类金刚石碳涂层 DLC
- 格式:pdf
- 大小:382.38 KB
- 文档页数:2
超硬材料涂层1.金刚石、类金刚石(DLC)涂层金刚石涂层是新型刀具涂层材料之一。
它利用低压化学气相沉积技术在硬质合金基体上生长出一层由多晶构成的金刚石膜,用其加工硅铝合金和铜合金等有色金属、玻璃纤维等工程材料及硬质合金等材料,刀具寿命是一般硬质合金刀具的50~100倍。
金刚石涂层采纳了很多金刚石合成技术,最一般的是热丝法、微波等离子法和DC等离子喷射法。
通过改进涂层方法和涂层的粘结,已生产出金刚石涂层刀具,并在工业上得到了应用。
近年来,美国、日本和瑞典等国家都已相继推出了金刚石涂层的丝锥、铰刀、铣刀以及用于加工印刷线路板上的小孔金刚石涂层硬质合金钻头及各种可转位刀片,如瑞典Sandvik公司的CD1810和美国Kennametal公司的KCD25等牌号产品。
美国Turchan公司开发的一种激光等离子体沉积金刚石的新工艺,用此法沉积金刚石,由于等离子场包围整个刀具,刀具上的涂层均匀,其沉积速度比常规CVD法快1000倍。
此法所成的金刚石涂层与基体之间产生真正的冶金结合,涂层强度高,可防止涂层脱落、龟裂和裂纹等缺陷。
CemeCon公司具有特色的CVD金刚石涂层技术,2000年建立生产线,使金刚石涂层技术达到工业化生产水平,其技术含量高,可以批量生产金刚石涂层。
类金刚石涂层在对某些材料(Al、Ti及其复合材料)的机械加工方面具有明显优势。
通过低压气相沉积的类金刚石涂层,其微观结构与天然金刚石相比仍有较大差异。
九十时代,常采纳激活氢存在下的低压气相沉积DLC,涂层中含有大量氢。
含氢过多将降低涂层的结合力和硬度,增大内应力。
DLC中的氢在较高的温度下会渐渐释放出来,引起涂层工作不稳定。
不含氢的DLC硬度比含氢的DLC高,具有组织均匀、可大面积沉积、成本低、表面平整等优点,已成为近年来DLC涂层讨论的热点。
美国科学家A.A.Voevodin提出沉积超硬DLC涂层的结构设计为Ti—TiC—DLC梯度变化涂层,使硬度由较软的钢基体渐渐提高到表层超硬的DLC涂层。
通过XPS和REELS评估DLC薄膜中的sp2/sp3碳含量关键词:DLC膜,XPS,REELS,碳的sp2/sp3键1. DLC概述DLC(Diamond Like Carbon,类金刚石)是一种含有金刚石结构(sp3键)和石墨结构(sp2键)的亚稳非晶态物质,具有以sp3键碳共价结合为主体并混合有sp2键碳的长程无序立体网状结构。
DLC材料作为21世纪战略新材料之一,因具备质量稳定(化学惰性),硬度高,耐磨、耐腐蚀性好,摩擦系数低,与基体结合力强以及生物相容性好等优良性能,被广泛应用于机械、汽车、光学、医疗、包装印刷和电子材料等领域。
研究表明,DLC膜的性质主要由sp2和sp3键的相对含量所决定。
但由于sp3键的含量变化范围广,在不同工艺条件下制备的DLC膜的性能也有所不同。
因此,表征DLC膜中碳原子的杂化和成键方式对研究其改性和制备工艺的改良极其重要。
众所周知,X射线光电子能谱仪(XPS)拥有高表面灵敏(<10 nm)和高空间分辨(<10 um)的元素组分、元素含量以及化学态解析能力,结合离子束剥离技术和变角度XPS技术,还可以对膜层结构进行深度分析。
此外,利用反射式电子能量损失谱(REELS),能够获得碳原子的杂化与成键方式。
因此,结合XPS和REELS 就能够实现对DLC薄膜中sp2/sp3碳含量的全面表征。
图1. DLC应用领域。
2.REELS基本原理电子能量损失谱学是研究材料性质的重要手段,它通过分析电子束与材料相互作用过后的非弹性散射电子的能量损失分布,获取材料的本征信息。
其原理是利用已知动能的电子束轰击材料,入射电子经历和材料原子的非弹性碰撞,而发生角度偏转与能量交换,能量交换过程来源于对材料的电子态激发,它因而包含了材料的能带结构信息。
REELS是反射式电子能量损失谱,利用特定能量的电子束为激发源,与样品发生非弹性碰撞后测量其反射电子的能量分布。
这种能量分布包含由于激发原子态、芯能级和价带跃迁、材料带隙等引起的离散能量损失特征。
表面技术第53卷第5期高温对含氢DLC涂层的微观结构及力学性能的影响贾伟飞1,梁灿棉2,胡锋1,2*(1.武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心,武汉 430081;2.广东星联精密机械有限公司,广东 佛山 528251)摘要:目的针对含氢DLC涂层热稳定性很差的问题,探究高温下含氢DLC涂层的微观组织变化特征,以及高温对其力学性能的影响。
方法采用等离子体强化化学气相沉积(Plasma Enhanced Chemical Vapor Deposition, PECVD)在S136模具不锈钢表面沉积以Si为过渡层的含氢DLC复合涂层,利用光学显微镜、扫描电镜、拉曼光谱、X射线电子衍射仪、三维轮廓仪研究DLC涂层的微观结构,采用划痕测试仪、往复式摩擦磨损试验机、纳米压痕仪研究DLC涂层的力学性能,并通过LAMMPS软件,利用液相淬火法建立含氢DLC模型,模拟分析经高温处理后涂层的组织变化特征和纳米压痕行为。
结果在400 ℃、2 h的退火条件下,拉曼谱峰强度I D/I G由未退火的0.7增至1.5,涂层发生了石墨化转变,同时基线斜率下降,H元素析出;XPS结果表明,在此条件下涂层中sp2杂化组织相对增加,氧元素增多,涂层粗糙度增大;在600 ℃、2 h退火条件下,DLC发生了严重氧化,LAMMPS模拟结果表明,在400 ℃高温下涂层的分子键长变短,表明sp3杂化组织在高温下吸收能量,并向sp2杂化转变。
纳米压痕模拟结果显示,在400 ℃下退火后,涂层的硬度下降。
结论在400 ℃下退火处理后,涂层中的H元素释放,涂层内应力减小,保证了涂层的强度;在600 ℃退火条件下,过渡层的Si和DLC在高温下形成了C—Si键,使得DLC薄膜部分被保留;LAMMPS 模拟结果表明,在高温下涂层发生了石墨化转变,涂层的硬度减小。
关键词:含氢DLC涂层;退火处理;微观组织;力学性能;LAMMPS模拟中图分类号:TB332 文献标志码:A 文章编号:1001-3660(2024)05-0174-10DOI:10.16490/ki.issn.1001-3660.2024.05.018Effect of High-temperature on Microstructure and MechanicalProperties of Hydrogen-containing DLC CoatingJIA Weifei1, LIANG Canmian2, HU Feng1,2*(1. Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081,China; 2. Guangdong Xinglian Precision Machinery Co., Ltd., Guangdong Foshan 528251, China)ABSTRACT: The thermal stability of hydrogen-containing DLC coating is poor, and the work aims to explore the microstructure changes of hydrogen-containing DLC coating at high temperature and their impact on mechanical properties. The收稿日期:2023-01-09;修订日期:2023-05-18Received:2023-01-09;Revised:2023-05-18基金项目:中国博士后科学基金(2021M700875)Fund:China Postdoctoral Science Foundation (2021M700875)引文格式:贾伟飞, 梁灿棉, 胡锋. 高温对含氢DLC涂层的微观结构及力学性能的影响[J]. 表面技术, 2024, 53(5): 174-183.JIA Weifei, LIANG Canmian, HU Feng. Effect of High-temperature on Microstructure and Mechanical Properties of Hydrogen-containing DLC Coating[J]. Surface Technology, 2024, 53(5): 174-183.*通信作者(Corresponding author)第53卷第5期贾伟飞,等:高温对含氢DLC涂层的微观结构及力学性能的影响·175·hydrogen-containing DLC composite coating with Si as the transitional layer was deposited on the surface of S136 stainless steel by plasma enhanced chemical vapor deposition (PECVD). The microstructure of DLC coating was investigated by optical/scanning electron microscopy, Raman spectroscopy, XPS (X-ray photoelectron spectroscopy) and three-dimensional profiler, the mechanical properties of DLC coating were studied by scratch, reciprocating friction wear and nano-indentation experiment, and the nano-indentation experiment behavior of DLC coating was simulated by LAMMPS to analyze the microstructure characteristics in annealing. The coating was subject to annealing conditions of 400 ℃for 2 hours and 600 ℃for 2 hours. Under the former condition, Raman spectroscopy showed an increase in the intensity ratio of the I D/I G peaks from0.7 to 1.5, indicating graphitization transition, accompanied by a decrease in baseline slope and H element segregation. XPSanalysis revealed an increase in sp2 hybridization and oxygen content in the coating under this condition, as well as an increase in surface roughness. At 600 ℃, severe oxidation of the DLC coating was observed. Under that condition, the matrix stainless steel was also oxidized. Molecular dynamics simulations using LAMMPS suggested a decrease in molecular bond length at 400 ℃high temperature. The three-dimensional profile test showed that the roughness under the unannealed condition was mainly from the large particles produced during deposition. At 400 for 2℃h, the coating had the minimum surface roughness. At this time, some large particles in the coating structure fell off, and the coating was basically completely damaged at 600 for℃ 2 h. The roughness was mainly from the original stainless steel roughness. The scratch test showed that under the condition of 400 for℃2 h, due to the release of the internal stress of the coating and the tighter bonding of the transition layer, the coating had the bestbonding effect with the substrate and was the least likely to fall off. The statistical results of LAMMPS simulation showed that the chemical bonds of the original DLC model tended to become shorter after annealing at high temperature. Relative to the unannealed DLC coating, the mechanical properties of DLC coating were best under 400 for℃ 2 h. Under this condition, the precipitation of mixed H elements in the coating led to the transformation of the original C—H sp3 structure, which occupied a large space to the smaller C—C sp3 and C—C sp2 structure, releasing internal stress in the coating, while ensuring the strength.The nano-indentation experiments showed that the elastic recovery and hardness of the coating were the highest at 400 for℃ 2 h, compared with that at other annealing temperature. The structure of the DLC coating containing hydrogen changed due to the precipitation of H element at 400 ℃. On the one hand, the coating structure changed from sp3 to sp2 due to high temperature, and on the other hand, the precipitation of H element changed the original C—H sp3 to C—C sp3, reducing the internal stress of the coating and improving the mechanical properties. The coating is basically damaged at 600 for 2 h, but the substrate still℃retains part of the coating. This is because the transition layer Si reacts with the coating to improve the heat resistance of the remaining coating. Molecular dynamics simulations using LAMMPS showed that the coating undergoes a graphitization transition at high temperature, leading to a reduction in its hardness.KEY WORDS: hydrogen-containing DLC coating; annealing treatment; microstructure; mechanical properties; LAMMPS simulationDLC(Diamond-Like Carbon,类金刚石碳,简称DLC)涂层材料具有超高硬度、低摩擦因数、优良化学稳定性等特点,广泛应用于机械、电子、生物医学等领域[1-3]。
表面技术第53卷第8期DLC基纳米多层膜摩擦学性能的研究进展与展望汤鑫1,王静静1*,李伟1,胡月1,鲁志斌2,张广安2(1.上海理工大学 材料与化学学院,上海 200093;2.中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000)摘要:类金刚石(DLC)薄膜是一种良好的固体润滑剂,能够有效延长机械零件、工具的使用寿命。
DLC 基纳米多层薄膜的设计是耐磨薄膜领域的一项研究热点,薄膜中不同组分层具备不同的物理化学性能组合,能从多个角度(如高温、硬度、润滑)进行设计来提升薄膜力学性能、摩擦学性能以及耐腐蚀性能等。
综述了DLC多层薄膜的设计目的与研究进展,以金属/DLC基纳米多层膜、金属氮化物/DLC基纳米多层膜、金属硫化物/DLC基纳米多层膜以及其他DLC基纳米多层膜为主,对早期研究成果及现在的研究方向进行了概述。
介绍了以上几种DLC基纳米多层膜的现有设计思路(形成纳米晶/非晶复合结构、软/硬交替沉积,诱导转移膜形成,实现非公度接触)。
随后对摩擦机理进行了分析总结:1)层与层间形成特殊过渡层,提高了结合力;2)软/硬的多层交替设计,可以抵抗应力松弛和裂纹偏转;3)高接触应力和催化作用下诱导DLC中的sp3向sp2转化,形成高度有序的转移膜,从而实现非公度接触。
最后对DLC基纳米多层膜的未来发展进行了展望。
关键词:DLC基纳米多层膜;力学性能;摩擦学性能;摩擦机理;结构中图分类号:TH117.1;TH142.2文献标志码:A 文章编号:1001-3660(2024)08-0052-11DOI:10.16490/ki.issn.1001-3660.2024.08.005Research Progress and Prospects on Tribological Propertiesof DLC Based Nano-multilayer FilmsTANG Xin1, WANG Jingjing1*, LI Wei1, HU Yue1, LU Zhibin2, ZHANG Guang'an2(1. School of Materials and Chemistry, Shanghai University of Technology, Shanghai 200093, China; 2. State Key Laboratory ofSolid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China)ABSTRACT: Friction and wear can cause surface damage of materials, especially metal materials, and shorten the service life of work pieces. DLC (diamond-like carbon) is an amorphous carbon film composed of mixed structures, usually formed by the mixture of sp2 carbon and sp3 carbon. With high hardness, low friction coefficient, good chemical inertness and biocompatibility, DLC is a kind of film with great potential, which has a wide range of applications in mechanical, electrical, biomedical engineering and other fields. Its super-hard, wear-resistant and self-lubricating properties meet the technical requirements of the modern manufacturing industry. It is widely used as solid lubricant for the surfaces of contact parts that rub against each other.收稿日期:2023-05-08;修订日期:2023-10-12Received:2023-05-08;Revised:2023-10-12基金项目:中国科学院兰州化学物理研究所固体润滑国家重点实验室开放课题(LSL-2205);上海高校青年教师培养资助计划Fund:Open Project of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (LSL-2205); Shanghai University Youth Teacher Training Assistance Program引文格式:汤鑫, 王静静, 李伟, 等. DLC基纳米多层膜摩擦学性能的研究进展与展望[J]. 表面技术, 2024, 53(8): 52-62.TANG Xin, WANG Jingjing, LI Wei, et al. Research Progress and Prospects on Tribological Properties of DLC Based Nano-multilayer Films[J]. Surface Technology, 2024, 53(8): 52-62.*通信作者(Corresponding author)第53卷第8期汤鑫,等:DLC基纳米多层膜摩擦学性能的研究进展与展望·53·Compared with single-layer DLC films with single component, DLC based nano-multilayer films with alternating layers of two or more components can improve the mechanical and tribological properties better, which is due to that different layers in the nano-multilayer films have different combinations of physical and chemical properties. Therefore, it can be designed from many aspects (such as high temperature, hardness, lubrication, and corrosion) to improve the mechanical properties, tribological properties and corrosion resistance of the films. Usually, the nano-multilayer films have good impact resistance and plastic deformation resistance ability, which can effectively inhibit the formation and propagation of cracks, and have a good cycle service life under high load conditions.In this paper, DLC based nano-multilayer films were systematically reviewed, including metal/DLC based nano-multilayer films, metal nitride/DLC based nano-multilayer films, metal sulfide/DLC based nano-multilayer films and other DLC based nanolayer films. Firstly, the design background and concept of DLC multilayer thin films were elaborated. The design idea of multilayer films was to form a gradient mixing interface between multilayers to achieve gradient changes in composition and properties. This multilayer structure could produce unique structural effects, which could effectively reduce various stresses generated during the friction process, and significantly improved the adhesion strength between film and substrate and the overall elastic modulus of the film, which had important significance for the structure evolution of DLC based nano-multilayer films and the interface action mechanism. Then, the friction mechanisms were summarized. The main friction mechanisms of DLC multilayer films were concluded as follows: 1) The nanocrystalline/amorphous structure was formed, which improved the binding force between the layers and reduced the shear force and friction force; 2) The soft/hard multilayer alternating design resisted stress relaxation and crack deflection; 3) Under the action of pressure, the amorphous carbon layer was induced to forma two-dimensional layered structure to achieve incommensurate contact and effectively reduce friction and wear. Finally, thefuture development of DLC-based nano-multilayer films was forecasted. To improve the tribological properties of DLC composite films under extreme, varied and complex conditions, it is necessary to carry out researches from multiple perspectives: 1) Establishing a multi-material system, which combines doping and multilayer gradient design; 2) Regulating the crystal growth rate and increasing the deposition rate and density of the films by multi-technology co-preparation;3) Establishing a more scientific model to study the friction mechanism of DLC.KEY WORDS: DLC based nano-multilayer films; mechanical properties; tribological properties; friction mechanism; structure摩擦磨损现象广泛存在于机械零件的直接接触中,如机械传动、齿轮咬合。
类金刚石薄膜球盘法测试类金刚石薄膜的摩擦磨损性能1范围本文件为类金刚石(DLC)薄膜的摩擦系数和比磨损率的测定规定了流程并提供了指导。
该方法规定材料在干燥条件下,采用球对盘结构配副进行测试。
本文件不适用于DLC薄膜涂层的部件在润滑环境下的测试。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T1182,产品几何技术规范(GPS)—几何公差-形状、方向、位置和跳动公差(GB/T1182-2018,ISO1101,MOD)GB/T6062,产品几何技术规范(GPS)—表面结构:轮廓法—接触(触针)式仪器的标称特性(GB/T 6062-2009,ISO3274,IDT)GB/T308.1,滚动轴承—球—第1部分:钢球(GB/T308.1-2013,ISO ISO3290-1,NEQ)GB/T308.2,滚动轴承—滚珠—第2部分:陶瓷滚珠(GB/T308.2-2010,ISO3290-2,IDT)ISO3611,产品几何技术规范(GPS)—尺寸测量设备:外部测量用千分尺-设计和计量特性GB/T10610,产品几何技术规范(GPS)—表面结构:轮廓法表面结构—术语,定义及参数(GB/T 10610-2009,ISO4287,IDT)ISO13385-1,产品几何技术规范(GPS)—尺寸测量设备—第1部分:卡尺;设计和计量特性ISO80000-1:2009,量和单位—第1部分:总则3术语和定义下列术语和定义适用于本文件。
磨损Wear固体材料由于与一种或多种材料接触发生相对运动,其表面质量逐渐减少的过程。
磨损测试Wear Test滑动接触中材料摩擦磨损性能的评价方法。
球盘试验法Ball-on-disc Method在一定载荷下,将球形试样接触到旋转的圆盘试样上,从而产生滑动接触的磨损试验。
DLC涂层应用于活塞环Diamond-Like Carbon Films Applied to Piston Ring周革华(安庆市德奥特汽车零部件制造有限公司)〔摘要〕本文介绍了采用PVD处理方法获得的DLC涂层,针对DLC涂层应用于活塞环,提高活塞环耐磨、减摩性能做了重点介绍,并叙述了该领域的发展现状及趋势。
〔关键词〕活塞环PVD处理方法DLC涂层耐磨减摩摩擦功耗自1860年法国人勒努瓦(Lenoir,Jean Joseph Etienne)首次在内燃机中采用了弹力活塞环,经过一百多年的发展,内燃机活塞环的结构、尺寸设计日趋系列化、标准化,目前改进的重点主要集中在材料和表面处理,特别是表面处理技术的突破会是以后活塞环技术发展的前沿。
本文重点介绍一种近几年来活塞环领域内广泛关注的表面处理涂层——类金刚石涂层(DLC)。
在讨论DLC涂层前有必要介绍一下PVD处理技术,并理清一个活塞环行业内存在的概念性问题。
所谓PVD即英文Physical Vapor Deposition的简称,意思为物理气相沉积,它本是镀膜行业一种常用的镀膜处理方法。
物理气相沉积法(PVD)又可分为真空镀,真空溅射和离子镀等等,在活塞环DLC涂层上采用的溅射+离子源技术是把工件经清洗烘干等前处理后放进封闭的腔室内通过抽真空、蒸发,电离或溅射等过程,最终在工件表面形成金属化合物过渡层和掺杂DLC涂层。
金属离子来源于靶材,PVD处理时根据不同的金属靶材和反应气体,会生成不同种类的涂层,如:TiN(金黄色)、ZrN(青黄色)、CrN (银灰色)、DLC(黑色)等等。
PVD是一种镀膜方法,而不是镀层种类。
正如我们所熟悉的湿式电镀,根据槽液和处理方式的不同可以镀硬铬、镀锌、镀镍等等,还有活塞环行业内广为人知的CKS/CID都是湿式电镀。
十多年前,PVD处理应用于活塞环在国内是空白,国内厂家从国外引进活塞环外圆面CrN涂层PVD处理技术时,可能出于简单化考虑,在产品推广时就叫PVD环。
1
类金刚石碳(DLC)膜素以优秀的摩擦学性能著称,比如说,此
类材料通常具有很高的耐磨性和很低的摩擦系数。
DLC涂层的制备可通过使用多种不同的PVD(物理气相沉
积)和CVD(化学气相沉积)技术来实现。此过程有一个非
常重要的特点,那就是这些非晶涂层在相对较低的衬底温度
(<200℃)下完成沉积。
涂层的结构与组分,以及涂覆过程所使用的工艺将决定这些
涂层的属性。由于这些可实现的属性所覆盖的范围甚广,
DLC涂层在很多方面均大有用武之地。
由于兼具了很高的耐磨性和杰出的摩擦性能及抗粘附性,
DLC涂层将是摩擦组件与工具表面处理过程的理想选择。
DLC涂层拥有多种多样的特性,这也为有着功能明确的多功
能表面的新产品的开发创造了条件。
电动机中涂覆了DLC材料的筒式挺柱: 摩擦
与燃料损耗均有所降低
覆有DLC类金刚石碳层的齿轮:摩擦与磨损均
得到了抑制,润滑需求也有所降低;由于使用了
DLC材料,这些齿轮将可以使用轻合金来进行制造。
碳质层及其各种变种。
2
与未涂覆的100Cr6钢相比较,DLC与多晶金刚石涂层的特性。
特性 通常的涂层厚度: 1 – 10 µm 良好的摩擦性能 高耐磨性 高硬度,以及高于平均水平的弹性 (E/ H ≈ 10) 确定的粘附性能 可调的电导率 优秀的抗腐蚀性 用途
部件: 驱动元件 例如齿轮、轴、桥、链条等 密封件 例如操纵杆卡环密封件、球形阀等 轴承 例如滑动轴承、滚珠轴承、导向装置等 活塞/汽缸对 例如减振器,以及用于电机、泵、压缩机的活塞 工具:
制模工具
例如压铸工具等
成型刀具
例如深拉制工具、 弯曲机等
切割与打孔工具
例如用于非金属材料的机床
等
压印工具
例如图章、字模等
与碳化钛(TiN)、碳化铬(CrN)以及钢
材相比较,碳质层(DLC和金刚石)的摩擦
值
已涂覆DLC涂层的传动螺杆和球形阀:传动功率缩减了40% 已涂覆DLC涂层的深拉制工具:避
免了低温重焊