱导性多功能干细胞,胚胎干细胞,病毒,癌变,细胞治疗 Abstract:When the embryonic stem cell research was blocked by ethical issues and immune rejection, induced pluripotent stem cell (hereinafter referred to as iPS cells), turned out for stem cell research indicated a new direction. iPS cells’ research in recent years has made many breakthroughs, prospects for its wide application to remind people of a new era. This article summarizes the theory and application of iPS cells, and the key to progress in the study, from the iPS cells to start the development process, and discussed the study in the future. Key words:induced pluripotent stem cell, embryonic stem cell, virus, Canceration, cell therapy IPS细胞是通过向体细胞中导入诱导基因,使体细胞重编程获得具有胚胎干细胞样特性的多能干细胞。iPS细胞的产生可谓干细胞领域的新里程碑。近几年,iPS细胞的研究突飞猛进,本文中结合最新的研究结果,综述了iPS细胞的产生背景、发展历程及其应用前景,并对今后iPS的研究发展进行了客观的展望。 1产生背景 干细胞(stem cells, SC)是一类具有自我复制能力(self-renewing)的多潜能细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。其中胚胎干细胞(Embrtibuc stem cell)更是具有全部的全能性,能够分化成人体内的所有细胞,具有非常广阔的应用前景。 早在上个世纪,人类就已经开始针对干细胞进行研究,试图通过各种不同的方法得到多能干细胞,其中突出的方法有胚胎干细胞(ES细胞)直接植入法;体细胞核转移 ----------------------------------------- *张博文,杨星九,李玖一:资料查阅与论文编写白末:资料查阅与论文整合

诱导性多能干细胞的研究进展及其在再生医学上的应用

文献综述 诱导性多能干细胞的研究进展及其在再生医学上的应用 摘要:通过特定转录因子的过表达使体细胞重编程为诱导性多能干细胞(induced pluripotent stem cells, iPS 细胞),这一成果引起了整个生命科学领域的广泛关注. 由于 iPS 细胞不仅具有与人类胚胎干细胞(embryonic stem cell, ES 细胞)相似的基本特征,而且与 ES 细胞相比,不存在免疫排斥和伦理道德问题,因此,具有重要的临床应用潜能. 目前, iPS 细胞主要用于细胞分化和移植,并可提供体外的疾病模型,以便于研究疾病形成的机制、筛选新药以及开发新的治疗方法. 从 iPS 细胞的产生、诱导方法、生物学特征和在再生医学中的应用作以研究! 关键词:诱导性多能干细胞;胚胎干细胞;重编程;再生医学 正文 1iPS 细胞的产生 主要经历了 3 个大的阶段. 1981 年,小鼠胚胎干细胞(embryonic stem cell,ES 细胞)建系干细胞是近 30 年来生物学发展最快的领域(Evans 和 Kaufman),这些具有全能性的细胞在体外可以诱导分化为不同类型的细胞,为组织修复开辟了新途径. 尽管这些细胞来源于囊胚内细胞团,基本不存在去分化和重编程的问题,但自诞生之日起,就一直深受伦理道德和异体排斥等问题的困扰. 随着克隆羊“多利”的诞生,开创了体细胞在卵母细胞中去分化和重编程的先河. 2000 年,Munsie等从小鼠体细胞核移植囊胚中分离得到了小鼠 ES 细胞,从而拉开了治疗性克隆研究的序幕,使利用病人的健康体细胞对自身的病变组织进行修复成为了可能,尽管这一技术可以避免异体移植所造成的排斥反应,但仍然深陷伦理道德争论的漩涡之中.2006 年,Yamanaka 等将 4 个转录因子导入已分化的小鼠皮肤成纤维细胞,进而获得了类似于 ES 细胞的多能性干细胞,即“诱导性多能干细胞”(induced pluripotent stem cells,iPS 细胞). 2007 年,Yu 等和 Takahashi 等又分别采用相同的基因改造的方法将人的体细胞逆转为类 ES 细胞,这些划时代的成果不仅解决了利用干细胞进行组织修复所面临的免疫排斥和伦理学问题,在利用病人正常细胞进行组织自我修复方面具有巨大的应用前景,而且是用来研究细胞去分化和基因组重编程的重要途径(不需要胚胎或卵母细胞). 这个具有里程碑意义的发现揭开了再生医学领域的新篇章. 2iPS 细胞的诱导方法 迄今为止,短短几年的时间内 iPS 细胞的研究取得了突飞猛进的发展,仅诱导方式而言,从病毒方法如逆转录病毒、慢病毒和腺病毒,到非病毒的转座子载体和蛋白质均能介导外源转录因子诱导产生 iPS 细胞. 利用逆转录病毒和慢病毒载体诱导生成 iPS 细胞时,可能会引起外源基因整合到体细胞基因组,引起插入突变,如果将这些 iPS 细胞应用于临床治疗,会存在安全隐患. 因此,Aoi 等利用不与宿主细胞整合的腺病毒、质粒为表达载体瞬时转染靶细胞可以获得 iPS

使用诱导性多能干细胞_iPScells_修复心脏

数、着床数与空白对照组比较差异均无显著性。胎鼠发育良好,内脏观察指标均未见异常。说明复方枸杞子口服液在本实验规定剂量下未引起母体毒性、胚胎及胎鼠毒性,无明显的致畸作用,为生育期妇女服用该药的安全性提供了实验依据。 实验结果显示,低剂量组胎鼠表现为体质量较重、身长较长(P<0.01);中剂量组表现为活胎率高(P<0.05),死胎率低(P<0.05);3个剂量组的胎鼠骨骼发育都较空白对照组好,尤其是高剂量组胎鼠骨骼发育完全,无胸骨异常胎鼠(P<0.05),也无肋骨异常胎鼠(P<0.01)。表明复方枸杞子口服液对胎鼠发育有一定保健作用,尤其对骨骼发育的影响较大,为今后复方枸杞子口服液的药效学研究奠定了基础。本实验不足之处在于由于胎鼠出生率低,实验结果有待于进一步的实验证实。 参考文献: [1]汪建龙.枸杞多糖药理作用的研究进展[J].时珍国医 国药,2005,16(10):1032-1033. [2]张庆.大枣多糖体外抗补体活性剂促进小鼠脾细胞的 增殖作用[J].中药药理与临床,1998,14(5):19-22. [3]保健食品检验与评价技术规范[S].国家食品药品监督 管理局,2003. [4]陈平雁.SPSS13.0统计学软件应用教程[M].北京:人 民卫生出版社,2005:255-269. 使用诱导性多能干细胞(i PS c ells)修复心脏 梅约临床和医疗中心(Mayo Clinic)研究人员进行的一项概念验证研究显示,诱导性多能干细胞(iPS cells)可用于心脏病治疗。诱导性多能干细胞是被重新编程从而进入一个类似胚胎干细胞状态的成年细胞。在该项研究中,研究人员对普通的成纤维细胞进行重新编程,有助于结痂的细胞(譬如那些因心脏病发作产生的细胞)转化为干细胞,修复因心肌梗死造成的心脏损伤。 该项研究结果于2009年7月20日提前发表于Circulation杂志在线版。 论文第一作者Ti mothy Nelson博士指出:“这项研究发掘了在心脏治疗中使用诱导性多能干细胞的真正潜力,使生物工程成纤维细胞获得修复和再生梗死心脏的能力。” 这是基于诱导性多能干细胞的技术首次用于心脏疗法。在此之前,诱导性多能干细胞仅用于帕金森氏症、镰状细胞性贫血和甲型血友病3种疾病模型,最终目标是使用诱导性多能干细胞修复损伤。在此过程中使用患者自身的细胞,避免了排斥反应的风险及抗排斥药物进行维持治疗的需要。该再生医学策略将有助于缓解受限于捐赠者短缺的器官移植需求。 论文通讯作者Andre Terzic博士指出:“这项诱导性多能干细胞创新性研究为转化应用奠定了基础。借助于核编程方面的进展,我们将能逆转成年细胞,在心血管再生医学中实现按需定制。” 该研究团队通过“干性相关”人类基因集(“stemness2related”human gene set)对成纤维细胞进行遗传重编程,使其反分化成诱导性多能干细胞,进而重新分化为新的心肌细胞。移植入受损的小鼠心脏后,诱导性多能干细胞在2周后实现嫁接,4周后明显有助于改善受损心脏结构和功能。相比之下,普通成纤维细胞则无此功效。 与非工程化成纤维细胞相比,诱导性多能干细胞能够恢复心脏病发作后缺失的心肌功能,阻止受损心脏功能损伤进程,并在心脏受损部位再生组织。 (C irculation,2009:published online before p rint,July20,2009) 883广东药学院学报 第25卷

关于诱导多功能干细胞的介绍和思考

关于诱导多功能干细胞的介绍和思考 ——2012年诺贝尔生理学或医学奖解读班级:生物技术基地姓名:林立梅学号:0131122635 【摘要】John B. Gurdon和Shinya Yamanaka获得2012年诺贝尔生理学或医学奖,他们的相继研究成果证明,成熟、分化的细胞可以被重新组装或诱导重新编程,变成未成熟的干细胞,能够发育成机体内所有种类的组织。 【关键字】重新编程干细胞诱导定向分化临床医学 【内容】 (一)两位科学家的实验概述 (1)约翰.格登:用“细胞核重编程”克隆出新动物 所谓“细胞核重编程”,就是将已经分化了的成年体细胞进行诱导,让其重新回到发育早期多能性干细胞状态,重新获得发育成各种类型细胞的能力。通俗一点讲,就是在细胞层面实现“返老还童”。 1962年,格登做了一个划时代的实验:他假设:这些细胞的基因组仍然包含着驱动它发育成机体所有不同类型的细胞所需的信息。并进行相关实验,将非洲爪蟾(Xenopus,一种蛙)卵细胞内不成熟的细胞核移除,然后把非洲爪蟾的成熟肠细胞的细胞核注入其中。在此过程中,他采用核标记技术(Elsdale et al,1960),将标记的供体细胞核移植到未标记的受体卵。在实验中,控制由囊胚或原肠胚(简称胚胎细胞核)穿插与转让肠细胞核。移植的胚胎中,所有那些超出了囊胚期的细胞中包含明显的被标记的核,可以证明它们来源于核移植而不是从卵核。核标记只出现在渡过了囊胚期胚胎中。整个实验的目的很简单,就是想看看这个卵子最终会变成什么。结果发现,一部分卵依然可以发育成蝌蚪;其中的一部分蝌蚪,可以继续发育成为爪蟾。 (2)山中伸弥:用基因技术制造出“诱导多能干细胞” 2006年Shinya Yamanaka教授从数据库中筛选出大约100个有可能在ES细胞中特别活跃的基因。再经过近4年的紧张工作,从这100个基因中筛选出24个活跃

人类诱导性多能干细胞技术指导手册

人类诱导性多能干细胞(iPS细胞) 技术指导手册 目录: 1. 前言 (1) 2. 人类胚胎成纤维细胞培养 (2) 3. 重编程载体构建 (3) 4.病毒包装 (4) 5.人类iPS细胞的诱导 (6) 6. iPS细胞鉴定 (8) 6.1碱性磷酸酶活性检测 (8) 6.2干细胞表面marker的免疫染色检测 (9) 6.3干性因子的去甲基化程度分析 (10) 6.4干细胞内源基因的表达分析 (13) 6.5端粒酶活性检测 (14) 6.6核型检测 (15) 6.7拟胚体形成 (15) 6.8畸胎瘤形成实验 (15) 7.干细胞技术培训及服务一览表 (15) 8.附录 (16) 1. 前言 iPS细胞最初从成纤维细胞重编程而来,因为它们准备和操作相对简单。其他细胞类型,包括来自外胚层、中胚层和内胚层的细胞也可以用于产生iPS细胞(Eminili et al 2008)。2006年Y amanaka 和Takahashi利用逆转录病毒系统在成鼠的成纤维细胞导入四个转录因子(Oct3/4,Sox2,c-Myc, 和Klf4,Y amanaka 因子),将其重编程为iPS细胞,它具有跟小鼠ES十分相似的特性,尤其重要的是,iPS细胞也能产生后代。2007年,iPS技术在人类体细胞中得以应用,人类iPS 细胞的产生对退行性疾病的治疗产生巨大的影响(Takahashi et al ;Yu et al, 2007)。由于iPS细胞具有和ES类似的功能,却绕开了胚胎干细胞研究一直面临的伦理和法律等诸多瓶颈,因此在医疗领域的应用前景非常广阔,成为干细胞研究的热点,《自然》和《科学》杂志分别将其评为2007年第一和第二大科学进展。随后,

中标基金标书-非整合人诱导性多能干细胞(iPS)及相关技术用于β地中海贫血治疗的研究-973

项目名称:非整合人诱导性多能干细胞(iPS)及相 关技术用于β地中海贫血治疗的研究首席科学家:潘光锦中国科学院广州生物医药与健 康研究院 起止年限:2012.1至2016.8 依托部门:中国科学院

一、关键科学问题及研究内容 1、安全高效,具有临床实用性的非整合iPS新技术的优化及建立。 安全高效获得非病毒非整合iPSC的新技术 建立综合的诱导系统获得非病毒非整合的iPSC:利用mRNA及microRNA诱导体细胞获得iPSC,筛选能够加速iPSC重编程的小分子化合物及蛋白;筛选高效的iPSC诱导培养液。在此基础上,建立综合的诱导系统获得非病毒非整合的iPSC。 iPSC的鉴定:核型、基因表达、体外分化能力、体内多能性检测等多方面检测iPSC是否符合干细胞的标准;分子水平检测外源基因的插入;测序分析iPSC 的基因组稳定性。 建立非病毒非整合小鼠ESC样的人类iPSC(ESC-like-iPSC) 筛选能够稳定培养ESC-like-iPSC的培养环境:通过传统的病毒诱导获得小鼠ESC样的人类iPSC(ESC-like-iPSC);筛选小分子化合物稳定培养 ESC-like-iPSC;筛选mRNA及microRNA支持ESC-like-iPSC的自我更新; 建立非病毒非整合ESC-like-iPSC:开发诱导获得ESC-like-iPSC的诱导系统;在全基因组表达、小RNA表达等方面比较两种不同的iPSC的差异。 2、利用体外受精胚胎建立多株正常人及地贫病人的ES细胞系。对比地贫iPS及ES,评价iPS多能性,安全性等应用指标。 建立非整合β地中海贫血病人iPS细胞库,约含各突变类型β地中海贫血iPS 细胞株50~100株。 优化和完善建立人胚胎干细胞的技术体系,并在此基础上建立地贫胚胎干细胞库。本研究拟对现有的胚胎干细胞培养技术进行改进:利用不同发育阶段的IVF

诱导多功能干细胞研究涉及的技术

综述 诱导多功能干细胞研究涉及的技术 作者李建雄09级七年制二系093335 摘要 诱导多潜能干细胞(induced pluripotent stem cells,iPSCs)是体细胞在外源因子作用下,经直接细胞核程序重整而重新获得多潜能的干细胞.iPSCs在疾病的模型建立与机理研究、细胞治疗、药物的发现与评价等方面有着巨大的潜在应用价值.在过去几年中,科学家们致力于改进体细胞重编程技术并取得许多突破.本文就iPS细胞研究关键环节—一诱导系统涉及的技术进行综述与展望。 关键词 体细胞重编程,诱导多潜能干细胞, 整合型载体,非整合型载体,新型载体,蛋白质转染, 细胞膜的通透性观察,DNA甲基化, RNA干扰实验,信号通路 引言 干细胞是人体及各种组织细胞的最初来源,具有高度自我复制能力、高度增殖及多向分化潜能,从发现之日起一直倍受学者关注。20世纪末以来,胚胎干细胞成为各国研究的重点。然而,胚胎干细胞的获取主要还是来自早期发育的囊胚,而这一阶段涉及许多对生命的界定问题,各国因信仰、民俗及文化背景的不同引起胚胎干细胞研究激烈而敏感的伦理之争;同时,胚胎干细胞的获取和保存也受现实条件的限制。因此,怎样采用非胚胎材料直接产生多能性干细胞成为生命科学研究发展的重要瓶颈。作为细胞重编程研究的里程碑,2006年,Yamanaka小组“将Oct4、Sox2、c.Myc和KH4等4个转录因子导入小鼠胚胎成纤维细胞(mouseembryonic fibroblasts,MEFs)中,成功获得与小鼠胚胎干细胞(embryonic stem cells,ESCs)在表型、生长特性、基因表达和分化潜能等方面高度相似的小鼠诱导多能干细胞(induced pluripotent stem cell,iPS cell) 【1】,从此,iPS细胞的研究日趋火热。美国Thomson 小组报道了通过转染Oct-4、Sox2、Nanog及Lin284个基因可将人的成纤维母细胞重编程为iPS细胞【2】。iPS细胞在其形态学、增殖特性、干细胞标志物的表达、表观遗传修饰上都与ESCs无显著差别【3-4】,研究表明:鼠iPS细胞能有效分化为造血和神经祖细胞,并能在体内和体外分化为血液及神经系统的各种细胞【5-6】。亦有研究证明,人体iPS细胞和小鼠iPS 细胞均可分化为心肌细胞、血管内皮细胞及平滑肌细胞【7-9】;同时,iPS细胞孕育而成的活体小鼠,有力地证明了iPS细胞具有真正的“全能性”【10】。但到目前为止,iPS细胞的研究才刚刚起步,一些重要的科学问题与关键技术问题还没有完全解决,iPS细胞走向临床应用为时尚早。本文就近几年iPS 细胞研究所涉及的技术作一回顾,从具体操作上把握iPS 研究和应用方向,加深对ips的认识,以期对有志于此的医学生未来的学习研究工作有所帮助. 1、基因导入技术 把已知基因转移到真核细胞,并且整合到基因组中得到稳定表达的技术,称为基因导入。基因导入技术是制备ips细胞的主要技术,而基因载体又是推动无遗传修饰ips细胞的建立的关键。载体主要有整合型载体、非整合型载体以及新型载体。 1.1.整合型载体介导的基因导入技术 早期使用的病毒载体,如逆转录病毒载体、慢病毒载体、诱导表达的慢病毒载体、单一慢病毒载体及piggyBac转座子都属于整合型载体【11】。反转录病毒载体的结构包括已切除了病毒的结构基因gag,大部分pol和env,以及两侧的LTR,被选择(标记)基因和目的基因插入的多聚位点所取代,同时还带有包装信号ψ。逆转录病毒载体制备首先要有适当的包装细胞系,以利于产生高滴度的病毒,另外还具有适当的结构。如:ψ2(第一代包装细胞),

诱导性多能干细胞技术的研究进展及其应用前景_吴翠玲

文章编号(Article ID):1009-2137(2014)04-0883-06·专论·诱导性多能干细胞技术的研究进展及其应用前景 吴翠玲,张玉明* 南方医科大学南方医院小儿科,广东广州510515 摘要在分化的体细胞中表达转录因子可以诱导体细胞重编程,获得诱导性多能干细胞(induced pluripotent stem cells,iPS cells)。这些细胞具有不断的自我更新能力和多向分化潜能,这些细胞重编程领域的突破性研究进展,为细胞重编程机制、人类疾病发病机制的研究及发展新的治疗方法提供了一种强有力的工具。iPS细胞技术是当前干细胞研究领域的热点之一,近年来取得了迅猛的发展。最初,研究者利用逆转录病毒作为载体将4种转录因子导入小鼠成纤维细胞诱导其重编程。近年来,iPS细胞的诱导方法不断改进,包括使用不整合入宿主细胞基因组的病毒载体、非病毒载体或者用基因敲除的方法切除导入的外源基因,从而产生了更为安全的iPS细胞系,许多小分子化合物也被证实能显著提高重编程效率。iPS细胞在再生医学、疾病模型的建立及药物筛选等领域正逐渐显现出它巨大的应用价值。本文回顾过去几年iPS细胞技术的研究进展,包括诱导方法的改进、iPS细胞诱导效率的提高和安全性的提高,并探讨iPS细胞的临床应用前景及当前研究存在的问题。 关键词干细胞;诱导性多能干细胞;体细胞重编程;临床应用 中图分类号R329.28文献标识码A doi:10.7534/j.issn.1009-2137.2014.04.001 Progress and Potential Applications of Induced Pluripotent Stem Cell Technology———Editorial WU Cui-Ling,ZHANG Yu-Ming* Department of Pediatrics,Nanfang Hospital,Southern Medical University,Guangzhou510515,Guangdong Province,China *Corresponding Author:ZHANG Yu-Ming,Associate Professor,Tutor of Master Postgraduate.E-mail:yumingzhang1966@hotmail.com Abstract Differentiated somatic cells can be reprogrammed to a pluripotent state through ectopic expression of specific transcription factors.These reprogrammed cells,which were designated as induced pluripotent stem(iPS)cells,are detected to exhibit unlimited self-renewal capacity and pluripotency.This breakthrough in stem cell research provides a powerful and novel tool for the studies on pathogenesis of diseases,reprogramming mechanism and development of new therapies.For this reason,the iPSC technology has currently become one of the hot topics in stem cells research.Recently,major progress in this field has been achieved:initially,researchers succeeded in inducing the reprogramming of mouse fibroblasts by retroviral transduction of four specific transcription factors;in succession,the accelerated development of iPSC technology by employing non-integrating viral vectors,non-viral vectors or removing the introduced foreign genes via gene knock-out has ensured the yields of much safer iPSC;meanwhile,some researches discoversed the proofs that a number of micromolecular compounds were potent in accelerating the cellular reprogramming.For a prospect,iPSC are highly promising for regenerative medicine,disease modeling and drug screening.In this review,the recent progress in the generation of iPSC,prospects of their possible clinical applications and problems in the iPSC research are summarized and discussed. Key words stem cell;induced pluripotent stem cell;reprogramming;clinical application J Exp Hematol2014;(4):883-888 2006年,日本京都大学的山中伸弥研究小组[1]报道了关于诱导性多能干细胞的研究成果,引起了极大反响并迅速成为干细胞领域的研究热点。该研究小组从24个候选基因中筛选出4个与细胞多能性密切相关的转录因子,利用逆转录病毒载体将这4个转录因子(Oct3/4、Sox2、Klf4和c-Myc,以下简称OSKM)导入小鼠成纤维细胞内,使其重编程得到一种多潜能干细胞。这种细胞在形态学、生长特性、基因表达、畸胎瘤形成及嵌合体形成等方面都与胚胎干细胞非常相似,研究人员把这些细胞命名为诱导性多能干细胞。在iPS技术出现之前,实验研究的干细胞来源主要是从胚胎内细胞团直接分离得到 基金项目:广东省自然科学基金(S2011010003914);国家自然科学基金(81270632);广州市科技计划项目(2013j4100108) *通讯作者:张玉明,副教授,副主任医师,硕士研究生导师.E-mail:yumingzhang1966@hotmail.com 2014-02-08收稿;2014-04-23接受 · 388 · 中国实验血液学杂志Journal of Experimental Hematology2014;22(4):883-888

诱导多能干细胞

诱导多能干细胞:过去,现在和未来 介绍 在2006年,我们发现,干细胞与胚胎干细胞相似的属性,可以同时引入四种基因(高桥和Yamanaka,2006年)从小鼠成纤维细胞产生。我们指定了这些细胞的iPS细胞。在2007年,我们报道了类似的方法适用于人类成纤维细胞,并通过因素引入了一把,人类iPS细胞可以生成(Takahashi等,2007)。就在同一天,詹姆斯·汤姆森的研究小组还报告了人类iPS细胞的生成,使用不同组合的因素(Yu等人,2007)。 合并三个科学流LED iPSCs的生产 像任何其他科学的进步,过去和现在的科学家在相关领域众多研究结果的基础上,建立了IPSC的技术。有三个主要的数据流的研究导致我们生产的iPS细胞(图1)。第一个数据流进行重新编程核移植。1962年,约翰·格登报道,他的实验室已经收到了成年青蛙肠细胞的细胞核(格登,1962)的未受精的卵子产生的蝌蚪。超过三十年后,伊恩·威尔莫特及其同事报道多莉诞生的第一只哺乳动物体细胞克隆产生的乳腺上皮细胞(威尔莫特等人,1997)。在这些成功的体细胞克隆显示出,即使是分化的细胞中含有的所有的发展所需要的整个生物体的遗传信息,而卵母细胞包含体细胞核重新编程的因素,可以。2001年,田田隆的研究小组发现,胚胎干细胞也含有因素,可以重编程体细胞(田田等人,2001)。第二个流是“大师”的转录因子的发现。在1987年,果蝇的转录因子,触角,异位表达时(Schneuwly等人,1987)表明,诱导形成的腿代替触角。在同一年,哺乳动物转录因子,调节因子MyoD ,显示转换成纤维细胞,成肌细胞(Davis等人,1987)。这些结果导致“主调节器,”一个给定的血统的命运决定和诱导的转录因子的概念。许多研究人员开始寻找各种谱系单主监管。尝试失败,也有少数例外(Yamanaka和布劳,2010)。 第三,同样重要的是,流是涉及胚胎干细胞的研究。自第一代在1981年小鼠胚胎干细胞(埃文斯和考夫曼,1981年,1981年,马丁),奥斯汀·史密斯和其他人已经建立了培养条件,使长期维持多能性(史密斯等人,1988)。维持小鼠胚胎干细胞的一个关键因素是白血病抑制因子(LIF )。同样地,由于第一代的人胚胎干细胞(Thomson等人,1998年),碱性成纤维细胞生长因子(bFGF )的最佳培养条件已经成立。 组合第一两个流的研究使我们假设,这是在卵母细胞或胚胎干细胞,体细胞重新编程到胚胎状态,设计实验,以确定该组合的多个因素的组合。使用信息所需要的文化多能干细胞的培养条件,我们就能够识别四个因素可以产生iPS细胞。 IPSC的技术成熟和理解 后不久,其他各组小鼠iPSCs的初次报告,概括了基于因子重编程的小鼠(Maherali等,2007年,Wernig等人,2007)和人类(Lowry等,2008年,公园等。2008B )。iPS细胞技术的优点之一是它的简单性和重现性。许多实验室开始探索相关机制和修改程序。 尽管iPSCs的重复性,可以生成过程中的效率仍然很低,通常小于1 %转成纤维细胞成为iPS细胞。最初这种低效率的提高iPS细胞的可能性,来自罕见的干或者未分化的细胞,成纤维细胞培养共存(山,2009A )。然而,随后的研究表明,iPS细胞可以是来自于终末分化的淋巴细胞(罗等人,2009)和有丝分裂后的神经元(Kim等人,2011a的)。因此,大部分的,如果不是全部,体细胞有可能成为iPS细胞,尽管有不同的效率。 怎能只是一小部分因素诱导体细胞重编程?这是超出了本文的范围,提供一个概述的许多研究已经解决了这个重要的问题。从我的角度来看,许多科学家的共识似乎是重编程因子的启动重编程过程中有更多的不到1%的转染细胞,但该过程没有完成在大多数细胞中。知之甚少的随机事件似乎需要完全重新编程的地方(Hanna等人,2009年,山中伸弥,2009年a)。正如我在下面的讨论,培养条件似乎为动力,可以帮助促进全重编程功能。 最初的iPSCs可以使用逆转录病毒或慢病毒,这可能会造成插入突变,从而会带来风险转化

关于诱导性多能干细胞

诱导性多能干细胞 【关键词】干细胞; 细胞分化; 转录因子 诱导性多能干细胞(induced pluripotent stem cells, iPS)是通过基因转染技术(gene transfection)将某些转录因子导入动物或人的体细胞, 使体细胞直接重构成为胚胎干细胞(embryonic stem cell, ES)细胞样的多潜能细胞。iPS细胞不仅在细胞形态、生长特性、干细胞标志物表达等方面与ES细胞非常相似, 而且在DNA甲基化方式、基因表达谱、染色质状态、形成嵌合体动物等方面也与ES细胞几乎完全相同。iPS细胞的研究受到人们广泛的关注, 是目前细胞生物学和分子生物学领域的研究热点。iPS细胞技术诞生还不到2年, 却为干细胞的基础研究和临床疾病治疗研究带来了前所未有的希望, iPS细胞技术的出现使人们从ES细胞和治疗性克隆等激烈的伦理学争论中解脱出来。但是, 目前制备iPS细胞的方法在安全性方面还存在一定问题, 因此探索一种高效、安全的iPS细胞的制备方法显得十分必要。 1 iPS细胞的制备方法 2006年T akahashi等[1]研究小组利用分别携带Oct4、Sox2、Myc和Klf4转录因子的4种逆转录病毒载体感染小鼠胚胎成纤维细胞(mouse embryonic fibroblasts, MEFs), 经过G418药物筛选成功获得第1批iPS细胞。但是这批iPS细胞系中DNA甲基化的方式与自然存在的ES细胞不同, 而且这批iPS细胞不能形成畸胎瘤。Okita等[2]研究小组报道了第2批iPS细胞的产生。他们采用与制备首批iPS细胞相同的方法, 但是采用了不同的筛选基因。第2批iPS细胞系DNA甲基化的方式与自然存在的ES细胞的甲基化方式相同, 并且能形成畸胎瘤。2007年末, Takahashi和Yu等[3, 4]两研究小组分别在细胞和科学杂志上报道关于iPS研究里程碑的实验结果, 他们都成功获得了人的iPS细胞系。Yamanaka 采用与诱导小鼠iPS相同的方法, 成功将人成纤维细胞诱导成多干细胞。Thomson研究小组采用与Yamanaka不同的方法, 他们利用慢病毒载体运输Oct4、Sox2、Nanog和Lin28转录因子转染IMR90胚胎成纤维细胞, 并且成功地获得了人iPS细胞。2008年1月Nakagawa等[5]研究小组报道他们可以利用Oct4、Sox2和Klf4 3种转录因子将小鼠和人的成纤维细胞成功诱导出iPS细胞。Aoi等[6]研究小组将小鼠肝细胞和胃上皮细胞成功诱导为iPS。Stadtfeld等[7]实验小组利用Oct4、Sox2、c myc和Klf4 4种转录因子将胰岛细胞诱导为iPS细胞。 Hanna等[8]研究小组在细胞杂志上报道了他们将小鼠终末分化的B淋巴细胞诱导成iPS细胞的实验结果。他们采用类似于利用成纤维细胞制备iPS细胞的方法, 使用4种转录因子(Oct4、Sox2、c Myc和Klf4)及CCATT/增强子结合蛋白(C/EBPα), 成功地将成熟B淋巴细胞诱导为iPS细胞。 Eminli等[9]研究小组利用逆转录病毒载体携带Oct4、Klf4和c Myc 3个转录因子将神经祖细胞诱导为iPS细胞, 之后Kim等[10]研究小组报道利用慢病毒载体携带Oct4和c Myc或Oct4与Klf4两种转录因子就可以将成人的神经干细胞诱导为iPS细胞。他们

诱导性多能干细胞的应用

诱导性多能干细胞的应用 2006年,日本医学家山中伸弥等将4个转录因子基因导入已分化的小鼠皮肤成纤维细胞,将其重编程为类似于胚胎干细胞的多能性干细胞,即诱导性多能干细(Induced pluripotent stem cells,iPS cells)。这项技术避免了干细胞研究领域的免疫排斥和伦理道德问题, 是生命科学领域的一次巨大革命。与胚胎干细胞一样, iPS 细胞能够长期增殖并维持高度未分化状态, 在体内可分化为3个胚层来源的所有细胞, 进而参与形成机体所有组织和器官。在体外, iPS 细胞可定向诱导分化出多种成熟细胞。因此, iPS 细胞在理论研究和临床应用等方面都极具应用价值。 iPS细胞与再生医学是目前研究的热点。如多项研究在人类血液疾病的小鼠模型中进行了iPS细胞应用的尝试,并取得了初步成功。Hanna等在人源化的镰刀型贫血病小鼠模型上获取成纤维细胞,诱导建立了iPS细胞系,然后通过同源重组的方法将病变基因修正,接着把遗传修饰后的iPS细胞定向分化为造血干细胞,导入小鼠体内,贫血症状明显改善,这是首次利用iPS细胞进行的人类疾病治疗研究。iPS技术在治疗神经系统疾病中显示了很大的用途。Werning等对已建立的小鼠iPS细胞进行体外诱导培养,可以将其诱导分化为神经前体细胞和多巴胺能神经元,并移植到患有帕金森病小鼠体内能减轻其症状。最近一项研究利用帕金森症患者的皮肤细胞培育出了iPS 细胞,并能将其分化为多巴胺神经元细胞,这是帕金森症患者大脑中所缺少的一种重要细胞。因此,其有望成为治疗帕金森症等神经系统疾病的一种方法。虽然iPS细胞技术在再生医疗领域的尝试与应用还远未成熟,但随着iPS细胞基础与临床研究的深入,iPS细胞必将开辟再生医学领域的新纪元。

诱导多功能干细胞现状及应用展望

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 诱导多功能干细胞现状及应用展望诱导多功能干细胞现状及应用展望综述摘要: 由于人的胚胎干细胞(EScells) 在再生医学、组织工程和药物发现与评价等领域极具应用价值,通过转入特定基因能诱导体细胞重编程成为多能干细胞(iPscs) ,这项技术为干细胞的研究和应用带来了革命性的变化,对于解决长期困扰干细胞研究领域的伦理困境和免疫排斥等问题具有重大意义。 然而,目前iPscs技术本身还不完善,面临致癌性、效率低、以病毒为载体的安全性问题以及移植后存活率低等诸多问题。 主要从iPscs的产生和筛选、应用前景及其存在的问题等3个方面进行了综述。 关键词: 体细胞;重编程;诱导多能干细胞;前景;研究进展 1. 诱导多功能干细胞的产生和发展干细胞研究是近30年来生物界发展最快的领域之一,主要经历了3个大的阶段。 1981年,小鼠胚胎干细胞(ErIlbryonic Stem Cells, Escs) 建系(Evans、 haufman) ,这些具有全能性的细胞在体外可以诱导分化为不同类型的细胞,为利用干细胞修复组织开辟了新途径。 尽管这些细胞来源于囊胚的内细胞团,基本不存在去分化和重编程的问题,但其在诞生之日起,就一直深受伦理道德和异体排斥等问题的困扰。 1 / 8

1996年着克隆羊多莉的降生,开创了体细胞在卵母细胞中去分化和重编程的先河。 细胞核重编程是指成熟的细胞由分化状态被逆转到一种未分化状态的过程。 常用的方法主要有3种: 核移植、细胞融合及体细胞与多能细胞提取物共培养。 研究表明,体细胞通过核移植或与Escs融合均能诱导其核发生重编程,在卵母细胞质与ESCs中均存在着能够诱导体细胞核重编程的转录因子。 2006年, Yamanaka等首次报道了从小鼠体细胞获得诱导多能干细胞。 虽然其生物学特性与ESCs具有较大差异,不能进一步发育成胚胎,然而,这一发现却是具历史意义的一步。 2007年,日本京都大学的Yamnaka等和美国威斯康辛大学的tomason等又分别采用相同的基因改造的方法将人的体细胞逆转录为类Escs,即iPScs,其具有与EsCs几乎完全一样的生物学特性,实现了人的体细胞重编程工作。 这些划时代意义的成果解决了利用干细胞进行组织修复所面临的免疫排斥和伦理学问题,在利用病人正常细胞进行组织自我修复方面具有巨大的应用前景。 2. 诱导多能干细胞的应用前景由于Escs具有分化成各种体细胞的全能性,一直是生殖生物学界和医学界研究的热点问题之一,

诱导多能干细胞IPS及发展简述

诱导多能干细胞IPS及发展简述 1.定义:通过一定的途径将与细胞多能性有关的基因导入到已分化的体细胞中,或者同时添加一些辅助作用的小分子化合物使体细胞去分化重 编程回到胚胎干细胞状态,所获得的细胞即为IPS细胞。 IPS细胞与胚胎干细胞(ES)形态相似、核型、端粒酶活性、体外分化潜能均相同,同时也能够表达相同的表面标志分子。 诱导多能干细胞(induced pluripotent stem cells, iPS cells)最初是日本人山中申弥(Shinya Yamanaka)于2006年利用病毒载体将 四个转录因子(Oct4, Sox2, Klf4 和c-Myc)的组合转入分化的体细胞中,使其重编程而得到的类似胚胎干细胞的一种细胞类型。随后世界各地不 同科学家陆续发现其它方法同样也可以制造这种细胞。 2.获取原理:ES细胞和IPS细胞具有相同的基因。不同的是,ES细胞中的与细胞多能性有关的基因能够表达,如:oct4,Sox2等。而已分化的体细胞中的这些基因不能表达。通过导入与多能性有关的外源基因来激活体细胞中的多能性基因,从而使体细胞从分化状态重编程为多能性干细胞。 (1)分离和培养宿主细胞; (2)通过病毒介导或者其他的方式将若干多个多能性相关的基因导入宿主细胞; (3)将病毒感染后的细胞种植于饲养层细胞上,并于ES细胞专用培养体系中培养,同时在培养中根据需要加入相应的小分子物质以促进重编程; (4)出现ES样克隆后进行iPS细胞的鉴定(细胞形态、表观遗传学、体外分化潜能等方面)。 3.应用前景: 3.1建立疾病模型通过体外研究这些疾病特异性的iPS细胞,有助于间接推断疾病的发病机制及寻找有效的治疗措施。 3.2 研究人类发育生物学及新基因的发现而iPS细胞与Es细胞在生长条件、细胞表型、细胞的多能分化特性等许多方面有相似点,在一定程度上它可以代替ES细胞担任基础研究及临床应用角色。iPS细胞体外自发分化的拟胚体可以模拟胚胎发育过程,可以作为组织、器官发生、发育研究的模型,弥补完整人胚不能用于这方面研究的缺陷。 3.3 自体干细胞移植不依靠人工或捐献者的器官,凭借本人强大的自然治愈能力让丧失功能的器官再生是最理想的治疗方式。对于遗传性疾病,利用自体成体细胞建立iPS细胞,通过基因打靶技术纠正遗传性缺陷基因,再诱导分化为特化细胞进行移植。 3.4新药发现及筛选目前新药的药理、药代学、毒理学、药效学等细胞水平的研究及生物学模型,大都在其他种属的细胞系进行。然而异种细胞与人之间毕竟有不完全相同的药物反应。而患者及疾病特异性源性iPS细胞的建立可以实现在体外以人源细胞为对象的试验性用药,观察药物对其基因结构及表达的影响,间接判断该药物对某种疾病的疗效,这是一种全新探索及筛选药物治疗的模式。 4.问题 4.1重编程机制如上所述,目前已经可以不用病毒介导转基因技术获得iPS细胞,表明病毒插入突变不是必需的。对于转录因子,则意见不一。没有c—Myc参与或只用Oct4因子也可以获得iPS细胞111·18l,但是其采用的初始细胞是已表达高水平某些转录因子的神经祖细胞,所以也不能完全排除对转录因子的依赖性。 4.2诱导效率此前报道iPS细胞诱导效率不到0.1%,效率太低阻碍了对重编程机制的研究,也阻碍了iPS细胞进一步发挥其应用价值,因此提高诱导效率的研究势在必行。添加SV40大T抗原将转染效率提高了23—70倍;添加强力霉素提高了至少100倍。PB转座子系统的转染效率与病毒系统无差异。Sail 4(Sal.1ike 4)也是胚胎干细胞相关转录单位之一。添加转录因子Sall 4比单用Oct3/4、Sox2、l(1f4诱导效率提高了lO倍。使用基因敲除技术敲除Sail 4后诱导效率显著降低,但仍不明确Sall 4是否可被同组蛋白Sall l或其他因子取代。降低培养环境的氧气溶度可以提高诱导效率,在5%02培养下效率可达0.40%,联合使用I型组蛋白去乙酰化酶抑制剂ValproicAcid(VPA)效率可达0.48%,但何种氧气溶度以及在低氧环境下培养多长时间最为合适仍不明确。 4.3致瘤性iPS细胞诱导过程中使用的转录因子c-Myc和Klf4都是癌基因,病毒插入也可以导致肿瘤发生,而且,未分化iPS细胞自身尚可在体内形成畸胎瘤,因此,iPS细胞的致瘤性是其进一步推广应用的一大障碍。虽然现在已经可以在没有c—Myc、圈f4和病毒情况下获得iPS细胞,而且随着细胞的分化,iPS细胞形成畸胎瘤的能力也逐渐减弱,但关于如何在细胞移植前将混杂在其中的未分化iPS细胞去除,以及在何分化阶段移植,目前还没有这方面安全应用的研究报道。 虽然iPS细胞距离临床应用还有一段时间,但伴随细胞生物学、分子生物学、发育生物学、功能基因组学以及转基因技术的进一步发展,iPS技术必将在细胞移植治疗、药物筛选和发病机制研究中发挥重要作用。

相关主题
文本预览
相关文档 最新文档