软性磨粒流精密加工的仿真及实验
- 格式:pdf
- 大小:564.23 KB
- 文档页数:4
Internal Combustion Engine &Parts0引言喷油器和油轨连接,组成一个燃油导轨总成,是发动机供油系统的主要部件。
其中喷油器主要是将电信号转换为磁力,实现内部阀体的闭合,从而完成燃油的雾化喷放,如图1所示。
喷油器工作效率以及使用寿命取决于底部喷油孔内孔的表面粗糙度,但因其孔径小,内部结构相对复杂,使用传统的加工技术难以达到要求。
磨粒流抛光技术作为一种超精密流体加工技术,因其灵活的适应性以及加工的精确性,为喷油器微小孔抛光提供了有效途径。
图1高压喷油器1磨粒流抛光原理磨粒流抛光(Abrasive Flow Machining )简称AFM ,也称挤压研磨或磨料流抛光[1]。
其抛光原理是利用具有一定流动性的粘弹性介质(半流动状态的蠕变体或粘弹体)在一定的压强作用下往复流过零件的被加工表面、边缘和孔道,将该流动介质作为“刀具”刮削工件进行表面从而达到抛光、除飞边、倒圆角及去毛刺等效果,是一种微量切削的超精密抛光技术[2]。
2仿真模型建立及参数设置Fluent 软件根据用户需求,采用不同的离散格式和模型,能在不同情况下使软件的计算速度、求解精度、以及运算的稳定性都保持最佳状态,可以高效模拟各种复杂流动和物理现象,本文使用Fluent 软件对磨粒流抛光喷油器进行模拟。
首先使用Hypermesh 软件对喷油器三维结构进行网格划分,使用纯六面体网格划分功能。
然后导入到Fluent 软件中,选择Mixture 多相流模型,可实现k-ε湍流模型,标准壁面函数,选择压力入口边界和压力出口边界,以及壁面边界,操作压力101325Pa ,重力加速度沿x 轴方向,并设置材料参数如表1所示,其中主相为二甲基硅油,第二相为碳化硅。
表1材料参数材料密度(kg/m 3)粘度(Pa ·s )体积分数载体磨粒二甲基硅油碳化硅79031700.031.72e-50.70.33仿真结果与分析图2为y=0剖切面上湍流动能分布云图,磨料流中湍流动能越大的区域,分子的热运动越剧烈,磨粒与壁面的碰撞、划擦的几率越大,加工效率越高。
磨粒流体弹性磨料配方及制作加工工艺1.磨粒的选择磨粒是磨料的主要成分,它对磨料的性能具有重要影响。
常见的磨粒有氧化铝、碳化硅、氮化硅等。
选择磨粒时应考虑材料的硬度、粒度分布、颗粒形状等因素,以满足特定的磨削要求。
2.溶剂的选择溶剂是将磨粒和粘结剂溶解或分散在一起的介质,它能够提供磨料的润湿性和流动性。
常见的溶剂有水、乙醇、酮类溶剂等。
选择溶剂时应考虑对磨粒和粘结剂的溶解性和挥发性,以确保磨料的均匀性和稳定性。
3.粘结剂的选择粘结剂起到粘合磨粒和溶剂的作用,使其形成固体磨料。
常见的粘结剂有聚氨酯、丙烯酸树脂等。
选择粘结剂时应考虑对磨粒的粘结性、耐磨性和耐化学腐蚀性能,以保证磨料的强度和稳定性。
4.配方比例的确定根据磨粒、溶剂和粘结剂的特性,确定适当的配方比例是制备磨粒流体弹性磨料的关键步骤。
一般来说,磨粒的质量要占配方总质量的50%以上,溶剂的质量要相对较少,以保持磨粒的稀释度,粘结剂的质量则要根据需要来确定。
5.制备加工工艺制备磨粒流体弹性磨料的加工工艺包括研磨、搅拌、静置和过滤等步骤。
(1)研磨:将磨粒进行打磨和研磨,以去除尖锐的边缘,提高磨粒的表面光滑度。
(2)搅拌:将磨粒、溶剂和粘结剂依次添加到搅拌容器中,用搅拌器进行充分混合和搅拌,直至形成均匀的磨料。
(3)静置:将混合好的磨料静置一段时间,以去除其中的气泡和杂质,并使粘结剂充分溶解或分散。
(4)过滤:将经过静置的磨料通过滤网或滤纸进行过滤,以去除其中的固体颗粒和杂质,得到纯净的磨料溶液。
(5)包装:将过滤好的磨料溶液进行包装,使用密封性良好的容器以防止挥发和污染。
总结:磨粒流体弹性磨料的配方和制作加工工艺对于制备高质量的磨料至关重要。
在配方设计时需要考虑磨粒、溶剂和粘结剂的特性,确定适当的比例;在制作加工工艺中要进行研磨、搅拌、静置和过滤等步骤,确保磨料的分散均匀和稳定性。
只有通过合理配方和严格制作加工,才能获得理想的磨粒流体弹性磨料。
磨粒流工艺
磨粒流工艺是一种**高效且精密的抛光去毛刺技术**,适用于多种复杂形状的工件。
磨粒流工艺,也被称为流体抛光或挤压研磨抛光,主要应用于内孔、微细孔、不规则形状、球面曲面、齿轮等部位的抛光和去毛刺。
这种工艺的特点在于:
1. **工作原理**:磨粒流工艺通过半流体介质进行抛光去毛刺,利用挤压方法使磨料具有流动性,其中的颗粒不断对工件表面进行研磨,完成抛光和去毛刺加工。
2. **材料组成**:磨粒流磨膏由具有粘弹性、柔软性和切割性的半固态载体和一定量磨砂搅拌形成,不同的载体粘度、磨砂种类和粒度可以产生不同的效果。
3. **设备要素**:磨粒流机床为磨料的流动提供动力,冶具夹持工件后,以上下往复挤压方式使磨料流经加工件表面、交叉孔或端角依需求进行去毛边、抛光或倒角加工。
4. **技术优势**:磨粒流工艺具有同方向性加工特点,抛光痕迹和工件使用的方向一致,因此可以保持工件的表面质量。
它还能有效去除放电加工或激光光束加工后产生的脱层和残余应力。
总的来说,磨粒流工艺在航空、电子、计算机、模具制造等领域得到了广泛应用,特别是在精密机械零件的工艺性能要求不断完善的背景下,磨粒流工艺以其独特的优势满足了市场对小型化、高质量表面处理的需求。
共轨管微小孔磨粒流加工装备的设计与数值模拟
李俊烨;刘薇娜;杨立峰;李纯;吴海红
【期刊名称】《机械设计与制造》
【年(卷),期】2010(000)010
【摘要】通过对磨粒流加工技术的研究,提出了解决共轨管零件微小孔结构的精密加工方法.设计了一种磨粒流加工装备,可实现对共轨管零件微小孔的精加工,并对该装备的关键部件进行了有限元分析.利用流体力学软件Fluent对磨粒流微小孔加工的加工状态进行了数值模拟,通过比较分析,得到了理想的磨粒流加工方案.
【总页数】3页(P54-56)
【作者】李俊烨;刘薇娜;杨立峰;李纯;吴海红
【作者单位】长春理工大学机电工程学院,长春130022;长春理工大学机电工程学院,长春130022;长春理工大学机电工程学院,长春130022;长春理工大学机电工程学院,长春130022;长春理工大学机电工程学院,长春130022
【正文语种】中文
【中图分类】TH122;TF205
【相关文献】
1.共轨管微小孔磨粒流抛光实验研究与表面粗糙度预测 [J], 蔡智杰;刘薇娜;高彬彬;任成祖
2.共轨管微小孔磨粒流加工数值分析与研究 [J], 刘薇娜;张雪瑶
3.微小孔磨粒流抛光工艺数值分析 [J], 张雪瑶
4.微小孔磨粒流抛光工艺数值分析 [J], 张雪瑶
5.喷油嘴微小孔磨粒流加工特性的数值模拟 [J], 李俊烨;刘薇娜;杨立峰;赵磊因版权原因,仅展示原文概要,查看原文内容请购买。
整体叶轮磨粒流抛光数值模拟研究李俊烨;周立宾;张心明;尹延路;徐成宇【摘要】叶轮为航空发动机中的重要部件,其曲面特征会影响航空发动机的进气性,进而影响发动机的动力性.利用计算流体力学方法对磨粒流在不同磨料速度下抛光整体叶轮的加工过程进行了数值模拟,分析了静态压强、动态压强、湍动能、湍流强度和壁面剪切力对磨粒流抛光叶轮研抛作用.从数值云图可知,磨粒流研抛叶片时其顶端的抛光效果要好于其根端,且研抛速度越大,叶轮叶片的抛光效果越好,此研究成果可为利用磨粒流抛光整体叶轮提供了理论基础和技术支持.【期刊名称】《制造业自动化》【年(卷),期】2016(038)012【总页数】6页(P88-93)【关键词】整体叶轮;磨粒流;计算流体力学;数值模拟【作者】李俊烨;周立宾;张心明;尹延路;徐成宇【作者单位】长春理工大学机电工程学院,长春 130022;长春理工大学机电工程学院,长春 130022;长春理工大学机电工程学院,长春 130022;长春理工大学机电工程学院,长春 130022;长春理工大学机电工程学院,长春 130022【正文语种】中文【中图分类】TH117.1随着我国航空业的不断发展,飞机数量的不断增加,对航空叶轮的需求也在不断增加,同时由于航空叶轮的形状精度和表面质量影响着发动机的进气性能,所以对叶轮的超精密加工就变得越来越重要,但整体叶轮结构复杂,叶片扭曲大,间隔较小,这给整体叶轮的超精密抛光带来了困难,而磨粒流加工可以很好的对航空发动机叶片的表面进行光整、去毛刺加工[1]。
在磨粒流研磨抛光过程中,工件夹具和工件配合,形成了磨粒流抛光通道,通过外界压力的作用,将含有磨粒的黏弹性液态磨料压入加工通道中,磨料反复地对通道表面或边角(即零件的被加工表面)进行研磨,实现了抛光、倒圆角作用[2,3],以此来实现对加工表面的抛光、光整加工,磨粒流抛光,原理图如图1所示。
磨粒流抛光机理是把磨粒流加工介质内磨粒看作无数的切削刀具,利用磨粒的不规则坚硬棱角反复磨削加工介质所流经的零件被加工表面,从而实现零件表面的精加工[4]。
磨粒流深孔抛光工艺(Magnetic Abrasive Finishing,简称MAF)是一种用于加工深孔内表面的高效、精密的抛光工艺。
下面是磨粒流深孔抛光工艺的基本步骤:
1. 准备工作:首先,需要准备好待加工的零件,包括深孔内表面的工件以及与之匹配的磨具。
同时,还需准备好磨粒流混合液和相关设备。
2. 装夹工件:将待加工的工件装夹到机床上,并调整好位置,使得深孔口暴露在外部,方便后续的喷射和抛光操作。
3. 注入磨粒流混合液:将磨粒流混合液注入深孔内,确保磨粒能够进入深孔并与工件表面接触。
4. 磨粒流喷射:通过压缩空气或液体喷射系统,将带有磨粒的流体喷射到深孔内。
喷射过程中,磨粒会与工件表面发生相互作用,实现磨削和抛光的效果。
5. 控制参数:在喷射过程中,需要控制喷射压力、喷射速度以及磨粒流混合液的流量等参数,以达到理想的加工效果。
这些参数可以根据实际情况进行调整。
6. 循环操作:磨粒流抛光是一个循环操作的过程,通常需要多次进行磨削和抛光,直至达到所需的表面质量。
7. 清洗和检查:完成抛光后,需要将磨粒流混合液从深孔中清洗出来,并对加工表面进行检查,确保其符合要求。
磨粒流深孔抛光工艺具有以下优点:可以实现高效的深孔内表面抛光,提高工件的表面质量;能够处理复杂形状的工件,如曲线、锥形等;操作简单,易于自动化和机械化;可在一定程度上修复或改善工件的形状误差。
需要注意的是,磨粒流深孔抛光工艺也存在一些局限性,例如对工件的材料要求较高、深孔直径和长度的限制等。
因此,在应用该工艺时,需要根据具体情况进行评估和选择合适的工艺参数。
1。