隧道变形
- 格式:ppt
- 大小:11.71 MB
- 文档页数:84
地铁变形控制标准
地铁变形控制标准主要涉及到地铁施工过程中,对新旧隧道、地下结构、地面建筑物及周围环境变形的控制要求。
为了确保地铁工程的顺利进行和周边环境的安全,以下几个方面可以作为变形控制标准:
1. 隧道变形:新建隧道在施工过程中,其变形应控制在一定范围内。
一般来说,隧道的径向变形控制标准为±10mm,纵向变形控制标准为±5mm。
对于近距离穿越既有隧道的
施工,新建隧道变形控制标准应更为严格,以确保既有隧道的正常使用。
2. 地下结构变形:地铁施工过程中,地下结构的变形应控制在设计范围内,以确保地下结构的安全稳定。
地下结构变形控制标准主要包括地下连续墙、桩基、地道等结构的变形限制。
3. 地面建筑物变形:地铁施工对地面建筑物的影响应控制在一定范围内,以保证建筑物的安全使用。
地面建筑物变形控制标准主要包括建筑物倾斜、沉降、裂缝等方面的限制。
4. 周围环境变形:地铁施工过程中,应密切关注周围环境的变化,包括地下管线、道路、绿化等方面的变形。
周围环境变形控制标准主要根据实际情况和相关规范来确定。
5. 施工安全:地铁施工过程中,应确保施工安全,防止事故发生。
施工安全控制标准包括施工现场的管理、施工工艺的规范、监测系统的建立等方面。
6. 变形监测:地铁施工过程中,应建立完善的变形监测系统,对隧道、地下结构、地面建筑物及周围环境的变形进行实时监测,以确保施工安全。
需要注意的是,地铁变形控制标准并非固定不变,而是根据工程实际情况、地质条件、周边环境、设计要求等多方面因素来综合确定的。
在实际施工过程中,还需根据监测数据及时调整施工方案,以实现变形控制目标。
隧道软岩大变形是指隧道在施工过程中,由于地质条件复杂、施工技术不当等因素导致隧道围岩发生较大变形的现象。
为确保隧道施工安全,预防和减少软岩大变形对隧道工程的影响,特制定本预案。
二、预案目的1. 提高隧道施工人员的安全意识,加强隧道软岩大变形的预防和控制。
2. 明确隧道软岩大变形的应急响应流程,确保在发生紧急情况时能够迅速、有效地进行处置。
3. 最大限度地减少软岩大变形对隧道工程的影响,保障工程进度和质量。
三、预案适用范围本预案适用于隧道施工过程中发生的软岩大变形应急情况。
四、应急组织机构及职责1. 成立隧道软岩大变形应急指挥部,负责组织、协调和指挥隧道软岩大变形应急工作。
2. 应急指挥部下设以下小组:(1)现场处置组:负责现场应急响应和处置工作。
(2)技术支持组:负责提供技术支持,对隧道软岩大变形原因进行分析,制定应对措施。
(3)物资保障组:负责应急物资的采购、储备和调配。
(4)信息联络组:负责应急信息的收集、整理和上报。
(5)安全防护组:负责现场安全防护措施的落实。
五、应急响应流程1. 发生软岩大变形时,现场处置组应立即向应急指挥部报告。
2. 应急指挥部接到报告后,立即启动应急预案,组织相关小组开展应急处置工作。
3. 现场处置组对变形原因进行分析,采取以下措施:(1)暂停隧道施工,确保人员安全。
(2)对变形区域进行监测,掌握变形情况。
(3)对变形区域进行加固处理,防止进一步变形。
(4)对施工方案进行调整,优化施工工艺。
4. 技术支持组对变形原因进行分析,提出以下建议:(1)优化隧道施工方案,调整施工参数。
(2)采用新技术、新材料、新工艺,提高隧道围岩稳定性。
(3)加强监测,实时掌握隧道变形情况。
5. 物资保障组根据应急指挥部要求,及时调配应急物资。
6. 信息联络组将应急情况及时上报上级主管部门。
7. 安全防护组对现场进行安全防护,确保人员安全。
六、应急响应级别1. Ⅰ级应急响应:发生重大软岩大变形,严重影响隧道施工进度和质量,可能对人员生命财产安全造成威胁。
隧道大变形段专项施工方案目录一、编制依据 (1)二、适用范围 (1)三、工程概况 (1)四、隧道变形段总体施工方案 (2)五、施工方法 (5)六、监控量测、超前地质预报实施方案 (11)七、资源配置 (14)八、质量保证措施 (15)九、安全保证措施 (16)十、应急预案 (17)一、编制依据1.编制依据1.1、合同段两阶段施工图设计文件。
1.2、施工总承包合同文件。
1.3、《公路隧道施工技术规范》1.4、《公路工程施工安全技术规程》1.5、《公路隧道工程施工技术指南》1.6、《公路工程施工安全技术规程》二、适用范围根据构造断裂带位置,现场围岩地质条件和隧道埋深情况对大变形段落进行预测,右线K74+930~K75+600段、左线ZK74+980~ZK75+660段可能出现大变形。
三、工程概况隧道端左线5.935km,隧道端右线5.976km,隧道端斜井2.272km,隧道端横洞0.475km,改扩建斜井施工便道1.524km,新建斜井施工便道2.043km。
主要工程内容为隧道工程,隧址区呈北东向展布,南东坡向沟谷发育大体多呈V型,沟壁陡直,谷底狭窄,谷坡陡峻,一般坡度为35°,洞身地形中部高,地形起伏大,进、出口地段地形较低,海拔高程657.6~3000m,相对高差约2500m,为构造剥蚀高中山地貌。
Ⅲ级围岩以流云岩、白云岩为主,以块状整体结构为主,地下水较发育~发育局部可能出现大股状,岩质硬,埋深400~1900m,可能存在岩爆;Ⅳ级围岩以板岩、变质砂岩、流云岩、白云岩主为主,岩体呈楔形破碎镶嵌结构,受构造作用强烈,裂隙较发育,岩体较破碎~较完整,隧道开挖易发生掉块或小至中塌方现象,深埋段可能发生强岩爆,地下水不发育以潮湿~滴水状为主;Ⅴ级围岩覆盖层、强风化基岩、断裂破碎带等,岩体以破碎结构为主,洞口风化及构造裂隙发育,岩质软~硬,岩体破碎~较破碎,断裂带,岩体极破碎,呈碎裂结构或碎粒状。
隧道软岩变形分级强度应力比
隧道软岩变形分级和强度应力比是在地质工程和岩土工程中常用的概念。
以下是对隧道软岩变形分级和强度应力比的简要解释:
隧道软岩变形分级:
软岩:指在工程中遇到的岩石,其抗压强度较低,变形较大。
软岩包括粉砂岩、泥岩、砂岩等。
变形分级:针对软岩,通常根据其变形性质将软岩分为不同的等级,常见的分级包括轻微变形、中度变形和严重变形。
这有助于工程设计和施工时对软岩的处理和支护。
强度应力比(Strength-Stress Ratio,简称SSR):
强度:软岩的强度通常是通过抗压强度等指标来表示,反映了软岩的抗压能力。
应力:是指软岩受到的外部力作用在单位面积上的效果,通常用抗压强度表示。
强度应力比:是软岩的强度与应力之比,即SSR = 强度/ 应力。
它是一个重要的工程参数,用于评估软岩在外部应力作用下的稳定性和变形特性。
在隧道设计和施工中,了解软岩的变形特性和强度应力比是至关重要的。
通过合理的支护设计和施工措施,可以有效地处理软岩地层
带来的工程挑战。
根据软岩的不同等级,采取相应的支护措施,以确保隧道的安全和稳定。
城市轨道交通隧道变形监测方法摘要:随着社会的不断发展和人们生活水平的不断提高,人们对城市的发展提出了更高的要求,这在一定程度上促进我国城市化的逐渐发展,而城市化发展最为重要的是城市轨道交通的建设和发展,在城市化建设过程中,城市轨道交通的建设常常容易受到一些自然因素影响,如果在轨道交通建设过程中出现降雨等情况,极有可能给导致轨道交通建设出现故障。
因此,在城市轨道交通建设过程中对其进行变形检测,可以大大降低隧道变形引发安全事故的可能性,保障施工和运营的安全。
在轨道交通建设过程中,地质条件直接决定了轨道交通隧道结构的稳定性,特别是考虑到地质结构的发展,很可能会部分或系统地影响轨道交通交通的结构。
关键词:城市轨道交通;隧道变形;监测方法引言在城市轨道交通工程中,隧道结构更为重要,直接影响到整个工程的运营管理效果。
但是,一些轨道交通隧道在运营过程中经常会出现变形问题,严重影响其性能和有效性,因此需要做好监管。
1城市轨道交通隧道变形监测重要性在轨道交通系统的建设和运营中,要做好隧道变形监测,在开挖和铺设过程中,要了解影响隧道变形的因素,建立科学的管理制度,确保将隧道整体结构的应力控制在合理的范围内,防止危险岩石的垂直或水平位移,防止隧道隐蔽变形的影响。
同时,在变形监测中,应及时开展数据和信息更新活动,了解可能出现的变形问题,遵循科学发展的原则,提高变形监测工作的整体效果,加强确保全面管理工作在各方面工作中发挥积极作用。
同时,在隧道变形监测中,要树立正确的安全管理理念,防范城市建设中的风险问题,监测技术和模式协调好各工作环节的关系,提高整体监测水平。
相关的工作人员还应积极总结工作水平,这样有助于丰富经验,建立科学合理的工作机制,确保工作整体效果全面提升,适应时代发展需要。
2城市轨道交通隧道变形监测方法(1)随着我国城市轨道交通建设的脚步逐渐加快,城市轨道交通的隧道变形监测工作也变得越来越重要,只有做好了隧道变形的监控,才能最大可能的减少建设过程中的安全隐患。
公路隧道大变形安全事故分析摘要:大变形是隧道施工中最常见的工程事故,为此,本文以公路隧道大变形事故为研究对象,分析了隧道大变形事故的类型、特点及其主要的影响因素。
关键词:隧道工程、破坏变形、安全事故、隧道施工在公路隧道工程施工中,塌方、岩溶塌陷、涌水和突水、洞体缩径、山体变形和支护开裂、泥屑流、岩爆是常见的地质灾害问题,而在地质灾害中,大变形破坏发生的概率较大。
隧道围岩大变形是围岩一类变形破坏的形式,围岩体的这种破坏是属于塑性变形,变形会逐步扩大和具有显著的时间效应。
它与岩爆运动的脆性破坏不同,也与被周围岩体限制的松动围岩的滑动、坍塌等破坏不同。
围岩大变形将破坏支护结构、侵入断面限界,若处理不当将造成塌方,甚至将隧道完全堵塞,极易造成严重的后果,并且损毁机械设备、使得施工人员伤亡、工期延误,也增加了工程成本。
一、隧道大变形类型隧道围岩大、小变形破坏的不同点在于:1.变形量大、小的不同;2.关键是变形破坏机理的不同:大变形破坏为失稳状态下的破坏;小变形破坏并非唯一是此状态下的破坏,一般来说,由小变形破坏造成的后果较轻。
通常,隧道围岩大变形根据形成机制可以划分为两种类型:第一种为隧道开挖后产生的围岩应力重新分布,当应力过大时会超过围岩本身的强度,从而引起塑性变化,若引起的变形较慢,就属于挤出变形;若变形较快,就可能产生岩爆现象;第二种为隧道中有大量的水,当水与围岩中的膨胀性矿物反应时,矿物体积会产生很大变化,膨胀导致变形的发生。
以上所述的一种或多种原因的作用下,导致隧道围岩的大变形的发生。
前者是物理变形,属于物理过程,后者是化学变形,属于化学过程。
二、隧道大变形的规律围岩挤压性变形有变形持续时间较长、变形量大且具有时效性等特点,在隧道工程施工事故中常常表现为:隧道底鼓的持续性、侧墙内挤和冒顶等现象。
巨大的变形导致隧道破坏十分严重,会造成隧道钢架扭曲或折断,造成隧道混凝土衬砌的开裂和脱落,造成打入的锚杆彻底失去效力、喷射的混凝土层破裂掉落,也会造成隧道的混凝土底板受力断折、挤出等破坏形式。
浅谈隧道工程施工变形监测和控制对策摘要随着我国经济的快速发展以及社会建设的大力推进,基础建设工程越来越多,并且呈现出规模化、复杂化、一体化等发展态势,对于施工技术和管理的要求大大增强。
隧道施工是目前道路施工中的重点内容也是难点,特别是在特殊地质条件下以及为了满足更为严苛的施工要求而进行的隧道施工,通常会面临围岩变化状况,本文在多年实践的基础上对隧道工程施工变形进行深入的研究,在此基础上探讨了隧道变形的监测技术及控制措施。
关键词隧道工程围岩变化变形监测控制措施隧道施工技术是随着我国交通事业的发展而逐渐确立并完善的,特别是在现今隧道施工多样化发展的情况下,加快技术引进与技术更新才能满足施工的要求和社会的快速发展。
随着地铁、山区公路、地下交通等工程的开展,出现了数量众多的特长隧道施工和复杂地质环境中的隧道施工,在施工中加强监测与控制是隧道工程施工中的重点内容,通过对围岩变化进行及时的预测和应对,为工程的顺利进行奠定基础。
一、隧道施工变形监测概述隧道施工具有很多不同于地面施工的特点,由于施工多是在岩石条件下进行,因此具体的施工操作往往受到岩层结构以及岩土情况的影响。
此外在进行施工时,机械振动或者开挖爆破也会造成岩石的变化,从而对施工带来影响。
为了使工程安全顺利的完成,必须对隧道的变化信息进行严格的监控与上报,以便做出针对性的方案,保证工程质量。
二、隧道工程施工变形监测技术根据隧道特征和岩石的性质应该选用不用的技术或方法对施工中的变形情况进行监测,先进的科学技术以及理论成果和技术成果为隧道变形监测提供了新的技术、设备和理念,目前在工程中主要应用的监测技术有以下几种。
1.隧道收敛监测技术。
隧道收敛监测技术的优点是适合于大断面隧道施工的监测,缺点也较为明显,就是进行监测时需要大型设备的支持,并且技术较为复杂。
根据测量使用的原理可以将收敛监测技术分为相对位移观察监测法和绝对三维位移观察监测法。
相对位移监测法的具体操作流程如下:首先将监测锚杆安装到监控断面上,并且保证锚杆的端部较为平整并且能够产生反光效应;以此基点为准,选取30m远的位置安装全站仪;运用坐标测量技术测出基点的三维坐标,通过将数据与全站仪内存中的坐标系相结合可以精确地计算出相对位置。