环烷酸腐蚀问题
- 格式:doc
- 大小:53.00 KB
- 文档页数:14
加工高硫、高酸原油注意事项常减压装置单独加工马瑞油,硫含量高达2.9%并含有硫化氢,给储运、装置加工带来很大安全隐患,并且严重影响产品质量,各生产环节要注意防止硫化氢中毒,装置要24小时不间断巡检。
对加工高硫、高酸原油安全注意事项重申如下:高硫高酸原油对装置的影响:高硫、高酸原油中的比重大、硫含量和重金属含量高,深度脱盐较为困难。
加工这类原油能够造成设备腐和催化剂中毒以及环境污染。
如电脱盐装置会因原油乳化而影响脱盐效果,从而造成分馏塔顶腐性,还会造成分馏塔、加热炉等设备高温部位的腐蚀。
加工高酸原油带来的腐性问题主要集中在蒸馏装置,而加工高硫原油带来的腐性问题,贯穿于整个原油加工过程中。
高温硫化物的腐性是指240℃以上的部位元素硫、硫化氢和硫醇等形成的腐蚀。
典型的高温硫化物腐蚀存在于常、减压塔的下部及塔底管线,常压渣油和减压渣油换热器,催化裂化装置分馏塔的下部,以及焦化装置高温部位等。
在高温条件下,活性硫与金属直接反应它出现在与物流接触的各个部位,表现为均匀腐性,其中以硫化氢的腐位性最强。
燃料重油中通常含有1%-3%的硫及硫化物,在燃烧中大部分生成SO2,其中约有1%-5%在一定条件下反应生成SO3,对设备几乎不发生腐性,但当它与烟气中的水蒸汽结合形成硫酸蒸汽时,在装置的落点部位发生凝结,严重腐蚀设备。
环烷酸腐蚀经常发生在酸值大于0.5mgKOH/g, 温度在270-400℃之间高流速介质中。
它与金属表面或硫化铁膜直接反应生成环烷酸铁,环烷酸铁是油溶性的,再加上介质的流动,使金属表面不断暴露并受到腐性,故环烷酸腐蚀的金属表面清洁,光滑无垢。
在物料的高温高流速区域,环烷酸腐呈顺流向产生的尖锐边缘的流线沟槽,在低流速区域,则呈边缘锐利的凹坑状。
环烷酸腐蚀都发生在塔盘、塔壁、转油线等部位。
另外由于环烷酸盐具有表面活性,会造成油品乳化,从而引起装置操作波动,并造成塔顶腐蚀。
装置在加工此类原油时要做好安全防范措施并从生产工艺上进行调整,保证产品质量合格和污水处理合格。
一、单选题【本题型共44道题】1.下列选项中()不属于机械疲劳损伤发展阶段。
A.微观裂纹萌生B.宏观裂纹扩展C.变形D.瞬时断裂正确答案:[C]用户答案:[C] 得分:1.002.如果已经发现了碱腐蚀,还应注意下列哪些可能伴随的损伤?()A.蒸汽阻滞B.球化C.蠕变D.敏化正确答案:[A]用户答案:[A] 得分:1.003.下面几种材料之间比较,哪一种抗环烷酸腐蚀性能最好?()A.Q245RB.304LC.316D.304正确答案:[C]4.下列哪种已知合金可以耐受所有条件下的金属粉化影响?()A.低合金钢B.奥氏体不锈钢C.碳钢D.目前没有正确答案:[D]用户答案:[D] 得分:1.005.盐酸腐蚀速度随温度(),腐蚀速率()。
A.升高,减小B.升高,增大C.升高,不变D.降低,不变正确答案:[B]用户答案:[B] 得分:1.006.冲刷流体可以分为几种?()A.2种B.3种C.4种D.5种正确答案:[B]7.运行期间可采用什么方法来检测冷壁设备的高温部位、判断耐火材料的损伤程度?()A.红外热像仪B.目视检测C.超声检测D.射线检测正确答案:[A]用户答案:[A] 得分:1.008.渗碳损伤导致材料表面硬度(),高温蠕变延展性、常温力学性能、焊接性能和耐腐蚀性能()。
A.增高;增高B.增高;降低C.降低;降低D.降低;增高正确答案:[B]用户答案:[C] 得分:0.009.下列叙述中,()为常见于装置的金属盐酸腐蚀特点描述。
A.常压塔塔顶系统中,塔顶油气冷却形成含盐酸的冷凝液,PH值较低,可对管道和热交换器(包括壳体、管束和管箱)造成快速腐蚀;减压塔顶真空喷射器和冷凝设备会发生盐酸腐蚀B.催化剂中被置换出来的氯化物会反应形成盐酸,流向反应产物系统、再生系统、稳定塔、脱丁烷塔和进料/预加热热交换器;氯化氢也可能随着工艺流穿过分馏单元,在注水点及其下游发生严重的酸露点腐蚀C.催化剂中含有氯化物,如三氯化钛,在聚丙烯的合成工艺中,与水蒸气或谁接触的设备和管线D.反应产物含有HCl,在冷凝后形成盐酸腐蚀;废气系统含有氨和盐酸,对热进料/出料交换器形成氯化铵盐的垢下腐蚀;蒸馏工段可发生严重的盐酸露点腐蚀正确答案:[A]用户答案:[A] 得分:1.0010.检查燃灰腐蚀的最有效的方法为()。
第45卷第10期表面技术2016年10月SURFACE TECHNOLOGY·173·炼化设备冲刷腐蚀失效分析及控制策略段永锋1,于凤昌1,崔新安1,孙亮2,侯艳宏2(1.中石化炼化工程集团洛阳技术研发中心,河南 洛阳 471003;2.中海石油炼化有限责任公司惠州炼化分公司,广东 惠州 516086)摘要:目的冲刷腐蚀失效是制约炼油装置安全运行的重大隐患,通过分析炼化设备系统中典型冲刷腐蚀失效的机理和影响因素,提出石油炼制过程中冲刷腐蚀的控制策略。
方法基于炼油装置的工艺流程、设备和管道的结构设计、腐蚀介质和材质等,分别针对减压转油线防冲板、硫酸烷基化装置反应流出物注碱口管线、酸性水汽提塔顶富氨气系统,以及焦化分馏塔进料段塔壁腐蚀问题进行失效分析。
结果通过将材质升级为317L,避免了减压转油线防冲板因环烷酸冲刷腐蚀而减薄。
通过改进碱注入方式和优化操作工艺方式,减缓了硫酸烷基化装置反应流出物注碱口管线的硫酸腐蚀。
通过将空冷器管束材质升级为316L,及增加管道直径的措施,防治了酸性水汽提塔顶富氨气系统酸性水冲刷腐蚀。
通过更换进料分配器解决了焦化分馏塔进料段塔壁腐蚀泄漏的难题。
结论炼化设备冲刷腐蚀的控制策略:依据主动防腐的观念,在遵循炼化设备选材导则进行合理选材的基础上,充分考虑设备、管道的实际工艺操作情况,针对具体部位进行腐蚀评估,发现薄弱部位并及时调整相关操作(操作工艺、工艺防腐和腐蚀监测等),从而保证了炼化装置的安全稳定运行。
关键词:炼化设备;冲刷腐蚀;环烷酸腐蚀;酸性水腐蚀;失效分析;控制措施中图分类号:TG171 文献标识码:A 文章编号:1001-3660(2016)10-0173-07DOI:10.16490/ki.issn.1001-3660.2016.10.027Failure Analysis and Controlling Strategy on Erosion-Corrosion of Petrochem-ical EquipmentDUAN Yong-feng1, YU Feng-chang1, CUI Xin-an1, SUN Liang2, HOU Yan-Hong2(1.Luoyang R&D Center of Technology of Sinopec Engineering Co., Ltd, Luoyang 471003, China;OOC Huizhou Refining & Chemical Company, Huizhou 516086, China)ABSTRACT: The work aims to put forward the strategies to control the erosion and corrosion in the process of petroleum re-fining by analyzing the mechanism and influence factors of typical corrosion-erosion failures in refining equipment and system as the said failures are main potential troubles to the safe and stable operation of the refining units. Based on technological process of oil refining equipment, structural design of equipment and pipes, corrosive medium and materials, etc., the corrosion failures of impingement baffle in vacuum transfer line, reactor effluent pipeline at injection inlet of sulfuric acid alkylation unit, rich ammonium system in the top of sour water stripping tower, and tower wall in feeding zone of coking fractional column were respectively analyzed. The thinning of impingement baffle in vacuum transfer line eroded and corroded by naphthenic acid收稿日期:2016-03-26;修订日期:2016-07-03Received:2016-03-26;Revised:2016-07-03基金项目:中国石化科研项目(313070);中海油炼化公司项目(LH00FW 2013-1094)Fund:Supported by SINOPEC Research Program (313070); CNOOC Refinery Co., Ltd Research Program (LH00FW 2013-1094)作者简介:段永锋(1979—),男,硕士,高级工程师,主要从事石化装置腐蚀与防护研究。
常减压蒸馏装置 常减压装置是对原油一次加工的蒸馏装置,即将原油分馏成汽油、煤油、柴油、蜡油、渣油等组分的加工装置,常减压蒸馏是原油加工的第一步,并为以后的二次加工提供原料,所以常减压装置是炼油厂的“龙头”。 原油经换热,达到一定温度后,注水和破乳剂,进入电脱盐脱水罐,脱盐后的原油进入另一组换热器,与系统中高温热源换热后,进入常压炉(有的装置设有初馏塔或闪蒸塔,闪蒸出部分轻组分后再进入常压炉)。达到一定温度(370℃)后,经转油线进入常压分馏塔。在常压塔内将原油分馏成汽油、煤油、柴油,有时还有部分蜡油以及常压重油等组分。产品经必要的电化学精制后进入贮槽。常压重油经塔底泵送入减压塔加热炉加热(395℃)后,经转油线进入减压分馏塔,减压塔汽化段压力为80-100mm汞柱,有3-4个侧线,作为制造润滑油或二次加工的原料,塔底油可送往延迟焦化,氧化沥青或渣油加氢裂化等装置。 环烷酸腐蚀 环烷酸腐蚀产物溶于油,所以腐蚀的金属表面粗糙而光亮,呈沟槽状。 1.2.1环烷酸 石油酸是石油中有机酸的总称,包括环烷酸、芳香族酸和脂肪酸等。环烷酸(RCOOH,R为环烷基)是指分子结构中含有饱和环状结构的酸及其同系物。环烷酸是石油中有机酸的主要组分,占石油中总酸量的95%以上,虽然这些酸在分子量上有显著差异(180—350℃),但它们的通式可用R(CH2)nCOOH表示,式中R通常指环戊基或环己基,n通常大于12,根据R和n值不同,在石油中分子结构不同的环烷酸达1500多种。较高分子量的环烷酸是由多个羧酸组成的混合物。环烷酸不溶于水,易溶于油品、乙醚、苯等有机溶剂。 1.2.2环烷酸腐蚀影响因素 (1) 酸值 一般以原油的酸值判断环烷酸的含量,原油的酸值大于g时,就能引起设备的腐蚀,酸值大于g为高酸值原油。 早年的研究认为,环烷酸腐蚀只是在酸值超过g时才成为问题。原油酸值低于g时,常减压蒸馏装置的设计只需考虑抗硫腐蚀。80年代,Cheron公司有人探索了碳钢和环烷酸腐蚀的关联性,结果发现,在不同温度下腐蚀速度都是酸值的一个函数,其log—log曲线如图1—4所示。
后来的经验表明。这种关联性相当精确.但是,这种关联性只适用于像蒸馏塔,换热器等液体流速较低的区域,不能用于像加热炉炉管和转油线之类的高流速区域。图1-4中的关联性有一个明显的缺点,即在低酸值时测得的腐蚀速率显然低于外推曲线。 看来,事实上是有一个极限酸浓度的,低于这个极限,环烷酸基本上就不再有腐蚀作用。研究了加工美国海湾原油和加利福尼亚原油的一些蒸馏装置,结果表明,其塔侧线的最大酸值大约为g这时,对5%和12%铬钢没有腐蚀。据此判断,这些装置的塔或换热器不会遭受任何环烷酸腐蚀。但酸值为2mgKOH/g就处在腐蚀范围了,有必要采取一些专门的防护措施。将得到的酸值范围内的数据点制成表,可得出结论说,腐蚀极大约介于这两个数值之间。 随着操作经验的不断积累,越来越明显地看出,原油蒸馏装置在酸值低于g的条件下运转时,低速区没受到环烷酸腐蚀。但是,极限值仍旧要采用g,以补偿酸值测定中的误差或原油性质上的差异。现在还不完全清楚,为什么酸值低于极限值时,腐蚀就突然停止。有可能是和一种防护性的硫化铁膜的形成或溶解有关。原油装置中几乎常常有相当量的硫化氢,其正常腐蚀产物是不溶于油的硫化铁。但是,环烷酸将铁转换为油溶性的环烷酸铁。当一个体系中同时含有硫化氢和环烷酸时,就可能在硫化物膜的形成和溶解之间出现竞争。看来,随着环烷酸浓度的提高,金属硫化物部分溶解,从而减弱了防护膜的粘附性,并破坏了它的完整性。结果,膜的防护性能变差,在流速高或湍流激烈的地方,更容易出现膜的局部脱除现象。有人在原油酸值为0~45mgKOH/g,温度为21—400℃,压力为4MPa,油流速为4m/s的条件下,研究了不同参数对环烷酸腐蚀速率的影响。得到的结果之一是:在给定温度下,腐蚀与油中的环烷酸含量(或酸值)有直接关系,酸值提高1倍,碳钢、低合金钢蒙乃尔合金的腐蚀大致也增加l倍,而410不锈钢的腐蚀则几乎增加4倍。
(2)温度 环烷酸的腐蚀能力和温度关系密切,220℃以下,环烷酸基本不发生腐蚀,以后随温度的升高而增加,在270—280℃,达到酸沸点,腐蚀最为强烈,温度再升高腐蚀速率下降;温度达到350℃—400℃时,由于FeS膜高温融解,腐蚀重新加剧;400℃以上石油酸分解,腐蚀减弱,基本没有腐蚀。 试验研究在不同条件下于液相和气相中做了腐蚀挂片试验,结果发现,碳钢和410不锈钢的腐蚀大约随温度每升高55℃而增加2倍。这种关系大约也适用于低合金钢。对于加工酸值低于g的原油的蒸馏装置来说,温度低于232℃时,不用担心碳钢、低合金钢、410不锈铜和奥氏体(18/8)不锈钢的环烷酸腐蚀问题。温度高于260℃时,根据温度、压力和原油类型的不同,环烷酸部分气化。气化通常会使大多数液体进料中的环烷酸含量减少,而且会抑制温度升高而增加腐蚀的趋势。气化的环烷酸对普通结构材料不腐蚀。 (3) 流速 环烷酸的腐蚀速度主要受流速影响,流速增加环烷酸腐蚀明显加重。流速大的地方发生剜状腐蚀,其他地方发生全面腐蚀。在常压蒸馏装置加热炉管、减压蒸馏装置加热炉管、转油线、中段塔盘等部位易发生此类腐蚀。 原油蒸馏装置高温重油部位的事故多发段几乎都与高流速和涡流造成的冲蚀有直接关系。例如:加热炉的出口管线和轻油线由于轻质油品的气化,液流速度剧增,从而使腐蚀加剧:而阀、弯头、丁字口及热电偶套管的根部等处的腐蚀穿孔均是由于液流受阻形成涡流带来冲蚀的结果。 由流体动力学可知,无论是流股对壁面的冲击力还是流体在流道中克服沿程阻力和局部阻力所消耗的机械性能都与流速有关。流股对壁面的冲击总压力船计算公式为: F ≈ p Q0V0Sinθ 式中:p为流体密度;Q0为入射流股的流量;V0为入射流股的流速:θ为壁面倾角(见图)。
流体对壁面冲击力的示意图 从公式中可以着出:冲击力的大小不仅与流速成正比,而且与壁面的倾角有关;θ越大。冲击力F也越大;当θ为90°时,F到最大值。在加热炉出口管线的弯头及集合管的丁字口等处,液流对管壁的冲蚀最严重,就是这个道理。所以在设计中要注意尽量减少弯头,使管线走向流线化,炉出口管线进入集合管或转油线时最好斜插或在转油线内加导向弯管。 流体在经过流道边界形状发生急剧变化的局部区域时。例如流道弯曲(弯头)、多股液流相遇(型合流三通)、过流截面突然扩大或缩小(大小头)、遇到障碍物(热电偶、焊瘤等)的层流状态被破坏。流速的大小或方向被迫剧烈的改变,因而发生撞击、旋涡等现象。此时由于粘击性作用,流体质点间发生剧烈的摩擦和动量交换,因而阻碍着流体运动,这种阻碍称为局部阻力。流体为了克服局部阻力而消耗的机械能称为局部损失。 局部损失是与流动的速度的平方成正比。流体在这些局部区域所消耗的机械能,其中大部分的撞击该区域的边壁和障碍物时被它们吸收掉了。这也就意味着流体对边壁作用的能量也与流速的平方成正比、随着流速的增加流体对边壁的冲击能也迅速增加,一旦它超过了金属表面保护历所能承受的强度,这层保护膜就很快被破坏,从而使腐蚀反应能在这些部位不断进行下去。常压炉炉管口弯头的冲蚀现象只是在距离炉出口的最后几根才突然加剧,这个事实就很好地说明了这一点。 在讨论高流速和涡流带来的冲蚀问题时不能忽略“弯管二次流”的影响。流体经弯管时,除了因流速的方向和分布发生变化。以及涡流等产生的能量损失之外,还会因离心惯性力的作用把质点从内侧挤向外侧,使外侧压力增加,内侧压力减小。弯管内外侧的压力差使靠近壁面的质点沿壁面从外侧向内侧流动。并在内侧中点汇合。逼向断面中央形成回流,这样就在管内出现了双旋涡式的二次流,从而增大了局部损失。二次流的影响,虽然强度不如直接冲刷。但消失很慢。从我们对常压炉炉管和转油线测得的数据可知:二次流的影响主要取决于流速。其影响长度一般为管径的几倍到十几倍。流速越高影响的长度也就越长。 (4) 物态影响 环烷酸在纯液相中的腐蚀小于气相,而在气液相共存区或气液相变区(如转油线中的汽化状态或减压塔中的凝结状态),其腐蚀相当严重。试验研究表明在249℃和304℃时液相和处于液相等温线之下,腐蚀率仅为液相的30—60%,这是因为石化企业蒸馏防腐的理论分析与实验研究在该温度下,只有少量的环烷酸能被闪蒸、气相空间试件明显地受到冷凝液腐蚀的缘故。在277℃气相等温线与液相等温线吻合,表明冷凝液的酸值一定与母液的酸值相等或接近。而在304℃,沸点较低的环烷酸闪蒸得快,气相腐蚀率平均为液相腐蚀率的150—350%,甚至高达480%。所以在该温度下气相腐蚀明显加剧。 根据炼油厂经验,当酸的物理状态发生变化时,腐蚀将变得更为严重,例如,在转油线中呈气化状态,或在减压塔中呈冷凝状态时,在气化状态下,线速较高,也会促进腐蚀。 环烷酸腐蚀机理 环烷酸详细的腐蚀机理至今尚无法定论,广为接受的有以下述两种: 1.3.1环烷酸与铁反应生成环烷酸铁: 2RCOO-+Fe2+—Fe(OOCR)2 环烷酸铁溶于油中并脱离金属表面,从而暴露出金属裸面。溶剂蒸发后的环烷酸铁残渣虽不具有腐蚀性,但遇到H2S后会进一步反应生成硫化亚铁和环烷酸: Fe(OOCR)2+H2S—FeS+2RCOOH 生成的硫化亚铁覆盖在钢铁表面形成保护膜。这层膜虽然减缓了环烷酸的腐蚀,但不能完全阻止环烷酸与铁作用,而释放的环烷酸又引起下游腐蚀,如此循环。 1.3.2硫化物与铁反应生成硫化亚铁: S2-+Fe2+—FeS 硫化亚铁再与环烷酸反应生成环烷酸铁和硫化氢: 2RCOOH+FeS—Fe(OOCR)2+H2S 环烷酸铁破坏了硫化亚铁保护膜,引起了设备的腐蚀。 从这两种机理可以看出,上述几种反应在一定的条件下是可逆的。原油中腐蚀的两大症结是硫化物和环烷酸,它们在原油中的作用不尽相同,正是这两种物质的相互作用和相互制约、促进,使腐蚀问题变得复杂。环烷酸形成可溶性的腐蚀产物,硫化氢则形成不溶性的腐蚀产物。当两者腐蚀作用同时进行,如果含硫量低于某临界值,则腐蚀程度加重,即环烷酸破坏了硫化物腐蚀产生的硫化亚铁保护膜,生成了可溶于油的环烷酸铁和硫化氢;如果含硫量高于某临界值,设备表面生成了稳定的硫化亚铁保护膜,则减缓了环烷酸的腐蚀。不同的原油中含有不同类别的硫化物(活性的和非活性的),它们的含量和存在形式既能抑制又能加速环烷酸与铁的作用,从而导致硫化物既可增强又可降低含酸原油的腐蚀性。 环烷酸腐蚀实验室测定方法 预测环烷酸腐蚀的实验方法有以下几种: TAN法:原油中酸值的测定是采用传统的KOH中和法,其结果以中和l克原油所需要的KOH毫克数来表示,称之为TAN。一般认为当原油的TAN> KOH/g时,就存在环烷酸腐蚀。但试验表明,在一定的温度范围内,环烷酸含量和TAN间并无确定的关系。 腐蚀酸度(CAN)法:试验得知,随着馏分沸点的增加酸含量虽然增加,但酸度却下降,说明低分子量的环烷酸性较高。Craig提出了腐蚀酸度(以下简称CAN)的概念,即将实验过程中试样钢片的失重换算为相当于消耗了多少酸值的环烷酸来表示。 CAN与TAN有相同的单位,求出每次实验后CAN与TAN的比值,就可以预测该油品的腐蚀性。