隐马尔可夫模型(有例子,具体易懂)
- 格式:ppt
- 大小:8.65 MB
- 文档页数:77
隐马尔可夫模型及其典型应⽤【原】隐马尔可夫模型及其典型应⽤----by stackupdown ⽬录前⾔本⽂要介绍的是隐马尔可夫模型及其应⽤。
我们从⼀个史学家开始,假设他在看某国的史料时,⾟⾟苦苦地统计了上下数年,发现了粮⾷的增长和下降的⼀段,他会结合历史去分析⼀些问题。
但是如果史书的其他记载得太少,他就找不到问题的所在,所以⽆从下⼿。
⼜⽐如,⼀个⼈出去旅⾏,相信民间的传说,海藻的湿度跟未来的天⽓有关,未来不同天⽓,海藻的湿度不⼀样,但是海藻有⼀定概率是错的。
尽管如此,他还是想要根据这个来估计明天天⽓的可能性[1]。
这两个问题是跟时间相关的问题,有些这样的问题是解决不了的,有些则不然,我们在接下来的⽂章⾥会讲到相关问题的数学抽象和解决⽅法。
正⽂⼀、随机过程我们在⾃然世界中会遇到各种不确定的过程,它们的发⽣是不确定的,这种过程称为随机过程。
像花粉的布朗运动、股票市值、天⽓变化都是随机过程[2]。
马尔科夫随机过程是⼀类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程有以下的性质:指定⼀个时间点,则未来时间的状态只与现在有关,跟它的过去没有关系。
在现实⽣活中的马尔科夫过程是我们⼈为抽象进⾏简化的,如果我们认为⼀个事物的未来跟过去的变化没有太⼤关系,那么我们就可以把它抽象成马尔科夫过程[2]。
⽐如我们的天⽓,很不严谨地说,可以抽象成马尔科夫过程,从今天晴天转移到明天多云、下⾬的转移只取决于今天的天⽓,⽽跟前天的天⽓⽆关。
如下图,这样我们按照概率的知识就可以得到今天下⾬,明天放晴的概率:P(明天晴|今天⾬)=0.4 这就当做是我们最简单的⼀个模型了[3]。
马尔科夫过程的假设很简单,就是概率不依赖于之前的序列,写成公式:就好像⼀条鱼不知道⾃⼰之前的运动轨迹,只知道⾃⼰在哪⾥,接着它就会按照现在的位置随机选择⼀个⽅向去游动了。
鱼的前前后后的运动形成了⼀条链。
在⼀个马尔科夫模型中,我们可以利⽤它来计算概率,⽽且由于它是单个状态的转移,我们看起来它就像是⼀条链⼀样,状态从头到尾移动。
隐马尔可夫模型的基本用法隐马尔可夫模型(HiddenMarkovModel,HMM)是一种用于描述随机过程的概率模型,它在自然语言处理、语音识别、生物信息学、金融分析等领域得到了广泛应用。
本文将介绍隐马尔可夫模型的基本概念、数学表达、参数估计、解码算法等内容,希望对读者理解和应用该模型有所帮助。
一、隐马尔可夫模型的基本概念隐马尔可夫模型是一个二元组(Q, O, A, B, π),其中:Q = {q1, q2, …, qN}是状态集合,表示模型中可能出现的所有状态;O = {o1, o2, …, oT}是观测集合,表示模型中可能出现的所有观测;A = [aij]是状态转移矩阵,其中aij表示从状态i转移到状态j的概率;B = [bj(k)]是观测概率矩阵,其中bj(k)表示在状态j下观测到k的概率;π = [πi]是初始状态概率向量,其中πi表示模型开始时处于状态i的概率。
隐马尔可夫模型的基本假设是:每个时刻系统处于某一状态,但是我们无法观测到该状态,只能观测到该状态下产生的某个观测。
因此,我们称该状态为隐状态,称观测为可观测状态。
隐马尔可夫模型的任务就是根据观测序列推断出最有可能的隐状态序列。
二、隐马尔可夫模型的数学表达隐马尔可夫模型的数学表达可以用贝叶斯公式表示:P(O|λ) = ∑Q P(O|Q, λ)P(Q|λ)其中,O表示观测序列,Q表示隐状态序列,λ表示模型参数。
P(O|Q, λ)表示在给定隐状态序列Q和模型参数λ的条件下,观测序列O出现的概率;P(Q|λ)表示在给定模型参数λ的条件下,隐状态序列Q出现的概率。
P(O|λ)表示在给定模型参数λ的条件下,观测序列O出现的概率。
根据贝叶斯公式,我们可以得到隐状态序列的后验概率:P(Q|O,λ) = P(O|Q,λ)P(Q|λ)/P(O|λ)其中,P(O|Q,λ)和P(Q|λ)可以通过模型参数计算,P(O|λ)可以通过前向算法或后向算法计算。
⼀⽂搞懂HMM(隐马尔可夫模型)什么是熵(Entropy)简单来说,熵是表⽰物质系统状态的⼀种度量,⽤它⽼表征系统的⽆序程度。
熵越⼤,系统越⽆序,意味着系统结构和运动的不确定和⽆规则;反之,,熵越⼩,系统越有序,意味着具有确定和有规则的运动状态。
熵的中⽂意思是热量被温度除的商。
负熵是物质系统有序化,组织化,复杂化状态的⼀种度量。
熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯⾸次提出熵的概念,⽤来表⽰任何⼀种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越⼤。
1. ⼀滴墨⽔滴在清⽔中,部成了⼀杯淡蓝⾊溶液2. 热⽔晾在空⽓中,热量会传到空⽓中,最后使得温度⼀致更多的⼀些⽣活中的例⼦:1. 熵⼒的⼀个例⼦是⽿机线,我们将⽿机线整理好放进⼝袋,下次再拿出来已经乱了。
让⽿机线乱掉的看不见的“⼒”就是熵⼒,⽿机线喜欢变成更混乱。
2. 熵⼒另⼀个具体的例⼦是弹性⼒。
⼀根弹簧的⼒,就是熵⼒。
胡克定律其实也是⼀种熵⼒的表现。
3. 万有引⼒也是熵⼒的⼀种(热烈讨论的话题)。
4. 浑⽔澄清[1]于是从微观看,熵就表现了这个系统所处状态的不确定性程度。
⾹农,描述⼀个信息系统的时候就借⽤了熵的概念,这⾥熵表⽰的是这个信息系统的平均信息量(平均不确定程度)。
最⼤熵模型我们在投资时常常讲不要把所有的鸡蛋放在⼀个篮⼦⾥,这样可以降低风险。
在信息处理中,这个原理同样适⽤。
在数学上,这个原理称为最⼤熵原理(the maximum entropy principle)。
让我们看⼀个拼⾳转汉字的简单的例⼦。
假如输⼊的拼⾳是"wang-xiao-bo",利⽤语⾔模型,根据有限的上下⽂(⽐如前两个词),我们能给出两个最常见的名字“王⼩波”和“王晓波 ”。
⾄于要唯⼀确定是哪个名字就难了,即使利⽤较长的上下⽂也做不到。
当然,我们知道如果通篇⽂章是介绍⽂学的,作家王⼩波的可能性就较⼤;⽽在讨论两岸关系时,台湾学者王晓波的可能性会较⼤。
HMM隐马尔可夫模型在自然语言处理中的应用隐马尔可夫模型(Hidden Markov Model,HMM)是自然语言处理中常用的一种概率统计模型,它广泛应用于语音识别、文本分类、机器翻译等领域。
本文将从HMM的基本原理、应用场景和实现方法三个方面,探讨HMM在自然语言处理中的应用。
一、HMM的基本原理HMM是一种二元组( $λ=(A,B)$),其中$A$是状态转移矩阵,$B$是观测概率矩阵。
在HMM中,状态具有时序关系,每个时刻处于某一状态,所取得的观测值与状态相关。
具体来说,可以用以下参数描述HMM模型:- 隐藏状态集合$S={s_1,s_2,...,s_N}$:表示模型所有可能的状态。
- 观测符号集合$V={v_1,v_2,...,v_M}$:表示模型所有可能的观测符号。
- 初始状态分布$\pi={\pi (i)}$:表示最初处于各个状态的概率集合。
- 状态转移矩阵$A={a_{ij}}$:表示从$i$状态转移到$j$状态的概率矩阵。
- 观测概率矩阵$B={b_j(k)}$:表示处于$j$状态时,观测到$k$符号的概率。
HMM的主要任务是在给定观测符号序列下,求出最有可能的对应状态序列。
这个任务可以通过HMM的三种基本问题求解。
- 状态序列概率问题:已知模型参数和观测符号序列,求得该观测符号序列下各个状态序列的概率。
- 观测符号序列概率问题:已知模型参数和状态序列,求得该状态序列下观测符号序列的概率。
- 状态序列预测问题:已知模型参数和观测符号序列,求得使得观测符号序列概率最大的对应状态序列。
二、HMM的应用场景1. 语音识别语音识别是指将语音信号转化成文字的过程,它是自然语言处理的关键技术之一。
HMM在语音识别领域具有广泛应用,主要用于建立声学模型和语言模型。
其中,声学模型描述语音信号的产生模型,是从语音输入信号中提取特征的模型,而语言模型描述语言的组织方式,是指给定一个句子的前提下,下一个字或单词出现的可能性。
如何用简单易懂的例子解释隐马尔可夫模型如何用简单易懂的例子解释隐马尔可夫模型? - 知乎隐马尔可夫(HMM)好讲,简单易懂不好讲。
我想说个更通俗易懂的例子。
我希望我的读者是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式。
霍金曾经说过,你多写一个公式,就会少一半的读者。
还是用最经典的例子,掷骰子。
假设我手里有三个不同的骰子。
第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。
第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。
第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。
假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。
然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。
不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。
例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4这串数字叫做可见状态链。
但是在隐马尔可夫模型中,我们不仅仅有这么一串可见状态链,还有一串隐含状态链。
在这个例子里,这串隐含状态链就是你用的骰子的序列。
比如,隐含状态链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8一般来说,HMM中说到的马尔可夫链其实是指隐含状态链,因为隐含状态(骰子)之间存在转换概率(transition probability)。
在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。
D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。
这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率的。
比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。
HMM(隐马尔可夫模型)及其应用摘要:隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。
80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。
本文先是简要介绍了HMM的由来和概念,之后重点介绍了3个隐马尔科夫模型的核心问题。
关键词:HMM,三个核心问题HMM的由来1870年,俄国有机化学家Vladimir V. Markovnikov第一次提出马尔可夫模型。
马尔可夫在分析俄国文学家普希金的名著《叶夫盖尼•奥涅金》的文字的过程中,提出了后来被称为马尔可夫框架的思想。
而Baum及其同事则提出了隐马尔可夫模型,这一思想后来在语音识别领域得到了异常成功的应用。
同时,隐马尔可夫模型在“统计语言学习”以及“序列符号识别”(比如DNA序列)等领域也得到了应用。
人们还把隐马尔可夫模型扩展到二维领域,用于光学字符识别。
而其中的解码算法则是由Viterbi和他的同事们发展起来的。
马尔可夫性和马尔可夫链1. 马尔可夫性如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程。
马尔可夫性可用如下式子形象地表示:X(t+1)=f(X(t))2. 马尔可夫链时间和状态都离散的马尔可夫过程称为马尔可夫链。
记作{Xn=X(n), n=0,1,2,…}这是在时间集T1={0,1,2,…}上对离散状态的过程相继观察的结果。
链的状态空间记作I={a1, a2,…}, ai ∈R.条件概率Pij(m, m+n)=P{ Xm+n = aj | Xm = aj }为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。
3. 转移概率矩阵如下图所示,这是一个转移概率矩阵的例子。
由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有当与m无关时,称马尔可夫链为齐次马尔可夫链,通常说的马尔可夫链都是指齐次马尔可夫链。
从饮食习惯知天气冷暖——浅谈隐马尔可夫模型1 引言明天的世界只与今天有关,而与昨天无关。
这句话是对马尔可夫模型的一个很好的诠释。
在概率论中,马尔可夫模型是一个非常重要的状态空间随机模型(stochastic state space model)。
该模型假设一个系统或随机变量在下一时刻的状态仅和当前的状态有关,而与任何过去的历史状态都无关,即当前的状态已经包括了预测未来所需的所有信息。
这个特性被称为马尔可夫性质(Markov property),也被称为无记忆性(memorylessness)。
马尔可夫模型由俄罗斯数学家安德雷· 马尔可夫(Андрей Андреевич Марков)提出(就是下面这位帅哥,漂亮的实力派)。
该模型在预测建模方面有着广泛的应用。
近年来,也有越来越多的人将它用在量化投资领域。
根据在时间上以及在状态空间中是否连续,马尔可夫模型又有不同的版本,比如连续的马尔可夫过程(Markov process)和离散的马尔可夫链(Markov chain)。
本文中,为了便于介绍,我们考虑最简单的离散模型,即模型在时间和状态上都是离散的。
时间上离散意味着系统仅在特定的时间点上发生状态的变化(比如每小时或者每天发生一次变化);状态空间上离散意味着系统状态的取值是非连续的。
此外我们假设状态的取值个数是有限的。
离散模型虽然简单,但在本文最后一节可以看出,它在量化投资领域同样有重要的应用价值。
在正常的马尔可夫模型中,系统的状态对于观察者来说是直接可见的,我们关心的是诸如系统在不同时刻处于不同状态的概率这类问题。
遗憾的是,在一些应用中(比如量化投资中的一些问题),我们并不能直接观测到系统的状态——这些状态对我们来说是隐形的。
虽然无法直接观测到状态,但是受这些状态影响的观测量的取值对我们来说是可见的;我们需要透过这些观测量的取值来推测系统所处的状态。
这样的模型称为隐马尔可夫模型(Hidden Markov Models,简称 HMM)。