当前位置:文档之家› 变频调速电机的选型

变频调速电机的选型

变频调速电机的选型
变频调速电机的选型

变频调速电机的选型

变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒

转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min)

,基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内

要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。

由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进

行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了

电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的

功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足

在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速

编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的

直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电

机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性

,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或

异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V

或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机

的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和

变频电机基频点的设置都非常重要。

同步变频与异步变频调速电机的区别

异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺

,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机,

以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率

,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频

电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的

转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决

定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。

同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永

磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受

负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高

效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主

要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致,

也不需要昂贵的光学编码器进行闭环控制。

TYP 变频调速永磁同步电机具有的三大优点:

1、高效节能????与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高????????????????3~10个百分点。以1.5kW为利,两者效率差近7个百分点;

2、可精确调速??与异步变频系统相比,无需编码器即可进行准确的速度控制;

3、高功率因数??既可减少无功能量的消耗,又能降低变压器的容量

特种电机是在原来的基本系列上派生而来

派生电机分电气派生、结构派生、混合派生三种

电气派生电机

在基本系列电磁设计的基础上略作改动,如冲片槽型、铁心长度、矽钢

片材料、绕组、或某些工艺与基本系列不同,使电机具有某种不同的特

性(例如YD变级多速异步电机、YX高效电动机、YH高转差率电动机)或

适应某些特殊电源条件(例如异频异压电动机),这种派生电机的电气

参数在不断的变化,使得产品具有某种特殊的防护能力但电机的基本结

构不变。

结构派生电机

采用基本系列产品附加某一装置,构成新的产品,使之具有某种不同的性能(例如YCT电磁调速电动机、YCJ齿轮减速电动机、YEJ电磁制动电动机、YB隔爆型电机、YLB深井泵电动机、减速机用电动机等),这种电机的电气参数与基本系列相同,但结构与基本系列不同。

混合派生电机

这种电动机机既有电气参数的变化还有结构的变化,是特种电动机中最复杂的一种电动机(例如TYP变频调速电动机、锥形异步电动机、潜水电动机、盘式电动机、直线电动机、频繁正反转电动机、中频或高频高速电动机等等)。

小型交流电动机的选型要点

1 ??根据机械的负载性质和生产工艺,对电动机的起动、制动、反转、调速等要求,合理选择电机的类型。

2 ??根据负载转矩、转速变化范围和起动频繁程度等要求。考虑电动机的温升限制、过载能力和起动转矩,合理选????择电动机的功率,使功率匹配合理,力求安全、可靠、经济。

3 ??根据使用场所的环境条件,如温度、湿度、灰尘、雨水、瓦斯、腐蚀及易爆气体含量等,考虑必要的保护方式????,选择电动机的防护结构型式。

4 ??根据企业电网电压标准和对功率因数的要求,确定电动机的电压等级。

5 ??根据生产机械的最高转速和对电力传动调速系统的要求,以及机械减速的复杂程度,选择电动机的电压等级。

6 ??选择电机时,要考虑产品的价格、建设费用和运行费用,力求综合经济效益最好,如在干燥、洁净的场所,应????尽量采用“IP23”的电机,因为这种电机的价格约为同容量“IP44”电机的70%,而且制造厂可以节约材料,对????于连续运转、负载率高的负载,宜采用高效率电机,以求节能和提高综合经济效益。

7 ??选择电机时,要考虑影响安装、运行和维护的因数,力求安装和检修方便,运行可靠。

电机选型时参照的标准及参数概念

电机的工作制及定额

电机的运行条件

电机的温升

电机的介电性能

电机的外壳防护等级

电机的冷却方法

电机的结构及安装型式

电机的噪声限值

电机的振动限值

电机的功率等级

电机的工作制:

是对电机承受负载情况的说明,它包括启动、电制动、空载、断能停转以及这些阶段的持续时间和先后顺序,工作制分以下9类:

S1 连续工作制:在恒定负载下的运行时间足以达到热稳定。

S2 短时工作制:在恒定负载下按给定的时间运行,该时间不足以达到热稳定,随之即断能停转足够时间,???使电机再度冷却到与冷却介质温度之差在2K以内。

S3 断续周期工作制:按一系列相同的工作周期运行,每一周期包括一段恒定负载运行时间和一段断能停转???时间。这种工作制中的每一周期的起动电流不致对温升产生显着影响。

S4 包括起动的断续周期工作制:按一系列相同的工作周期运行,每一周期包括一段对温升有显着影响的起???动时间、一段恒定负载运行时间和一段断能停转时间。

S5 包括电制动的断续周期工作制:按一系列相同的工作周期运行,每一周期包括一段起动时间、一段恒定???负载运行时间、一段快速电制动时间和一段断能停转时间。

S6 连续周期工作制:按一系列相同的工作周期运行,每一周期包括一段恒定负载运行时间和一段空载运行???时间,但无断能停转时间。

S7 包括电制动的连续周期工作制:按一系列相同的工作周期运行,每一周期包括一段起动时间、一段恒定???负载运行时间和一段快速电制动时间,但无断能停转时间。

S8 包括变速变负载的连续周期工作制:按一系列相同的工作周期运行,每一周期包括一段在预定转速下恒???定负载运行时间,和一段或几段在不同转速下的其它恒定负载的运行时间,但无断能停转时间。

S9 负载和转速非周期性变化工作制:负载和转速在允许的范围内变化的非周期工作制。这种工作制包括经???常过载,其值可远远超过满载。

定额:

由制造厂对符合指定条件的电机所规定的,并在铭牌上标明的电参量和机械量的全部数值及持续时间和顺序定额分为最大连续定额、短时定额、等效连续定额、周期工作定额和非周期工作定额。

电机的运行条件:(海拔、环境温度、相对湿度)

海拔不超过 1000米。当运行地点的海拔指定超过1000米或冷却介质温度随海拔升高而下降时,电机的温升限值应做修正。

最高环境空气温度随季节而变化,但不超过40℃。当运行地点最高环境温度高于或低于40℃时,电机温升应做修正。

最低环境空气温度为 -15℃。但对功率小于600W(或VA)和带换向器或滑动轴承的电机最低环境温度为5℃。对用水作为冷却介质的电机,水和环境空气的最低温度为5℃。

环境空气相对湿度,运行地点的最湿月月平均最高相对湿度为90%,同时该月月平均最低温度不高于25℃

电气条件:

电源:交流电机应能适用于三相50Hz电源。

电压和电流的波形和对称性:交流电机的电源电压为实际正弦波形,对于多相电机,还应为实际平衡系统。电动机当电源电压(如为交流电源时,频率为额定)在额定值的95%-105%之间变化,输出功率应仍能维持

额定值。当电压发生上述变化时,电机的性能允许与标准的规定不同,但在电压变化达上述极限而电机做

连续运行时,温升限值允许超过的最大值为:

额定功率为1000KW(或KVA)及以下的电机-10K;

额定功率为1000KW(或KVA)及以上的电机-5K;

交流电机当频率(电压为额定值)与额定值的变化不超过±1%时,输出功率应仍能维持额定值。电压和频率同时发生变化(两者变化分别不超过±5%和±1%),若两者变化都是正值,两者之和不超过 6%;或两者变化都是负值或分别为正与负值,两者绝对值之和不超过5%时,交流电机输出功率仍能维持额定值。

电机的温升:

空气冷却电机在海拔不超过1000m、环境温度不超过40℃的条件下以额定功率运行时,从运行地点的环境空气温度起算的温升限值规定如下:

电机选型计算-个人总结版(新、选)

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) BP:丝杠螺距(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) D:小齿轮直径(mm) 链轮直径(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) J1:转盘的转动惯量(kg·m2) W:转盘上物体的重量(kg) L:物体与旋转轴的距离(mm) GL:减速比(≥1,无单位) 4 电机选型总结 电机选型中需引入安全系数,一般应用场合选取安全系数S=2。则电机额定扭矩应≥S·T b;电机最大扭矩应≥S·T。同时满足负载惯量与电机惯量之间的比值≤推荐值。 最新文件仅供参考已改成word文本。方便更改

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

步进电机——步进电机选型的计算方法

步进电机——步进电机选型的计算方法 步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 ◎驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离× 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲]

定位时间[秒] (2)加/减速运行方式 加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 驱动脉冲速度[Hz]= 定位时间[秒]-加/减速时间[秒] ◎电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(TL) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动

电动机的选择及设计公式

一、电动机的选择 1、空气压缩机电动机的选择 1.1电动机的选择 (1)空压机选配电动机的容量可按下式计算 P=Q(Wi+Wa) ÷1000ηηi2 (kw) 式中P——空气压缩机电动机的轴功率,kw Q——空气压缩机排气量,m3/s η——空气压缩机效率,活塞式空压机一般取0.7~0.8(大型空压机取大值,小型空压机取小值),螺杆式空压机一般取0.5~0.6 ηi——传动效率,直接连接取ηi=1;三角带连接取ηi=0.92 Wi——等温压缩1m3空气所做的功,N·m/m3 Wa——等热压缩1m3空气所做的功,N·m/m3 Wi及Wa的数值见表 Wi及Wa的数值表(N·m/m3) 1.2空气压缩机年耗电量W可由下式计算 W= Q(Wi+Wa)T ÷1000ηηiηmηs2 (kw·h) 式中ηm——电动机效率,一般取0.9~0.92 ηs ——电网效率,一般取0.95 T ——空压机有效负荷年工作小时

2、通风设备电动机的选择 (1)通风设备拖动电动机的功率可按下式计算 P=KQH/1000ηηi (kw) 式中K——电动机功率备用系数,一般取1.1~1.2 Q——通风机工况点风量,m3/s H——通风机工况点风压轴流式通风机用静压,离心式通风机用全压,Pa η——通风机工况点效率,可由通风机性能曲线查得 ηi——传动效率,联轴器传动取0.98,三角带传动取0.92 (2)通风机年耗电量W可用下式计算 W=QHT/1000ηηiηmηs 式中ηm——电动机效率, ηs ——电网效率,一般取0.95 T ——通风机全年工作小时数 3、矿井主排水泵电动机的选择 (1)电动机的选择 排水设备拖动电动机的功率可按下式计算 P=KγQH/1000η (kw) 式中K——电动机功率备用系数,一般取1.1~1.5 γ——矿水相对密度,N/m3 Q ——水泵在工况点的流量,m3/s H ——水泵在工况点的扬程,m

步进电机选用计算方法

步进电机选用计算方法 步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个步距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。 选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。 选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。 选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。 选择步进电机需要进行以下计算: (1)计算齿轮的减速比 根据所要求脉冲当量,齿轮减速比i计算如下: i=(φ.S)/(360.Δ) (1-1) 式中φ ---步进电机的步距角(o/脉冲) S ---丝杆螺距(mm) Δ---(mm/脉冲) (2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。 Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2) 式中Jt ---折算至电机轴上的惯量(Kg.cm.s2) J1、J2 ---齿轮惯量(Kg.cm.s2)

电机功率计算公式

电机功率计算公式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一,电机额定功率和实际功率的区别 是指在此数据下电机为最佳工作状态。 额定电压是固定的,允许偏差10%。 电机的实际功率和实际电流是随着所拖动负载的大小而不同; 拖动的负载大,则实际功率和实际电流大; 拖动的负载小,则实际功率和实际电流小。 实际功率和实际电流大于额定功率和额定电流,电机会过热烧毁; 实际功率和实际电流小于额定功率和额定电流,则造成材料浪费。 它们的关系是: 额定功率=额定电流IN*额定电压UN*根3*功率因数 实际功率=实际电流IN*实际电压UN*根3*功率因数 二,280KW水泵电机额定电流和启动电流的计算公式和相应规范出处 (1)280KW电机的电流与极数、功率因素有关一般公式是:电流=((280KW/380V)0.8.5机的电流怎么算 答:⑴当电机为单相电机时由P=UIcosθ得:I=P/Ucosθ,其中P为电机的额定功率,U为额定电压,cosθ为功率因数; ⑵当电机为三相电机时由P=√3×UIcosθ得:I=P/(√3×Ucosθ),其中P为电机的额定功率,U为额定电压,cosθ为功率因数。 功率因数

在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号 cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。 (1) 最基本分析:拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。在这个例子中,功率因数是 (如果大部分设备的功率因数 小于时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。保尔金能使两个峰值重新接近在一起,从而提高系统运行效率。 对于功率因数改善

如何通过电动机功率计算公式来选择合适功率大小的电动机

如何通过电动机功率计算公式来选择合适功率大小的电动机 如何通过电动机功率计算公式来选择合 适功率大小的电动机如何通过电动机功率计算公式来选择合适功率大小的电动机,电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选择时如果电动机功率选得过小(就会出现“小马拉大车”现象,造成电动机长期过载(使其绝缘因发热而损坏(甚至电动机被烧毁;如果电动机功率选得过大(就会出现“大马拉小车”现象(其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。下面电工论坛给大家介绍两种不同的选择方法。第一种方法是采用电机功率计算公式来选择。由于不同设备应用场合不同,所以通过测量可得到的数据不一样,一个功率计算公式方法不一定能适应所有设备选择电机的场合。下面我们介绍常用的两个计算公式的思路,请大家根据自身企业设备的情况进行甑别选择。电机功率计算公式一:.通过能量守恒定律的思路来计算所需电机的功率。例子:电机功率的计算公式扬程40米,流量45L/S (也就是每秒要将45L的水提升40米), 假设管径是100MM,水的流速是(45*10,-3)/(π/4*102)=5.732M/S。这种情况下怎样来选择合适功率的电机呢,通过电机功率计 算公式选择合适的电机.水每秒获得的能量是动能+势能动能 E1,0.5*45*5.732,2,4237J势能E2,45*9.8*40,17640J总能量E,E1+E2,21877J 所需功率,21877W,21.877KW (都是以一秒为单位计算的)假设加压泵的效率η,0.8 https://www.doczj.com/doc/e12889272.html,则电机所需功率P,21.877/0.8=27KW电机功率计算公式二:.通过公式P=F*V/1000(P=计算功率KW,F=所需拉力N,工作机线速度M/S)来选择。通过电机功率计算公式选择合适的电机对于恒定负载连续工作方式,可按下式计算所需电动机的功率:P1(kw):P=P/n1n2式中n1为生产机械的效率;n2为电动机的效率,即传动效率。按上式求出的功率P1,不一定与产品功率相同。因此(所选电动机的额定功率应等于或稍大于计算所得的功率。通过以上两种电机功率计算公式结果都是相差不大的,没有对错之分,只是不同的机械设备应用时所能提供的已知参数不一样,所以给大家推荐这两种电机功率计算公式方法,如果不正确的地方,欢迎指正,以上公式仅供参考。我厂不对通过此公式计算的结果承担任何的责任。第二种方法是通过类比法来选择合适功率大小的电动机(就是与类似生产机械所用电动机的功率进行对比)。这也是在实际生产中最常用最实际的方法。具

电机的选型计算资料

电机选型计算书 PZY 电机(按特大型车设计即重量为2500吨) 一、提升电机 根据设计统计提升框架重量为:2200kg,则总提升重量为G=2500+2200=4700kg 。设计提升速度为5-5.5米/分钟,减速机效率为0.95。 则提升电机所需要的最小理论功率: P=386.444495 .0605.58.94700=??? 瓦。 设计钢丝绳绕法示意图: 如图所示F=1/2*G ,V2=2*V1 即力减半,速度增加一 倍,所以F=2350 kg 。 根据设计要求选择电机功率应P >4444.386瓦,因为所有车库专用电机厂家现有功率P >4444.386瓦电机最小型号 5.5KW ,所以就暂定电机功率P=5.5KW ,i=60。 钢丝绳卷筒直径已确定为260mm ,若使设备提升速度到 5.5m/min 即0.09167m/s ;

由公式: D πων= 可求知卷筒转速: r D 474.1326 .014.311=?==πνω 查电机厂家资料知:电机功率:P=5.5KW 速比: i=60电机输出轴转速为ω=25r ,扭矩为M=199.21/kg ·m ,输出轴径d=φ60mm 。 则选择主动链轮为16A 双排 z=17,机械传动比为: 25474.13i 1' ==z z 54.31474 .131725z 1=?= 取从动轮16A 双排z=33; 1).速度校核: 所选电机出力轴转速为ω=25r ,机械减速比为33/17,得提升卷筒转速: r 88.1233 17251=?=ω 综上可知:提升钢索自由端线速度: min)/(52.1026.088.1214.3m D =??==πων 则提升设备速度为:v=10.52/2=5.26m/min 。 2).转矩校核: 设备作用到钢索卷筒上的力为:G/2=2350kg 。

电机选型计算公式总结

For personal use only in study and research; not for commercial u s e 电机选型计算公式总结功率:P=FV(线性运动) T=9550P/N(旋转运动) P——功率——W F——力——N V——速度——m/s T——转矩——N.M 速度:V=πD N/60X1000 D——直径——mm N——转速——rad/min 加速度:A=V/t A——加速度——m/s2 t——时间——s

力矩:T=FL

惯性矩:T=Ja L ——力臂——mm (圆一般为节圆半径R ) J ——惯量——kg.m2 a ——角加速度——rad/s2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ?? ??=π (kgf·cm·s 2) 角加速度a=2πn/60t v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 2 2 1????? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2);

雷赛步进电机选型参考

步进电机的种类和特点 步进电机在构造上有三种主要类型:反应式(Variable Reluctance,VR)、永磁式(Permanent Magnet,PM)和混合式(Hybrid Stepping,HS)。 * 反应式 定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达1.2°、但动态性能差、效率低、发热大,可靠性难保证。 * 永磁式 永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为7.5°或15°)。 * 混合式 混合式步进电机综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。其特点是输出力矩大、动态性能好,步距角小,但结构复杂、成本相对较高。 按定子上绕组来分,共有二相、三相和五相等系列。最受欢迎的是两相混合式步进电机,约占97%以上的市场份额,其原因是性价比高,配上细分驱动器后效果良好。该种电机的基本步距角为1.8°/步,配上半步驱动器后,步距角减少为0.9°,配上细分驱动器后其步距角可细分达256倍 (0.007°/微步)。由于摩擦力和制造精度等原因,实际控制精度略低。同一步进电机可配不同细分的驱动器以改变 精度和效果。 雷赛步进电机系列 雷赛两相、三相混合式步进电机,采用优质冷轧钢片和耐高温永磁体制造,产品规格涵盖35-130范围。具有温升低、可靠性高的特点,由于其具有良好的内部阻尼特性,因而运行平稳,无明显震荡区。可满足不同行业、不同环境下的使用需求。 雷赛采用专利技术研发的三相步进电机驱动系统,更好地解决了传统步进电机低速爬行、有共振区、噪音大、高速扭矩小、起动频率低和驱动器可靠性差等缺点,具有交流伺服电机的某些运行特性,其运行效果可与进口产品相媲美。 两相步进电机命名规则 <> 上例表示机座号为57mm,两相混合式,步距角为1.8度,扭矩0.9Nm,设计序号01,单边出轴的电机。 三相步进电机命名规则 <> 上例表示机座号为57mm,三相混合式,步距角为1.8度,扭矩0.9Nm,设计序号01,单边出轴的电机。

电动车电机及电池选型计算

电动车电机及电池选型 计算 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

C V11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 2、关于CV11整车参数 3、轮边电机选型计算 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率

其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;tm为起步加速过程的时间(s);Vm为起步加速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩 电机的基数、额定转矩 电机符合基速以下恒转矩,基速以上恒功率,因此在基速时,电机有最大功率和最大转矩。根据以下公式: 经过计算,取额定转速为250rpm,额定转矩为124Nm。

伺服电机选型计算公式

伺服电机选型计算公式 伺服电机选择的时候,首先一个要考虑的就是功率的选择。一般应注意以下两点: 1。如果电机功率选得过小.就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。 2。如果电机功率选得过大.就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较: P=F*V/100 (其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s) 此外.最常用的是采用类比法来选择电机的功率。所谓类比法,就是与类似生产机械所用电机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。试车的目的是验证所选电机与生产机械是否匹配。 验证的方法是:使电机带动生产机械运转,用钳形电流表测量电机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。 如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大,则表明所选电机的功率合适。如果电机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电机的功率选得过大,应调换功率较小的电机。 如果测得的电机工作电流比铭牌上标出的额定电流大40%以上.则表明电机的功率选得过小,应调换功率较大的电机。 实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。即T = 9550P/n 式中: P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。

步进电机的计算与选型实用计算

步进电机的计算与选型实 用计算 Prepared on 22 November 2020

步进电机的计算与选型 对于步进电动机的计算与选型,通常可以按照以下几个步骤: 1)根据机械系统结构,求得加在步进电动机转轴上的总转动惯量eq J; T; 2)计算不同工况下加在步进电动机转轴上的等效负载转矩eq 3)取其中最大的等效负载转矩,作为确定步进电动机最大静转矩的依据; 4)根据运行矩频特性、起动惯频特性等,对初选的步进电动机进行校核。 1.步进电动机转轴上的总转动惯量eq J的计算 加在步进电动机转轴上的总转动惯量eq J是进给伺服系统的主要参数之一, 它对选择电动机具有重要意义。eq J主要包括电动机转子的转动惯量、减速装置 与滚珠丝杠以及移动部件等折算到电动机转轴上的转动惯量等。 T的计算 2.步进电动机转轴上的等效负载转矩eq 步进电动机转轴所承受的负载转矩在不同的工况下是不同的。通常考虑两 种情况:一种情况是快速空载起动(工作负载为0),另一种情况是承受最大 工作负载。 T (1)快速空载起动时电动机转轴所承受的负载转矩eq1 T=T+T+T (4-8) eq1amax f0 T——快速空载起动时折算到电动机转轴上的最大加速转矩,单位式中amax 为N·m; T——移动部件运动时折算到电动机转轴上的摩擦转矩,单位 f N·m; T——滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩,单位 为N·m。

具体计算过程如下: 1)快速空载起动时折算到电动机转轴上的最大加速转矩: amax eq 2T =J =60eq m a J n t πε (4-9) 式中 eq J ——步进电动机转轴上的总转动惯量,单位为2kg m ?; ε——电动机转轴的角加速度,单位为2/rad s ; m n ——电动机的转速,单位r/min ; a t ——电动机加速所用时间,单位为s ,一般在~1s 之间选取。 2)移动部件运动时折算到电动机转轴上的摩擦转矩: f T =2F i πη摩h P (4-10) 式中 F 摩——导轨的摩擦力,单位为N ; h P ——滚珠丝杠导程,单位为m ; η——传动链总效率,一般取0.70.85η=; i ——总的传动比,/s m i n n =,其中m n 为电动机转速,s n 为丝杠的 转速。 其中式(4-10)中的导轨的摩擦力为: F μ摩c =(F +G) (4-11) 式中 μ——导轨的摩擦因素(滑动导轨取~,滚动导轨取~); c F ——垂直方向的工作负载,车削时为c F ,立铣时为z F ,单位为N ,空载时c F =0; G ——运动部件的总重力,单位为N ; 3)滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩:

关于电动车电机及电池选型计算

关于电动车电机及电池选 型计算 This manuscript was revised on November 28, 2020

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率 其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;t m为起步加速过程的时间(s);Vm为起步加 速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩

信浓步进电机STP-43D2035选型及使用说明

STP-43D2035最初是我公司要求信浓工厂定制的一款跑高速的42步进电机,是按照标准型号SST43D2160参数定制的,主要变更之处是将电机轴长加长到 24mm以方便安装同步轮,并配好引线方便客户直接使用。但实际应用中很少用单极驱动了,所以大部分客户都是串联接线用于中速运行场合,目前多用于医疗设备和上板机设备上。 STP-43D2035的主要电气特性参数如下: STP-43D2035主要外形尺寸:

现在很少用户会选用STP-43D2035用于本来设计目的的单极驱动方式,绝大多数用双极驱动,配双极驱动器时在高速运行场合STP-43D2035用半绕组接线,额定电流还是1.6A,步进电机距频图参考SST43D2160。但如果用于低于300rpm 转速下工作,可以用STP-43D2035串联接线,额度电流变成1.13A,这时候电机距频图可以参考SST43D2085。综上所述,如果不是用串联接线用于低速运行场合,不太推荐选用STP-43D2035。 STP-43D2035接线图: 单极驱动的时候按照上图接线,双极驱动的时候,半绕接线可以不接A-B-,接A,Acom和B,Bcom,串联接线的时候不接Acom,Bcom,接AA-和BB-。

STP-43D2035单极驱动下的距频图和半绕接线可以参考SST43D2160距频图,串联接线参考SST43D2085距频图。X轴是驱动器不细分情况下的脉冲频率值,这个脉冲频率*0.3=转速,rpm。 如果需要双出轴的,对应型号是STP-43D2035-01,和STP-43D2035是插头式出线不一样,这款双出轴步进电机STP-43D2035-01是引线式出线。如果工作转速比较高的话,双出轴建议选用比较常用的SST43D2126。另外,这些双出轴步进电机维科特机电都有配上刹车器的刹车步进电机,需要的话请咨询维科特机电或者浏览公司网站。 配套驱动器推荐选用DM3622,电压范围DC8~36V,电流峰值0.2~2.2A,最大细分128细分,带自检和连续自运行、受控自运行等功能,支持单双脉冲信号,运行噪声低。如果配套信浓步进电机驱动器,推荐选用XNFDR4,但电流值偏大,匹配度不是很好。

伺服电机的选型计算方法

伺服电机的选型计算方法
2012-4-17 10:51:00 来源:kingservo
1、
伺服电机和步进电机的性能比较
步进电机作为一种开环控制的系统, 和现代数字控制技术有着本质的联系。 在目前国 内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交 流伺服电机也越来越多地应用于数字控制系统中。 为了适应数字控制的发展趋势, 运动控 制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。 虽然两者在控制方 式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二 者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般 为 0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司 (SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为 1.8°、 0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合 式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以京伺服(KINGSERVO) 全数字式交流伺服电机为例,对于带标准 2500 线编码器的电机而言,由于驱动器内部采 用了四倍频技术,其脉冲当量为 360°/10000=0.036°。对于带 17 位编码器的电机而言, 驱动器每接收 131072 个脉冲电机转一圈,即其脉冲当量为 360°/131072=0.0027466°, 是步距角为 1.8°的步进电机的脉冲当量的 1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。 振动频率与负载情况和驱动器性能有关, 一 般认为振动频率为电机空载起跳频率的一半。 这种由步进电机的工作原理所决定的低频振 动现象对于机器的正常运转非常不利。 当步进电机工作在低速时, 一般应采用阻尼技术来 克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳, 即使在低速时也不会出现振动现象。 交流伺服系统具有 共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检 测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降, 且在较高转速时会急剧下降, 所以其最高工 作转速一般在 300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为 2000RPM 或 3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以京伺服 (KINGSERVO)交流伺服系统为例, 它具有速度过载和转矩过载能力。 其最大转矩为额定转 矩的三倍, 可用于克服惯性负载在启动瞬间的惯性力矩。 步进电机因为没有这种过载能力, 在选型时为了克服这种惯性力矩, 往往需要选取较大转矩的电机, 而机器在正常工作期间 又不需要那么大的转矩,便出现了力矩浪费的现象。 五、运行性能不同

步进电机选型的计算示例

步进电机选型的计算示例 一、必要脉冲数和驱动脉冲数速度计算的示例 下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。 1.1 驱动滚轴丝杆 如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下: 必要脉冲数=100 10 × 360° 1.2° =3000[脉冲] 如果采用自启动方式驱动1秒钟,则驱动脉冲速度应该这样计算: 3000[Pulse]/1[sec]=3[kHz] 但是,自启动速度不可能是5kHz,应该采用加/减速运行方式来驱动。如果加/减速时间设置为定位时间的25%,启动脉冲速度为500[Hz],则计算方法如下: 驱动脉冲速度[Hz]=3000[脉冲]-500[Hz]×0.25[秒] 1[秒]-0.25[秒] =3.8 [kHz] 如图所示: 1.2驱动传动带 如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟。驱动轮的周长即旋转一圈移动的距离大约为50[mm]。 因此,所需要的必要脉冲数为: 必要脉冲数=1100 50 × 360° 1.2° =6600 [脉冲]

所需参数同上例驱动滚轴丝杆,采用加/减速运行模式,则驱动脉冲速度为: 驱动脉冲速度[Hz]=6600[脉冲]-500[Hz]×0.25[秒] 1[秒]-0.25[秒] =8.7 [kHz] 如图所示: 二、负载力矩的计算示例(T L) 下面给出的是一个3相步进电机负载力矩的计算示例。这是一个实际应用例子,其中的数字公式有助于更好的理解电机选型的应用。 2.1 滚轴丝杆驱动水平负载 如下图,滚轴丝杆驱动水平负载,效率为90%,负载重量为40千克,则负载力矩的计算方法如下: T L=m·P B 2πη × 1 i [kgf·cm] T L=40[kg]×1[cm] 2π×0.9 × 1 1 =7.07 [kgf·cm] 2.2 传送带驱动水平负载 传送带驱动水平负载,效率为90%,驱动轮直径16毫米,负载重量是9千克,则负载力矩的计算方法如下:

步进电机选型的步骤及如何选择步进电机.docx

在选择步进电机时可以按以下步骤进行选择,这样可以避免选型不当带来的麻烦。具体如下,仅供参考。 1、步进电机转矩的选择 步进电机的保持转矩,近似于传统电机所称的“功率”。当然,有着本质的区别。步进电动机的物理结构,完全不同于交流、直流电机,电机的输出功率是可变的。通常根据需要的转矩大 小 ( 即所要带动物体的扭力大小) ,来选择哪种型号的电机。大致说来,扭力在以下,选择20、 28、35 、39、42( 电机的机身直径或方度,单位:mm);扭力在左右的,选择57 电机较为合适。扭 力在几个或更大的情况下,就要选择86、 110、 130 等规格的步进电机。 2、步过电机转速的选择 对于电机的转速也要特别考虑。因为,电机的输出转矩,与转速成反比。就是说,步进电机 在低速 ( 每分钟几百转或更低转速,其输出转矩较大) ,在高速旋转状态的转矩(1000 转 / 分 --9000 转) 就很小了。当然,有些工况环境需要高速电机,就要对步进电动机的线圈电阻、电感等指标进 行衡量。选择电感稍小一些的电机,作为高速电机,能够获得较大输出转矩。反之,要求低速 大力矩的情况下,就要选择电感在十几或几十mH,电阻也要大一些为好。 3、步进电机空载起动频率的选择 步进电机空载起动频率,通常称为“空起频率”。这是选购电机比较重要的一项指标。如果 要求在瞬间频繁启动、停止,并且,转速在1000 转 / 分钟左右 ( 或更高 ) ,通常需要“加速启动” 。

如果需要直接启动达到高速运转,最好选择反应式或永磁电机。这些电机的“空起频率”都比较高。 4、步进电机的相数选择 步进电机的相数选择,这项内容,很多客户几乎没有什么重视,大多是随便购买。其实,不 同相数的电机,工作效果是不同的。相数越多,步距角就能够做的比较小,工作时的振动就相对 小一些。大多数场合,使用两相电机比较多。在高速大力矩的工作环境,选择三相步进电机是比较实用的。 5、针对步进电机使用环境来选择 特种步进电机能够防水、防油,用于某些特殊场合。例如水下机器人,就需要放水电机。对 于特种用途的电机,就要针对性选择了。 6、根据您的实际情况可否需要特殊规格 特殊规格的步进电机,请和我们沟通,在技术允许的范围内,加工订货。例如,出轴的直径、长短、伸出方向等。 7、如有必要最好与厂家的技术工程师进一步沟通与确认型号

电机选型计算公式

附录1:根据负载条件选用电机 电机轴上有两种负载,一种是转矩负载,另一种是惯量负载。选用电机时,必须准确计算这些负载,以便确保满足如下条件: §(1). 当机床处于非切削工作状态时,在整个速度范围内负载转矩应小于电机的连续额定 转矩。 如果在暂停或以非常低的速度运行时,由于摩擦系数增大,使得负载转矩增大并超 过电机的额定转矩,电机有可能出现过热。另一方面,在高速运行时,如果受粘滞性影响,而使转矩增大且超过额定转矩,由于不能获得足够的加速转矩,加速时间常数有可能大大增加。 §(2). 最大切削转矩所占时间(负载百分比即“ON ”时间)满足所期望的值。 §(3). 以希望的时间常数进行加速。一般来说,负载转矩有助于减速,如果加速不成问题, 以同一时间常数进行减速亦无问题。加速检查按以下步骤进行。 (I)假设电机轴按照NC 或位控所确定的ACC/DEC 方式进行理想的运动来得到加速速 率。 (II)用加速速率乘以总惯量(电机惯量+负载惯量)计算出加速转矩。 (III)将负载转矩(摩擦转矩)与加速转矩相加求得电机轴所需转矩。 (IV)需要确认,第(III)项中的转矩应小于电机的转矩(最大连续转矩),同时,小于伺服放大器电流限制回路所限制的转矩。 第(II)项中的加速转矩由下式来计算。 A.对于线性加速情况 ()() () T N t J J e N N t K e a m a m l K t r M a s K t s a s a = ??+-=-?-????? ? -?-?6021 1111π 式中:T a : 加速转矩(Kg ·Cm ) N M : 快速进给时的电机速度(rpm ) t a: 加速时间(sec ) J m: 电机惯量(Kg ·Cm ·S 2)

相关主题
文本预览
相关文档 最新文档