当前位置:文档之家› 电桥法测试电力电缆故障原理

电桥法测试电力电缆故障原理

电桥法测试电力电缆故障原理
电桥法测试电力电缆故障原理

电桥法测试电力电缆故障原理及接线

1 电桥法测试电力电缆故障原理

直流电阻电桥法(简称电阻电桥)主要应用于测试阻值小于10k 电力电缆的绝缘故障。电阻电桥应用于测电缆故障最基本的理论依据之一是电阻公式s

l R ρ=。当电缆的截面积S 及导体材料一定时,电缆的长度与电阻值成反比例关系。

图2 等效电路 Ag

Bg R R R R 21= C g L R R R L 22

11?+= 由此可见,故障距离Lg 与故障电阻值Rg 无关。同时我们看到,故障距离Lg 与电缆长度密切相关,如果不知道电缆长度,也就无法计算测得故障距离。分析图1可知,测试电缆故障时,电力电缆必须要有一完好相,否则不能组成电桥回路。

2 接线图

在实际电路接线过程中,主要是g 点位置的选择及确定。如测试单芯电缆主绝缘故障时,若采用对电缆线芯加压则接线图如图3。图中屏蔽层接地,在故障点处,电流流经金属屏蔽b

a g

E

Rbg Rag

R2

R1

层通过大地与电源构成回路。

图3 用电桥法对电缆线芯加压测试故障点接线图

但在实际应用中,电缆线芯一端直接与开关的刀闸相连,另一端则与中间接头或终端相连。对电缆线芯加压测试故障点需要剥开电缆的绝缘,操作过程较为复杂,不便于快速检测以恢复电力正常运行,为此,课题组研究出一种新方法,对电缆金属屏蔽层加压测试故障点位置,接线图如图4。图中电缆线芯接地,在故障点处,电流流经线芯通过大地与电源构成回路。

短接线

图4 用电桥法对电缆金属屏蔽层加压测试故障点接线图

3 实际测试结果分析

4 结论

电桥法测电阻18175

实验名称 惠斯登电桥测电阻 (所属实验室:大学物理实验中心217分室) 一、实验基本介绍 电桥是一种比较式仪器,是很重要的电磁学基本测量仪器之一。电桥按其结构特点可分为交流电桥和直流电桥,也可分为单臂电桥和双臂电桥;按工作状态可分为平衡电桥和非平衡电桥。惠斯登电桥称为单臂电桥,是最常用的直流电桥,主要用于低电阻的测量。 二、实验仪器介绍 实验仪器:QJ23型直流电阻电桥,万用电表,电阻若干只。 图 1 QJ23型直流电阻电桥、指针万用表、待测电阻 【QJ23型箱式惠斯登电桥】 如图1所示。箱式直流电桥具有便于携带、准确度高和使用方便等特点。其电路原理图如图2所示。R 1、R 2为比例臂,R s 为比较臂,改变b 点的位置就可以改变R 1/R 2(即比例系数K )的比值。例如将倍率开关 b 置于“102”时,便有 120.9998.90281.009409.09409.0981.009 1008.9020.999 R R +++++==+ 实验中R x 的误差主要取决于R s ,而不是R 1/R 2的比值。从图2可知,比较臂R s 由四只可变的标准电阻相互串联,其总阻值可达9999Ω。所以该电桥可测量1~9999000Ω范围内的电阻,基本量程为100~99990Ω。 调零旋钮 倍率选择 灵敏度旋钮

图3为QJ23型箱式电桥面板示意图。面板中下部有四个标有“1000 ?”、“100 ?”、“10 ?”和“1 ?”的旋钮,是用来调节比较臂R s的,调节范围为0~9999Ω。使用与读取方法同电阻箱。 面板右下角的“R x ”接线柱是用来联接被测电阻的; 左侧上方的“+E-”用于联接外部电源;“内、G、外”为 检流计选择端钮,当“G”和“内”用短路片联接时,则 在“G”和“外”之间需外接检流计;在“G”和“外” 短路时,则箱式电桥内附的检流计接入了电路。面板右 上角为倍率“K”选择开关。 面板左下角的“B”“G”按钮,从图2可以看出, 前者用于接通电源,后者用于接通检流计支路。在使用 时,“B”、“G”两个电健要同时使用,但需先按下“B”, 再按下“G”;断开时则先松开“G”,再松开“B”, 以保护检流计。 所以使用箱式电桥时,先将倍率K(R 1/R 2 )确定, 然后调节R S 使电桥平衡,由公式(3)便可计算出测量结果。 三、实验内容预习 实验目的 1. 理解直流电桥的构成和工作原理; 2. 掌握万用电表的使用和电桥的调节方法; 3. 用直流电桥测定电阻的阻值。 实验原理 惠斯登电桥测量电阻的原理 惠斯登电桥的原理如图4所示。图中R 1、R 2 、R s 是已 知其阻值的标准电阻,它们与待测电阻R x 构成一个四边形, 每一边都称为电桥的臂。R 1、R 2 称为比例臂,R s 称为比较臂, R x 称为待测臂。在A、B两端接直流电源E;在C、D两点间接检流计G,结构像桥一样,故称为电桥。当C、D两点间图3图2

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.doczj.com/doc/e113188228.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.doczj.com/doc/e113188228.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.doczj.com/doc/e113188228.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

电桥电缆故障测试仪

电桥电缆故障测试仪基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点(低阻、高阻及闪络型击穿)及没有击穿但绝缘电阻偏低点的定位:如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。当然,也可用于电缆厂内各种线缆的缺陷点定位。粗测电缆故障定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。高压电桥电缆故障测试仪内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥置于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。与波反射法相比,高压电桥电缆故障测试仪特别适用于: 1.敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点,如电缆中间接头的线性高阻击穿(这种主要是由于电缆接头制作工艺不过关造成的。施加高压时只泄露爬弧不击穿放电)。 2. 高压电桥平衡法没有测试盲区,用于判断短电缆及靠近电缆端头的击穿点。 3. 高压电桥法仅仅要求电缆相线电阻的均匀性即可进行测量。而行波传输特性不好的电缆,如介质损耗很大的PVC低压电缆; ◎设备采用高频高压开关电源构成高压恒流源,电压高,电流稳定,体积小,重量轻。 ◎采用高灵敏度放大器及检流计指示平衡,与比例电位器构成平衡电桥,整体置于高电位。面板上的操作钮处于低电位,通过绝缘杆操作电桥。

高压电桥法在电缆故障定位中应用的要点

高压电桥法在电缆故障定位中应用的要点摘要:本文简述了高压电桥定位的原理,与波发射法(TDR)的比较,及二种电桥的特点。介绍了电桥在电缆主绝缘及高压电缆金属护套缺陷点的使用经验。 关键词:电缆故障高压电桥电缆主绝缘高阻定位多点缺陷点定位相间击穿定位 一.概述 供电系统一直认为电缆定位比较困难,有三分仪器,七分找的说法。随着仪表的进步,定位更为方便。实践中,选择合理的仪器及定位经验仍然很重要。 通常,电力电缆故障点定位分四步进行 1.判断故障点类型 2.选择合适方法及相应的仪器 3.粗测定位 4.精确定点 粗测定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。 利用故障点两侧的电缆线芯电阻与比例电阻构成Murray电桥,是传统,经典的电缆故障定位方法,其应用几乎与电缆使用同步,有上百年的历史。定位电桥设备价格低,操作简单,我国过去曾普遍使用。而目前大量应用交联聚乙烯电缆,击穿后难以形成导电区,击穿点电阻很高,甚至能耐高电压,呈闪烙型击穿。

在国内保有量最大的QF2型电桥,额定试验电压只有500V,无法对高阻故障定位。又因为电子技术的进步,波反射法定位得到了普及,使电桥法的应用逐步减少,不为新的电缆用户所知,因此,电桥法几乎被遗忘。 最近,我们采用上海慧东电气设备有限公司研制的GZD型高压电桥,该设备内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥臵于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。本文总结了一些应用GZD型高压电桥定位电缆绝缘及护套缺陷点的经验,供广大同行参考。 二.原理与设备 电桥法的依据是线芯(或屏蔽层)电阻均匀,与长度成比例。下图1为典型用法: 试样为三芯钢带铠装电力电缆,长度L,B相 线芯对钢带在L1处击穿。借助于A相线芯作为辅 助线。使用低阻值连线短路N、Y 两端线芯。L1段 电缆线芯电阻为R1 ,L2段电缆及A相电缆线芯

浅析电力电缆故障诊断与监测 刘国昌

浅析电力电缆故障诊断与监测刘国昌 发表时间:2019-05-17T10:23:48.903Z 来源:《电力设备》2018年第32期作者:刘国昌1 张伟平2 刘利昌3 [导读] 摘要:由于社会的不断发展,使得我国的电缆技术也在逐渐变化和进步,很多新涌现出的技术开始逐步应用到实际领域当中。 (大庆油田矿区服务事业部园林绿化公司黑龙江大庆市 163712) 摘要:由于社会的不断发展,使得我国的电缆技术也在逐渐变化和进步,很多新涌现出的技术开始逐步应用到实际领域当中。不过显然,相关的各类技术并不能攻克全部电缆故障问题,应该在实际的处理当中,利用相对精确度高一些的故障距离检测方式,以便在缩短维修故障时间的同时,让其产生的危害影响最小化。 关键词:电力电缆;故障诊断;监测 1导言 目前,从城市的发展和人们的生活水平状况来看,城市的整体建设规划正在不断完善,电力电缆线路在城市规划中也得到了越来越广泛的应用,与传统的线路类型相比,电力电缆能起到更好的电力资源传递效果。在电力电缆发生故障的时候,需要在第一时间完成故障地点的定位,然后尽快查找故障发生的原因,解决故障,减少中断供电的时间,提高供电的稳定性,以免影响人民群众正常的用电需求。 2电力电缆故障原因 电力电缆故障的首要原因就是绝缘介质老化变质。由于电力电缆长期持续性工作,使得电缆的外部绝缘材料会发生一定的变化,同时加之外部因素的影响,就会造成电缆严重降低绝缘能力。第二,就是电力电缆绝缘介质受潮。由于电力电缆的接头处本身的质量问题以及安装技术问题,通常情况下,电力电缆的接头处都会发生结构不密封的现象。因此,就会导致电缆的接头处经常出现受潮的现象。同时,电缆线也会存有一定的缺陷,从而造成了电缆的绝缘介质极其容易受到环境因素的影响,从而使得电缆无法正常使用。第三,就是电力电缆过热。当电力电缆线路被铺设到地下时,电缆的绝缘介质的内部就会经常出现气隙游离的情况,进而就是造成严重电力电缆出现局部过热的问题。尤其是对于一些电力电缆内部通风速度低于外部通风速度的线路,其更加会容易出现电力电缆线路过热的现象。一旦电力电缆出现局部线路过热,那么就容易导致线路外部绝缘体老化,从而降低电力电缆外部绝缘效果。第四,就是机械损伤的原因。当电力电缆投入到实际当中进行使用的过程中,往往会出现一些外部因素造成电力电缆损伤的情况。由于电力电缆的接头处或者绝缘处受到损伤,导致严重影响其正常使用。通常情况下,电力电缆的误伤有以下几方面:①其它施工项目在进行项目施工过程中对电力电缆造成了误伤。②在进行施工过程中由于施工人员的不规范操作使得电力电缆的绝缘保护层出现了损伤。③由于一些自然因素使得电力电缆的接头处或者是绝缘体受到伤害。第五,材料自身缺陷。在进行电力电缆线制造过程中,由于制造材料不规范以及在进行施工的过程中施工人员没有对电力电缆线进行成品检查,故而使得电力电缆线出现了外部绝缘体缺损的现象。同时,由于电缆在进行连接时需要一些零部件进行辅助,而这些零部件在进行加工时没有达到质量要求,故而当对其进行使用时,就会使得两根电力电缆线之间就会出现接触不严的现象,从而造成电力电缆出现故障。 3电力电缆故障诊断方法 3.1脉冲检测法 在对电力电缆进行故障诊断的过程中,脉冲检测法是一种基本的、应用范围广泛的检测方法。脉冲检测法中还分为不同的方法,包括低压脉冲法、脉冲电压法、脉冲电流法等。而脉冲检测法的检测原理就是与脉冲发射器发出相应的脉冲波,而后在出现故障的电力电缆线的节点位置就会出现相应的反射脉冲。通过对反射脉冲的时间间隔以及速度进行相应的记录,就能够较为准确的确定电力电缆出现故障的位置,而后通过对反射脉冲波进行相应的对比后对电缆出现的故障进行判断,从而为解决电力电缆的故障提供良好的数据基础。 3.2声音检测法 在对电力电缆进行故障诊断的过程中,声音检测法是一种最简单的检测方法,声音检测法的根本原理就是根据电力电缆放电过程中所发出的声音,通过对声音的进而最终判断出电力电缆故障的位置,从而迅速的解决故障。而对于敷设在明处的电力电缆线来说,由于电力电缆线发出的声音相对较小,无法通过声音来识别出电力电缆故障的具体位置。故而,相关工作人员就需要首先对电缆线的走向进行分析,而后在通过对扩音设备的应用来判断故障发生的具体位置。 3.3电容电流的检测法 一般情况下,电力电缆处于工作状态时,线路中的芯片与大地就会形成分布均匀的电容,并且与此同时,电力电缆的线路长度还会与电容量之间形成一定的线性关系。而对电流电容进行检测的方式就是根据的这一原理,通常情况下,这种电力电缆故障检测方法更多的偏向于芯片故障方面。而在对芯线进行相应的检查时,首先需要对电缆的头部进行检查,而后对电流电容进行相应的检测,最后对电缆的尾部进行检查。检查完毕后,将正常的电力电缆芯线与故障的芯线进行对比,从而找出故障位置。 3.4电桥检测法 电桥检测法的原理是利用双臂电桥来检测电力电缆线内部的电阻值,然后确定电缆线的长度,根据电缆线的长度和电阻值的变化规律来找出不符合规律的地方,确定电缆线的故障位置。利用电桥检测法检测电力电缆的故障时,需要保证检测数值的准确,尽可能的缩短电缆连接线的路径。 4对高压电缆故障的监控管理 4.1故障性质的分析和判别 当故障产生以后,首先应该分析和判别该故障的性质类型,掌握其导致的原因,比如:常见的存在着高阻和低阻的差别;很多故障是集合了多种因素的故障,还有一些为单项性质的故障;当然也包括了一些电缆短路的情况,那么结合故障间的差异,应该予以更有针对性的解决方案。而借助监测方面的技术,可以有效分析当前的数据参数,以便达到最为理想的维修护理成效。 4.2故障电缆距离方面的测量 当明确故障的性质类型以后,结合其形成原因,加以大概估测,并依靠先进的监测技术,有效对其距离实施测量和判别,尽可能把范围进行缩小,利用更快的速度发觉故障位置,显然,此环节应该有效利用监测技术,对故障的具体范围加以锁定,成为电缆故障当中不容忽视的流程内容。 4.3精准定位故障的位置

电缆故障测试仪说明书

电缆故障测试仪说明书 第一节概述 有线通信的畅通和电力的输送有赖于电缆线路的正常运行。一旦线路发生障碍,就会造成通信及时查出故障并迅速予以排除,就会造成很大的经济损失和不良的社会影响。因而,电缆故障测试仪是维护各种电缆的重要工具。电缆故障智能测试仪采用了多种故障探测方式,应用当代最先进的电子技术成果和器件,采用计算机技术及特殊性电子技术,结合本公司长期研制电缆测试仪的成功经验而推出的高科技,智能化,功能全的全新产品。 电缆故障智能测试仪是一套综合性的电缆故障探测仪器。能对电缆的高阻闪络故障,高低阻性的接地,短路和电缆的断线,接触不良等故障进行测试,若配备声测法定点仪,可准确测定故障点的精确位置。特别适用于测试各种型号、不同等级电压的电力电缆及通信电缆。

第二节功能介绍及技术指标 一、功能介绍 1.功能齐全 测试故障安全、迅速、准确。仪器采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置。 2.试精度高 仪器采用高速数据采样技术,A/D采样速度为100MHz,使仪器读取分辨率为1m,探测盲区为1m。 3.智能化程度高 测试结果以波形及数据自动显示在大屏幕液晶显示屏上,判断故障直观。并配有全中文菜单显示操作功能,无需对操作人员作专门的训练。 4.具有波形及参数存储,调出功能 采用非易失性器件,关机后波形、数据不易失。 5.具有双踪显示功能。 可将故障电缆的测试波形与正常波形进行对比,有利于对故障进一步判断。 6.具有波形扩展比例功能。 改变波形比例,可扩展波形进行精确测试。 7.可任意改变双光标的位置,直接显示故障点与测试

关于电力电缆故障分析与诊断技术探讨 费利定

关于电力电缆故障分析与诊断技术探讨费利定 发表时间:2018-11-14T20:13:48.483Z 来源:《基层建设》2018年第28期作者:曾维炎费利定[导读] 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。 浙江省送变电工程有限公司浙江杭州 310016 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。因此,在配网电力电缆的使用与运行的过程之中如何快速、准确地定位故障的类型以及故障点就显得非常的重要,因此需要加强对配网电力电缆故障监测的研究。 关键词:电力电缆;故障;诊断技术随着我国社会经济发展进步,电力行业迅猛发展,人们在用电方面的需求不断增大,对于电力系统的要求也越来越高。当前电力已经逐渐发展成为人们生活、生产过程中一项主要动力来源,电力电缆属于电力传输的主要介质。很多企业在电力电缆敷设方面以埋地电缆方式为主,这种电力输送方式能够将电缆与外界环境有效隔绝,避免电缆与环境之间相互作用,使电缆的运行和维护得到简化,供电安全性和可靠性有显著提高。 1 常见的电力电缆故障分析 1.1 高阻故障 如果故障区域电缆绝缘电阻值超过电缆本身电阻值,则属于高阻故障,具体可分为三种不同类型,分别是断路故障、闪络性故障、高阻泄露故障,其中闪络性故障主要是指试验电压升高时引起电流表值突然升高,试验电压下降情况下电流值回归正常,但是电缆绝缘阻值仍比较大,在故障点未有电阻通道出现,只在闪络性表面故障;高阻泄露故障,这种故障主要指在高压绝缘测试时,随着试验电压的增加,泄露电流值也会有明显升高,试验电压在上升至额定值时,泄露电流会超过最大允许值。 1.2 机械损伤 导致机械损伤的原因有三种,其一是受到外力的破坏,比如在施工过程或者运输过程中发生意外损伤,对电缆造成影响,其二是敷设造成损坏,尤其是过大拉力作用下,绝缘材料出现损伤,或者保护层发生损坏,其三是自然力的作用,在受到自然压力下两端的接头会出现膨胀电缆,护套开裂,并且还会受到气候变化的影响,产生自然缩涨。 1.3 因绝缘层破损引发的故障 绝缘层的老化、破损对输电电路的损害是不可估量的,而造成绝缘层老化、破损的原因有很多,除上述几种原因外,还要其他几种常见的原因。(1)腐蚀影响,由于一些电力电缆铺设环境存在腐蚀性较强的物质,在长期腐蚀侵蚀下,电力电缆的绝缘层遭到损坏引发故障问题。(2)摩擦损伤,在电力电缆与金属结构重合的地方,电缆与金属结构长期摩擦造成绝缘层破损,也会导致电力电缆受潮引发故障。(3)动物啃咬,电力电缆容易受到老鼠、白蚁等动物的啃咬造成绝缘层破损,导致电力电缆受潮,进而引发短路问题。 2 电力电缆故障的类型 电力电缆故障类型呈现出多样性,第一是因为低电阻接地或者短路导致故障的发生,简而言之便是电缆线路一相或者多相导体对地,绝缘电阻比正常的阻值要低,且导体具有连续性,常见的类型有单相接地、两相接地等。第二是因为电阻接地或者短路所导致的故障,该故障类型同第一点相似,但仍旧存在差别,主要是接地或短路电阻具有良好的芯线连接,较为常见的类型包括单相接地、两相接地等;第三种是开路故障电缆的各相导体均符合相应的绝缘电阻,但是针对导体进行的连续性实验结果却存在不连续的一项或者数项导体,虽然没有发生断开,但是却无法将电压及时传送给电缆终端,这种情况下则会导致故障的发生,较为常见的便是单相与两相、三相断线。 3 电力电缆故障的诊断技术 3.1 动态监测电缆负荷 电缆超负荷运行情况下会严重缩短绝缘层使用寿命,电力电缆运行中需要注意避免电缆的超负荷运行,结合电网分布以及电缆特性做好载流量的合理分配,降低电缆负荷控制在合理范围,及时更换无法满足电力输送要求电缆,使电缆运行安全稳定性得到保证。另外,还需要采取针对性技术措施做好电缆载流量的动态监测,当有超负荷情况出现时,及时采取处理措施,最大限度降低电缆故障发生率。 3.2 电桥检测法 所谓的电桥检测法主要是指在电缆中要利用双臂电桥测量出流经新线的电流阻值,然后对电缆的长度进行测量,严格按照电阻与电缆长度之间所存在的关系,对电缆之中所存在的故障点加以计算,其中在应用电桥检测法对故障进行诊断的时候,需要多角度分析,尤其要对短路点接触加以诊断,对小于一欧姆的电缆芯线间的短路接触阻值进行计算,要将故障的误差保持在三米以下,其中需要注意的是对于超过一欧姆故障连接处阻值的故障,则需要应用高电压烧穿技术,将其电阻下降到标准数值以下,然后继续利用电桥检测法进行测量。从本质上分析,利用电桥检测法对电力电缆故障进行诊断,可以提高精度测量,减少电桥连接线。 3.3 万用表法 在配网电力电缆的故障监测过程中,在万用表法之中短接了电缆内的金属屏蔽层以及电缆芯,也就是配网电力电缆的终端,而始端测量短接的电阻值,如果测得的电阻值读数为无穷大,那么就代表配网电力电缆系统之中存在有开路故障,如果电阻值的读数比线芯的两倍还要高,那么就代表系统之内出现了似断非断的故障。如果配网电力电缆采用的是三芯电缆结构,接入了金属屏蔽层,那么就需要考虑中终端位置,对屏蔽层进行短接,然后使用万用表接入开始位置,对三相间的实际电阻值进行直接测量,对绝缘层的电阻值进行掌握。而对于没有金属屏蔽层的情况,只需要检测相间电阻就可以,以对配网电力电缆的性能以及质量进行判断。 3.4 声音测量法 声音测量法主要是指检测诊断电缆故障的时候需要根据放电过程中所释放的声音进行判断,高压电缆的线芯对绝缘层闪络的放电比较适用于声音测量方法,需要应用直流耐压试验机对电力电缆故障加以诊断。其中,当电容器达到固定电压值的时候,要根据电缆故障新线放电,这个时候放电会发出滋滋的声音,可以靠听觉查出故障所在的位置,对于敷设在地下电缆如发生故障,首先需要对电缆的走向加以确定,并且在最大放电声音区域内放大设备,查找故障的发生位置,主要的方法是利用低音器缓慢地在电缆的走向处进行移动,在放电声最大的区域仔细检测。

电力电缆故障测试仪地埋线故障检测仪

T-880电力电缆故障测试仪地埋线故障检测仪T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405图片 型号:RL024280型号:RL187405 T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405内容 型号:RL024280

T-880电力电缆故障测试仪 长度测试+漏电测试 T-880加强版:长度测试+漏电测试+路径查找(功能上取得重大突破:断线点可以实现精确定位,带外铠电缆的对地短路、相线断线也能测试)---10天倒计时上市发售,目前接收预定,6月25日前预定客户到正式上市发售时送精美礼品一份。 长度测试:电缆线的断线、短路距离;也可以测试电缆线总长度(用于工程验收) 漏电测试:针对地埋线路绝缘层被破坏造成的绝缘不好定位; 路径查找:对于不知道地埋走向电缆能方便的查找出其准确走向; 工业级制造标准,不存在接口粗糙连接不好情况,专业指导,售后无忧。 使用ARM技术和FAGA技术一键自动快速测试,不用漫长等待,测试结果直观明了!采用大屏幕真彩液晶显示 适用于测量低压电力电缆的断线、混线(短路)、漏电等故障的精确位置。是缩短故障查找时间、提高工作效率、减轻线路维护人员劳动强度的得力工具。线路查修人员也可以用于线路工程验收和检查电缆电气特性。填补农电故障及小区供电故障没有相应仪表测试的空白。 产品功能: 长度测试单元: ?脉冲反射测试法,可以测试断线、混线(短路)、严重绝缘不良类型的故障距离; ?全自动测试,智能故障诊断,全中文操作菜单,液晶显示具有背光功能; ?自动增益和自动阻抗平衡技术,替代繁琐的电位器调节; ?手动分析功能,方便对电缆进行分析判断; ?可充锂电电池,智能充电,无需值守。 ?脉冲反射测试法:最大测量范围2km,测试分辨率:1m,测试盲区:0m, 脉冲宽度:80ns-10μs自动调节。 漏电测试单元: ?故障智能诊断,辅助耳机音频判断; ?背带包式设计,方便随身携带; ?对于绝缘没处理好或者绝缘层遭到破坏造成的漏电(线间漏电、对地漏电)故障均可测试; ?测试电缆地埋深度不大于3米; ?测试精度:探测误差±5cm; 其他指标: ?充电时间约3个小时,充满后连续工作时间8小时;

如何利用电桥测试实际电缆中的故障

电阻电桥基础:第一部分 摘要:利用电桥电路精确测量电阻及其它模拟量的历史已经很久远。本文讲述电桥电路的基础并演示如何在实际环境中利用电桥电路进行精确测量,文章详细介绍了电桥电路应用中的一些关键问题,比如噪声、失调电压和失调电压漂移、共模电压以及激励电压,还介绍了如何连接电桥与高精度模/数转换器(ADC)以及获得最高ADC性能的技巧。 概述 惠斯通电桥在电子学发展的早期用来精确测量电阻值,无需精确的电压基准或高阻仪表。实际应用中,电阻电桥很少按照最初的目的使用,而是广泛用于传感器检测领域。本文分析了电桥电路受欢迎的原因,并讨论在测量电桥输出时的一些关键因素。 注意:本文分两部分,第一部分回顾了基本的电桥架构,并将重点放在低输出信号的电桥电路,比如导线或金属箔应变计。第二部分,应用笔记3545介绍使用硅应变仪的高输出信号电桥。 基本的电桥配置 图1是基本的惠斯通电桥,图中电桥输出Vo是Vo+和Vo-之间的差分电压。使用传感器时,随着待测参数的不同,一个或多个电阻的阻值会发生改变。阻值的改变会引起输出电压的变化,式1给出了输出电压Vo, 它是激励电压和电桥所有电阻的函数。 图1.基本惠斯通电桥框图 式1:Vo=Ve(R2/(R1+R2)-R3/(R3+R4)) 式1看起来比较复杂,但对于大部分电桥应用可以简化。当Vo+和Vo-等于Ve的1/2时,电桥输出对电阻的改变非常敏感。所有四个电阻采用同样的标称值R,可以大大简化上述公式。待测量引起的阻值变化由R 的增量或dR表示。带dR项的电阻称为“有源”电阻。在下面四种情况下,所有电阻具有同样的标称值R,1个、2个或4个电阻为有源电阻或带有dR项的电阻。推导这些公式时,dR假定为正值。如果实际阻值减小,则用-dR表示。在下列特殊情况下,所有有源电阻具有相同的dR值。

电桥法原理

实验十八 电桥法测电阻 电桥是一种用电位比较法进行测量的仪器,被广泛用来精确测量许多电学量和非电量。在自动控制测量中也是常用的仪器之一。电桥按其用途可分为平衡电桥和非平衡电桥;按其使用的电源又可分为直流电桥和交流电桥;按其结构可分为单臂电桥和双臂电桥。本实验介绍的是直流电桥测量电阻。电阻按阻值的大小大致可分为三类:待测电阻值在1M?以上的为高阻;在1?至1M ?之间时称为中值电阻,可用单臂(惠斯登)电桥测;阻值在1?以下的为低值电阻,则必须使用双臂电桥(又称开尔文电桥)来进行测量。 一 实 验 目 的 (1)掌握直流电桥测电阻的原理和方法。 (2)学习并掌握双臂电桥测低值电阻的方法。 二 实 验 原 理 用伏安法测电阻时,由于电表精度的制约和电表内阻的影响,测量结果准确度较低。于是人们设计了电桥,它是通过平衡比较的测量方法,而表征电桥是否平衡,用的是检流计示零法。只要检流计的灵敏度足够高,其示零误差即可忽略。 用电桥测电阻的误差主要来自于比较,而比较是在待测电阻和标准电阻间进行的,标准电阻越准确,电桥法测电阻的精度就越高。 1.单臂(惠斯登)电桥的工作原理 单臂电桥线路如图1所示,被测电阻R X (即图中 R 3)与三个已知电阻R 1、R 2、R N 、连成电桥的四个臂。四边形的一个对角线接有检流计,称为“桥”,另一个对角线上接电源E ,称为电桥的电源对角线。电源接通,电桥线路中各支路均有电流通过。 A C 当 B 、D 两点之间的电位相等时,“桥”路中的电流,检流计指针指零,这时电桥处于平衡状态。此时 V 0=g I D B V =于是 2 R R N 1R R X = 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂的电阻,因此,电桥测电阻的计算式为: N X R R R R 2 1= (1) 电阻2 1R R 为电桥的比率臂,称为倍率k ,为 比较臂。以QJ-23型箱式电桥为例,它构造精细,测量范围大(1~),精确度高(在 10~范围内精确度为),QJ-23型惠斯登电桥面板外形如图2:1-待测电阻接线柱; 2-检流计按钮开关G ; 3-电源按钮开关B ; 4-检流计; 5-检流计调零旋钮;6-左侧3个接线柱是检流计连接端,当连接片接通“外接”时,内附检流计被接入桥路,当连接片连通“内接”时,检流计被短路; 7-外接电源接线柱,箱内为3节2号干电池,约4.5V ,使用时应注意外接电源接线柱是否应短路; 8-比率臂,即上述电桥电路中N R 610ΩΩ5 10%2.0±X R 21R R N R 的比值,直接刻在转盘上; 9-比较臂,即上述电桥电路中电阻箱(本处 为四个转盘)。 2.双臂电桥测低值电阻的原理 用图1所示的单臂电桥测电阻时,其中比例臂电阻R 1、R 3可用较高的电阻, 因此, 与R 1、R 3 相连的导线 7 图2 QJ-23型电桥面板图

电力电缆故障诊断

https://www.doczj.com/doc/e113188228.html, 电力电缆故障诊断 背景及意义 电力电线可以分为电缆线路和架空线路。一般来说,电缆线路比架空线路成本要高。但是,电缆具有传送同等功率损耗少、受外界环境影响小、安全可靠、占地少、优化 线路、改造及美化环境等优点,因此被广泛使用于城镇市区、发电厂、变电站及地下、海底、隧道等复杂环境。特别在城市配电网中,电缆正在逐步取代架空线⑷,成为城 市电网的主力军。 随着电缆广泛使用,面临的电力电统故障诊断的难题也愈加严峻。首先,电缆主要 敷设于隧道、地底甚至海底等环境,敷设的环境复杂隐蔽,导致电缆故障点的查找、 修复较架空线更为困难。其次,我国首批城市电缆大致在九十年代开始使用,逾多年,不少的电缆线路开始进入老年期。部分电缆线路由于投入时间较早,巳经出现绝缘老 化故障。参照故障发展的一般规律,电缆故障出现的概率应该符合洛盆曲线,即在整 个使用寿命的初期和晚期的故障率较高,在中期的故障率较低。可以预见随着电缆使 用年限的进一步增加,我国的电缆线路故障会迈入频发期。众所周知,电缆故障造成 的突发性停电事件会给用户的生命、财产安全带来严重的威胁,甚至会造成恶劣的社 会影响。避免电缆故障带来的损失是众望所归。因此,做好电力电缆故障预警及故障 快速、准确定位时科技界必须担当的职责,客观形式给我国电力科技人员提出了更高 的要求。第二届全国电气设备状态盟测与故障诊断研讨会指出电缆故障诊断的发展趋 势是从电缆现有的“预防性维修转为“预知性维修”,从”到期必修’’和故障维修”转为该修则修,即通过对电缆绝缘在线监控,在提前预知电缆故障隐患的前提下,实 现对故障的及时、准确定位。综上所述,研究基于电缆绝缘在线监控的预警方法,提 前发现电缆故障隐患可以减少停电事故,降低因停电而产生的经济损失,甚至是政治 影响、生命代价。 研究并探寻提高电缆故障定位的精度的方法有着重要的学术意义和实际应用价值。 这一难题的研究攻克在微电子技术,传感器技术、计算机及控制技术高度发展的今天 已经有好的物质基础,一旦突破将有着良好的应用前景。 电缆故障原因及类型 电缆故障的原因众多,电缆故障的形式也千差万别。为了方便进行电缆故障诊断的 研究,需要对电缆故障原因与类型进行合理的分类。按照故障原因的分类,可将故障 分为如下几类如地层变动挤压、人为等外力因素引起的机械损伤,绝缘老化,绝缘受湖,过电压,过热,设计不良和产品质量缺陷。其中,绝大部分故障初期并不会对电

电缆故障测试仪的四种实用测定方法

https://www.doczj.com/doc/e113188228.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.doczj.com/doc/e113188228.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.doczj.com/doc/e113188228.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

电力电缆故障测试报告.doc

如对您有帮助,请购买打赏,谢谢您! 电力电缆故障测试报告 时间:2010年03月29日至04月1日 地点:辽宁省盘锦市欢喜岭住宅小区 参加人员:盘锦市欢喜岭物二、凯运公司:萧队长、刘队长、胡工、杨工淄博威特电气有限公司:赵金峰、张华平 使用仪器:CD-63电缆故障探测信号发生器 CD-71电力电缆多次脉冲故障测距仪 CD-715多次脉冲信号耦合器 CD-81数字式多功能电缆故障定点仪 CD-22电缆探测多频组合信号发生器 CD-12数字式多功能电缆探测仪 兆欧表(500V) 整体工作情况:累计测试6条故障电缆、精确定点6个故障点。 根据盘锦市欢喜岭物二、凯运公司的要求,其管辖的住宅小区内电力电缆出现故障而不能运行,需要我公司人员对存在故障的6条电缆进行准确故障定点,下面根据电缆的标记情况及电缆测试的过程逐一进行详细阐述:1.小区1#电缆的探测过程 该电缆自配电房至对面住宅楼。将电缆两端全部解开后,在配电房内用兆欧表测量结果为:红、绿、黄、零色芯线对地绝缘为零,使用CD-71测量结果为:各芯线之间全为22米开路波形。我们先用CD-22在黄色芯线和接地排加入信号(电缆对端未接地),电流显示为0.18A,用CD-12路径探测仪在配电室外找出信号幅值最大处进行标定,然后按设备的指示探测电缆的埋设路径,当走到距离配电室大约22米左右时,信号出现陡然衰减,我们怀疑故障点就在这附近。然后我们停下CD-22,接上CD-63,加5KV高压进行周期放电,携带CD-81在信号出现陡然衰减处定点,得到多次放电的声音波形,同时听到故障点周期性的放电声,经声磁延时比较,确定最小值为1.2ms处为故障点。在该处挖掘后看到故障点, 2.西区3#楼电缆的探测过程 该电缆自配电室至3#楼。将电缆两端全部解开后,在配电房内用兆欧表

惠斯通电桥原理

惠斯通电桥 在实验中,测量电阻的常见方法有伏安法和电桥法。伏安法测量电阻的公式为R=U/I (测量的电阻两端电压/测量的流经电阻的电流),除了电流表和电压表本身的精度外, 还有电表本身的电阻,不论电表是内接或外接都无法同时测出流经电阻的电流 I 和电阻 两端的电压U ,不可避免存在测量线路缺陷。电桥是用比较法测量电阻的仪器。电桥的 特点是灵敏、准确、使用方便,它被广泛地应用于现代工业自动控制电气技术、非电量 转化为电学量测量中。电桥可分为直流电桥、交流电桥,直流电桥可以用于测电阻,交 流电桥可用于测电容、电感。通过传感器可以将压力、温度等非电学量转化为传感器阻 抗的变化进行测量。 惠斯通电桥属于直流电桥,主要用于测量中等数值的电阻(101 ~106 Q )O 对于太小 的电阻 (10"6 ~101 Q 量级),要考虑接触电阻、导线电阻,可考虑使用双臂电桥;对于大 电阻(107Q 级),要考虑使用冲击检流计等方法。惠斯通电桥使用检流计作为指零仪表, 而实验室用检流计属于 1惠斯通电桥测量原理 图1是惠斯通电桥的原理图。四个电阻 R o 、R i 、R 2、 R x 连成四边形,称为电桥的四个臂。四边形的一个对角线 连有检流计,称为“桥”;四边形的另一对角线接上电源, 称为电桥的“电源对角线” 。E 为线路中供电电源,学生 实验用双路直流稳压电源,电压可在 0-30V 之间调节。R 保护为较大的可变电阻,在电桥不平衡时取最大电阻作限流 作用以保护检流计;当电桥接近平衡时取最小值以提高检 流计的灵敏度。限流电阻用于限制电流的大小,主要目的 在于保护检流计和改变电桥灵敏度。 电源接通时,电桥线路中各支路均有电流通过。当C 、D 两点之间的电位不相等时, 桥路中的电流I g -0,检流计的指针发生偏转;当 C 、D 两点之间的电位相等时,桥路 中的电流I g =0,检流计指针指零(检流计的零点在刻度盘的中间),这时我们称电桥 处于平衡状态。因此电桥处于平衡状态时有: I g =0 U AC =U AD 于是空二邑即R x R 2二R 0R 1 R 0 R 2 此式说明,电桥平衡时,电桥相对臂电阻的乘积相等。这就是电桥的平衡条件。 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂电阻, 因此,电桥测电阻的计算式为 R x 二邑凤二 KR 。 (1) R 2 电阻R 1、R 2为电桥的比率臂,R x 为待测臂,R 为比较臂,R 。作为比较的标准,实 A 表,电桥的灵敏度要受检流计的限制。 [1 U CB = U DB 1 Rx = 1 R0 I R1 = I R2 1 Rx R x = 1 R1 R 1 1 R0R 0 = 1 R2 R 2

电力电缆故障原因及其普通地检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。

脉冲电缆故障测试仪

电缆高频(高次)脉冲电缆故障测试仪 脉冲电缆故障测试仪是应用于电缆故障查找的一种流行原理和方法,具有测试时间短,可靠性高和性价比高的突出优势,满足35kv及以下系统电缆的各种故障的测量,现阶段,经过电磁技术的持续升级,脉冲电缆故障测试仪由单脉冲移植到“二次脉冲”和“多次脉冲”的测试环境中,不过,我们使用频次比较高的还是“单脉冲”,毕竟价格便宜,功能还比较完善。 测量工程案例0713 上图是中粮集团抽风系统电缆临时出现故障,我司携带设备驱车前往现场处理,通过技术人员专业的排查和检测,判定C相故障,类型为高阻,随后开机巡查电缆的路径方向,经过3个小时的处理,最终将故障点定位,开挖后故障属实。

新疆伟华矿业10kv壁挂电缆出现故障导致境内部分设备无法运行,我司技术部门与现场沟通之后,推荐购买脉冲电缆故障测试仪,并由我司提供现场指导,最终在1.7公里处定位故障点,直接减少该单位经济损失达30万元。 脉冲电缆故障测试仪的优势 1、满足各种电压等级电力电缆的断线、接地、高阻故障性故障的测量和定位; 2、“低压阻抗法”+“高压闪络法”双疗法,克服现场环境干扰; 3、图形化可视界面、简单易懂,简洁明了,极易判读; 4、基于嵌入式平台系统、电磁滤波技术、声磁同步技术等优良的技术融合、贯通。 主要技术指标 测量方式:脉冲法、电流法、高阻法和阻抗法;

测量最大长度:长度<20km ;深度>3.5m;软土可达5m; 操作方式:手动按键式操作; 可靠性:98%; 脉冲频段:6MHz、12 MHz、24MHz、48 MHz、96 MHz、192MHz、324MHz ;可调节波速范围:160m/μs~210 m/μs; 供电方式:DC12V 锂电池 传感器类型:磁棒、信号放大器

相关主题
文本预览
相关文档 最新文档