隐马尔可夫模型(有例子,具体易懂)
- 格式:ppt
- 大小:8.65 MB
- 文档页数:77
隐马尔可夫模型及其典型应⽤【原】隐马尔可夫模型及其典型应⽤----by stackupdown ⽬录前⾔本⽂要介绍的是隐马尔可夫模型及其应⽤。
我们从⼀个史学家开始,假设他在看某国的史料时,⾟⾟苦苦地统计了上下数年,发现了粮⾷的增长和下降的⼀段,他会结合历史去分析⼀些问题。
但是如果史书的其他记载得太少,他就找不到问题的所在,所以⽆从下⼿。
⼜⽐如,⼀个⼈出去旅⾏,相信民间的传说,海藻的湿度跟未来的天⽓有关,未来不同天⽓,海藻的湿度不⼀样,但是海藻有⼀定概率是错的。
尽管如此,他还是想要根据这个来估计明天天⽓的可能性[1]。
这两个问题是跟时间相关的问题,有些这样的问题是解决不了的,有些则不然,我们在接下来的⽂章⾥会讲到相关问题的数学抽象和解决⽅法。
正⽂⼀、随机过程我们在⾃然世界中会遇到各种不确定的过程,它们的发⽣是不确定的,这种过程称为随机过程。
像花粉的布朗运动、股票市值、天⽓变化都是随机过程[2]。
马尔科夫随机过程是⼀类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程有以下的性质:指定⼀个时间点,则未来时间的状态只与现在有关,跟它的过去没有关系。
在现实⽣活中的马尔科夫过程是我们⼈为抽象进⾏简化的,如果我们认为⼀个事物的未来跟过去的变化没有太⼤关系,那么我们就可以把它抽象成马尔科夫过程[2]。
⽐如我们的天⽓,很不严谨地说,可以抽象成马尔科夫过程,从今天晴天转移到明天多云、下⾬的转移只取决于今天的天⽓,⽽跟前天的天⽓⽆关。
如下图,这样我们按照概率的知识就可以得到今天下⾬,明天放晴的概率:P(明天晴|今天⾬)=0.4 这就当做是我们最简单的⼀个模型了[3]。
马尔科夫过程的假设很简单,就是概率不依赖于之前的序列,写成公式:就好像⼀条鱼不知道⾃⼰之前的运动轨迹,只知道⾃⼰在哪⾥,接着它就会按照现在的位置随机选择⼀个⽅向去游动了。
鱼的前前后后的运动形成了⼀条链。
在⼀个马尔科夫模型中,我们可以利⽤它来计算概率,⽽且由于它是单个状态的转移,我们看起来它就像是⼀条链⼀样,状态从头到尾移动。
隐马尔可夫模型的基本用法隐马尔可夫模型(HiddenMarkovModel,HMM)是一种用于描述随机过程的概率模型,它在自然语言处理、语音识别、生物信息学、金融分析等领域得到了广泛应用。
本文将介绍隐马尔可夫模型的基本概念、数学表达、参数估计、解码算法等内容,希望对读者理解和应用该模型有所帮助。
一、隐马尔可夫模型的基本概念隐马尔可夫模型是一个二元组(Q, O, A, B, π),其中:Q = {q1, q2, …, qN}是状态集合,表示模型中可能出现的所有状态;O = {o1, o2, …, oT}是观测集合,表示模型中可能出现的所有观测;A = [aij]是状态转移矩阵,其中aij表示从状态i转移到状态j的概率;B = [bj(k)]是观测概率矩阵,其中bj(k)表示在状态j下观测到k的概率;π = [πi]是初始状态概率向量,其中πi表示模型开始时处于状态i的概率。
隐马尔可夫模型的基本假设是:每个时刻系统处于某一状态,但是我们无法观测到该状态,只能观测到该状态下产生的某个观测。
因此,我们称该状态为隐状态,称观测为可观测状态。
隐马尔可夫模型的任务就是根据观测序列推断出最有可能的隐状态序列。
二、隐马尔可夫模型的数学表达隐马尔可夫模型的数学表达可以用贝叶斯公式表示:P(O|λ) = ∑Q P(O|Q, λ)P(Q|λ)其中,O表示观测序列,Q表示隐状态序列,λ表示模型参数。
P(O|Q, λ)表示在给定隐状态序列Q和模型参数λ的条件下,观测序列O出现的概率;P(Q|λ)表示在给定模型参数λ的条件下,隐状态序列Q出现的概率。
P(O|λ)表示在给定模型参数λ的条件下,观测序列O出现的概率。
根据贝叶斯公式,我们可以得到隐状态序列的后验概率:P(Q|O,λ) = P(O|Q,λ)P(Q|λ)/P(O|λ)其中,P(O|Q,λ)和P(Q|λ)可以通过模型参数计算,P(O|λ)可以通过前向算法或后向算法计算。
⼀⽂搞懂HMM(隐马尔可夫模型)什么是熵(Entropy)简单来说,熵是表⽰物质系统状态的⼀种度量,⽤它⽼表征系统的⽆序程度。
熵越⼤,系统越⽆序,意味着系统结构和运动的不确定和⽆规则;反之,,熵越⼩,系统越有序,意味着具有确定和有规则的运动状态。
熵的中⽂意思是热量被温度除的商。
负熵是物质系统有序化,组织化,复杂化状态的⼀种度量。
熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯⾸次提出熵的概念,⽤来表⽰任何⼀种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越⼤。
1. ⼀滴墨⽔滴在清⽔中,部成了⼀杯淡蓝⾊溶液2. 热⽔晾在空⽓中,热量会传到空⽓中,最后使得温度⼀致更多的⼀些⽣活中的例⼦:1. 熵⼒的⼀个例⼦是⽿机线,我们将⽿机线整理好放进⼝袋,下次再拿出来已经乱了。
让⽿机线乱掉的看不见的“⼒”就是熵⼒,⽿机线喜欢变成更混乱。
2. 熵⼒另⼀个具体的例⼦是弹性⼒。
⼀根弹簧的⼒,就是熵⼒。
胡克定律其实也是⼀种熵⼒的表现。
3. 万有引⼒也是熵⼒的⼀种(热烈讨论的话题)。
4. 浑⽔澄清[1]于是从微观看,熵就表现了这个系统所处状态的不确定性程度。
⾹农,描述⼀个信息系统的时候就借⽤了熵的概念,这⾥熵表⽰的是这个信息系统的平均信息量(平均不确定程度)。
最⼤熵模型我们在投资时常常讲不要把所有的鸡蛋放在⼀个篮⼦⾥,这样可以降低风险。
在信息处理中,这个原理同样适⽤。
在数学上,这个原理称为最⼤熵原理(the maximum entropy principle)。
让我们看⼀个拼⾳转汉字的简单的例⼦。
假如输⼊的拼⾳是"wang-xiao-bo",利⽤语⾔模型,根据有限的上下⽂(⽐如前两个词),我们能给出两个最常见的名字“王⼩波”和“王晓波 ”。
⾄于要唯⼀确定是哪个名字就难了,即使利⽤较长的上下⽂也做不到。
当然,我们知道如果通篇⽂章是介绍⽂学的,作家王⼩波的可能性就较⼤;⽽在讨论两岸关系时,台湾学者王晓波的可能性会较⼤。
HMM隐马尔可夫模型在自然语言处理中的应用隐马尔可夫模型(Hidden Markov Model,HMM)是自然语言处理中常用的一种概率统计模型,它广泛应用于语音识别、文本分类、机器翻译等领域。
本文将从HMM的基本原理、应用场景和实现方法三个方面,探讨HMM在自然语言处理中的应用。
一、HMM的基本原理HMM是一种二元组( $λ=(A,B)$),其中$A$是状态转移矩阵,$B$是观测概率矩阵。
在HMM中,状态具有时序关系,每个时刻处于某一状态,所取得的观测值与状态相关。
具体来说,可以用以下参数描述HMM模型:- 隐藏状态集合$S={s_1,s_2,...,s_N}$:表示模型所有可能的状态。
- 观测符号集合$V={v_1,v_2,...,v_M}$:表示模型所有可能的观测符号。
- 初始状态分布$\pi={\pi (i)}$:表示最初处于各个状态的概率集合。
- 状态转移矩阵$A={a_{ij}}$:表示从$i$状态转移到$j$状态的概率矩阵。
- 观测概率矩阵$B={b_j(k)}$:表示处于$j$状态时,观测到$k$符号的概率。
HMM的主要任务是在给定观测符号序列下,求出最有可能的对应状态序列。
这个任务可以通过HMM的三种基本问题求解。
- 状态序列概率问题:已知模型参数和观测符号序列,求得该观测符号序列下各个状态序列的概率。
- 观测符号序列概率问题:已知模型参数和状态序列,求得该状态序列下观测符号序列的概率。
- 状态序列预测问题:已知模型参数和观测符号序列,求得使得观测符号序列概率最大的对应状态序列。
二、HMM的应用场景1. 语音识别语音识别是指将语音信号转化成文字的过程,它是自然语言处理的关键技术之一。
HMM在语音识别领域具有广泛应用,主要用于建立声学模型和语言模型。
其中,声学模型描述语音信号的产生模型,是从语音输入信号中提取特征的模型,而语言模型描述语言的组织方式,是指给定一个句子的前提下,下一个字或单词出现的可能性。
如何用简单易懂的例子解释隐马尔可夫模型如何用简单易懂的例子解释隐马尔可夫模型? - 知乎隐马尔可夫(HMM)好讲,简单易懂不好讲。
我想说个更通俗易懂的例子。
我希望我的读者是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式。
霍金曾经说过,你多写一个公式,就会少一半的读者。
还是用最经典的例子,掷骰子。
假设我手里有三个不同的骰子。
第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。
第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。
第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。
假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。
然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。
不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。
例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4这串数字叫做可见状态链。
但是在隐马尔可夫模型中,我们不仅仅有这么一串可见状态链,还有一串隐含状态链。
在这个例子里,这串隐含状态链就是你用的骰子的序列。
比如,隐含状态链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8一般来说,HMM中说到的马尔可夫链其实是指隐含状态链,因为隐含状态(骰子)之间存在转换概率(transition probability)。
在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。
D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。
这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率的。
比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。
HMM(隐马尔可夫模型)及其应用摘要:隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。
80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。
本文先是简要介绍了HMM的由来和概念,之后重点介绍了3个隐马尔科夫模型的核心问题。
关键词:HMM,三个核心问题HMM的由来1870年,俄国有机化学家Vladimir V. Markovnikov第一次提出马尔可夫模型。
马尔可夫在分析俄国文学家普希金的名著《叶夫盖尼•奥涅金》的文字的过程中,提出了后来被称为马尔可夫框架的思想。
而Baum及其同事则提出了隐马尔可夫模型,这一思想后来在语音识别领域得到了异常成功的应用。
同时,隐马尔可夫模型在“统计语言学习”以及“序列符号识别”(比如DNA序列)等领域也得到了应用。
人们还把隐马尔可夫模型扩展到二维领域,用于光学字符识别。
而其中的解码算法则是由Viterbi和他的同事们发展起来的。
马尔可夫性和马尔可夫链1. 马尔可夫性如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程。
马尔可夫性可用如下式子形象地表示:X(t+1)=f(X(t))2. 马尔可夫链时间和状态都离散的马尔可夫过程称为马尔可夫链。
记作{Xn=X(n), n=0,1,2,…}这是在时间集T1={0,1,2,…}上对离散状态的过程相继观察的结果。
链的状态空间记作I={a1, a2,…}, ai ∈R.条件概率Pij(m, m+n)=P{ Xm+n = aj | Xm = aj }为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。
3. 转移概率矩阵如下图所示,这是一个转移概率矩阵的例子。
由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有当与m无关时,称马尔可夫链为齐次马尔可夫链,通常说的马尔可夫链都是指齐次马尔可夫链。
从饮食习惯知天气冷暖——浅谈隐马尔可夫模型1 引言明天的世界只与今天有关,而与昨天无关。
这句话是对马尔可夫模型的一个很好的诠释。
在概率论中,马尔可夫模型是一个非常重要的状态空间随机模型(stochastic state space model)。
该模型假设一个系统或随机变量在下一时刻的状态仅和当前的状态有关,而与任何过去的历史状态都无关,即当前的状态已经包括了预测未来所需的所有信息。
这个特性被称为马尔可夫性质(Markov property),也被称为无记忆性(memorylessness)。
马尔可夫模型由俄罗斯数学家安德雷· 马尔可夫(Андрей Андреевич Марков)提出(就是下面这位帅哥,漂亮的实力派)。
该模型在预测建模方面有着广泛的应用。
近年来,也有越来越多的人将它用在量化投资领域。
根据在时间上以及在状态空间中是否连续,马尔可夫模型又有不同的版本,比如连续的马尔可夫过程(Markov process)和离散的马尔可夫链(Markov chain)。
本文中,为了便于介绍,我们考虑最简单的离散模型,即模型在时间和状态上都是离散的。
时间上离散意味着系统仅在特定的时间点上发生状态的变化(比如每小时或者每天发生一次变化);状态空间上离散意味着系统状态的取值是非连续的。
此外我们假设状态的取值个数是有限的。
离散模型虽然简单,但在本文最后一节可以看出,它在量化投资领域同样有重要的应用价值。
在正常的马尔可夫模型中,系统的状态对于观察者来说是直接可见的,我们关心的是诸如系统在不同时刻处于不同状态的概率这类问题。
遗憾的是,在一些应用中(比如量化投资中的一些问题),我们并不能直接观测到系统的状态——这些状态对我们来说是隐形的。
虽然无法直接观测到状态,但是受这些状态影响的观测量的取值对我们来说是可见的;我们需要透过这些观测量的取值来推测系统所处的状态。
这样的模型称为隐马尔可夫模型(Hidden Markov Models,简称 HMM)。
马尔科夫过程马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。
考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...S N}。
我们如今用q1,q2,q3,…q n来表示系统在t=1,2,3,…n时刻下的状态。
在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(S N)表示t=1时系统状态为S N的概率。
马尔科夫模型有两个假设:1. 系统在时刻t的状态只与时刻t-1处的状态相关;〔也称为无后效性〕2. 状态转移概率与时间无关;〔也称为齐次性或时齐性〕第一条详细可以用如下公式表示:P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i)其中,t为大于1的任意数值,S k为任意状态第二个假设那么可以用如下公式表示:P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i)其中,k为任意时刻。
下列图是一个马尔科夫过程的样例图:可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,a ij表示P(S i|S i-1)。
隐马尔科夫过程与马尔科夫相比,隐马尔科夫模型那么是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下列图所示:此图是从别处找来的,可能符号与我之前描绘马尔科夫时不同,相信大家也能理解。
该图分为上下两行,上面那行就是一个马尔科夫转移过程,下面这一行那么是输出,即我们可以观察到的值,如今,我们将上面那行的马尔科夫转移过程中的状态称为隐藏状态,下面的观察到的值称为观察状态,观察状态的集合表示为O={O1,O2,O3,…O M}。
相应的,隐马尔科夫也比马尔科夫多了一个假设,即输出仅与当前状态有关,可以用如下公式表示:P(O1,O2,…,O t|S1,S2,…,S t)=P(O1|S1)*P(O2|S2)*...*P(O t|S t) 其中,O1,O2,…,O t为从时刻1到时刻t的观测状态序列,S1,S2,…,S t那么为隐藏状态序列。
神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
隐马尔可夫模型隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。
80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。
隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。
所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。
自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。
到了90年代,HMM还被引入计算机文字识别和移动通信核心技术“多用户的检测”。
近年来,HMM在生物信息科学、故障诊断等领域也开始得到应用。
1. 评估问题。
给定观测序列O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一观测序列的概率,进而可对该HMM做出相关评估。
例如,已有一些模型参数各异的HMM,给定观测序列O=O1O2O3…Ot,我们想知道哪个HMM模型最可能生成该观测序列。
通常我们利用forward算法分别计算每个HMM 产生给定观测序列O的概率,然后从中选出最优的HMM模型。
这类评估的问题的一个经典例子是语音识别。
在描述语言识别的隐马尔科夫模型中,每个单词生成一个对应的HMM,每个观测序列由一个单词的语音构成,单词的识别是通过评估进而选出最有可能产生观测序列所代表的读音的HMM而实现的。
隐马尔可夫链模型的递推-概述说明以及解释1.引言1.1 概述隐马尔可夫链模型是一种常用的概率统计模型,它广泛应用于自然语言处理、语音识别、模式识别等领域。
该模型由两个基本假设构成:一是假设系统的演变具有马尔可夫性质,即当前状态的变化只与前一个状态有关;二是假设在每个状态下,观测到的数据是相互独立的。
在隐马尔可夫链模型中,存在两个重要概念:隐含状态和观测数据。
隐含状态是指在系统中存在但无法直接观测到的状态,而观测数据是指我们通过观测手段能够直接获取到的数据。
隐含状态和观测数据之间通过概率函数进行联系,概率函数描述了在每个状态下观测数据出现的概率。
隐马尔可夫链模型的递推算法用于解决两个问题:一是给定模型参数和观测序列,求解最可能的隐含状态序列;二是给定模型参数和观测序列,求解模型参数的最大似然估计。
其中,递推算法主要包括前向算法和后向算法。
前向算法用于计算观测序列出现的概率,后向算法用于计算在某一隐含状态下观测数据的概率。
隐马尔可夫链模型在实际应用中具有广泛的应用价值。
在自然语言处理领域,它可以用于词性标注、语义解析等任务;在语音识别领域,它可以用于语音识别、语音分割等任务;在模式识别领域,它可以用于手写识别、人脸识别等任务。
通过对隐马尔可夫链模型的研究和应用,可以有效提高这些领域的性能和效果。
综上所述,隐马尔可夫链模型是一种重要的概率统计模型,具有广泛的应用前景。
通过递推算法,我们可以有效地解决模型参数和隐含状态序列的求解问题。
随着对该模型的深入研究和应用,相信它将在各个领域中发挥更大的作用,并取得更好的效果。
1.2 文章结构文章结构部分的内容可以包括以下要点:文章将分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个子部分。
概述部分简要介绍了隐马尔可夫链模型的背景和重要性,指出了该模型在实际问题中的广泛应用。
文章结构部分说明了整篇文章的组织结构,明确了每个部分的内容和目的。
目的部分描述了本文的主要目的,即介绍隐马尔可夫链模型的递推算法和应用,并总结和展望其未来发展方向。
隐马尔科夫模型HMM (⼀)HMM 模型 隐马尔科夫模型HMM (⼀)HMM 模型基础 隐马尔科夫模型(Hidden Markov Model ,以下简称HMM )是⽐较经典的机器学习模型了,它在语⾔识别,⾃然语⾔处理,模式识别等领域得到⼴泛的应⽤。
当然,随着⽬前深度学习的崛起,尤其是,等神经⽹络序列模型的⽕热,HMM 的地位有所下降。
但是作为⼀个经典的模型,学习HMM 的模型和对应算法,对我们解决问题建模的能⼒提⾼以及算法思路的拓展还是很好的。
本⽂是HMM 系列的第⼀篇,关注于HMM 模型的基础。
1. 什么样的问题需要HMM 模型 ⾸先我们来看看什么样的问题解决可以⽤HMM 模型。
使⽤HMM 模型时我们的问题⼀般有这两个特征:1)我们的问题是基于序列的,⽐如时间序列,或者状态序列。
2)我们的问题中有两类数据,⼀类序列数据是可以观测到的,即观测序列;⽽另⼀类数据是不能观察到的,即隐藏状态序列,简称状态序列。
有了这两个特征,那么这个问题⼀般可以⽤HMM 模型来尝试解决。
这样的问题在实际⽣活中是很多的。
⽐如:我现在在打字写博客,我在键盘上敲出来的⼀系列字符就是观测序列,⽽我实际想写的⼀段话就是隐藏序列,输⼊法的任务就是从敲⼊的⼀系列字符尽可能的猜测我要写的⼀段话,并把最可能的词语放在最前⾯让我选择,这就可以看做⼀个HMM 模型了。
再举⼀个,我在和你说话,我发出的⼀串连续的声⾳就是观测序列,⽽我实际要表达的⼀段话就是状态序列,你⼤脑的任务,就是从这⼀串连续的声⾳中判断出我最可能要表达的话的内容。
从这些例⼦中,我们可以发现,HMM 模型可以⽆处不在。
但是上⾯的描述还不精确,下⾯我们⽤精确的数学符号来表述我们的HMM 模型。
2. HMM 模型的定义 对于HMM 模型,⾸先我们假设Q 是所有可能的隐藏状态的集合,V 是所有可能的观测状态的集合,即:Q ={q 1,q 2,...,q N },V ={v 1,v 2,...v M } 其中,N 是可能的隐藏状态数,M 是所有的可能的观察状态数。