数学模型--分形简介
- 格式:ppt
- 大小:1.84 MB
- 文档页数:46
分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。
分形的基本特征是具有标度不变性。
其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。
研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。
说到分形(fractal),先来看看分形的定义。
分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。
分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。
分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。
但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。
而一直到八十年代,对于分形的研究才真正被大家所关注。
分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。
它是数学的一个分支。
我之前说过很多次,数学就是美。
而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。
而更由于它美的直观性,被很多艺术家索青睐。
分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。
而在生物界,分形的例子也比比皆是。
近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。
分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。
分形理论及其在机械工程中的应用引言分形理论是20世纪80年代提出的一种新的数学研究领域,它提出了一种全新的描述自然界和社会现象的数学模型。
分形理论的提出对科学领域产生了深远的影响,不仅在自然科学中有广泛的应用,而且在工程领域也有着重要的意义。
本文将介绍分形理论的基本概念及其在机械工程中的应用。
一、分形理论的基本概念1. 分形的定义分形是指在任意尺度下具有相似结构的图形或物体。
换句话说,分形是一种具有自相似性质的几何图形,即无论是放大还是缩小,都具有相同或相似的形状。
这种自相似性是传统几何图形所不具备的特征,因此分形具有特殊的几何结构特征。
2. 分形的特征分形具有以下几个显著特征:(1)分形维数:分形物体的维数可以是小数或者非整数。
这与传统的欧几里德几何中的整数维度有着本质的区别。
分形维数也被称为“分形量度”,用来描述分形图形的粗糙程度或者曲折程度。
(2)分形的不规则性:分形图形通常具有不规则性和复杂性,无法用传统的几何图形来精确描述。
(3)分形的自相似性:分形图形在各种尺度上都具有相似的结构,这是其与传统几何图形最大的区别。
以上特征使得分形成为一种新型的几何结构,有着广泛的应用前景。
二、分形理论在机械工程中的应用1. 分形表面处理技术分形理论在机械工程中的应用最为广泛的领域之一就是表面处理技术。
利用分形理论,可以设计出具有特定粗糙度和摩擦特性的表面结构,从而实现对摩擦、磨损和润滑等性能的控制。
传统的表面处理方法往往要求加工具有规则的结构,而分形表面处理技术则可以通过模拟自然界中的分形结构,设计出更为复杂和多样化的表面形貌。
2. 分形几何构型在机械设计中的应用分形理论提出的自相似性概念在机械设计中也有着重要的应用。
在机械零部件的设计过程中,通过引入分形几何构型,可以实现对结构的自相似性设计,提高零部件的疲劳寿命和强度,改进结构的性能。
分形几何构型还可以用来设计具有分形特性的传感器和控制器等机电一体化系统,提高系统的精度和稳定性。
分形的奥秘与力探索分形的世界与应用分形是指在各个尺度上都具有相似性的图形。
它们的美学吸引力和数学特性使得分形成为了一个极具研究和应用价值的领域。
本文将探讨分形的奥秘与力,以及分形的世界和应用。
一、分形的概念与特性分形的概念最早由波兰数学家曼德勃罗特(Benoit Mandelbrot)在20世纪70年代提出。
分形的特性使得它们与自然界中的很多事物有着惊人的相似性。
例如,云朵、山脉、树叶和河流的形态和分形非常相似。
分形具有几个重要特性。
首先,分形是自相似的。
它们在各个尺度上都存在相似的模式,即部分的形态与整体的形态非常相似。
其次,分形具有无限细节。
无论在何种缩放程度下观察,分形都能揭示出新的细节结构。
最后,分形具有分维度的特性。
普通的几何形体具有整数维度,而分形则具有非整数维度,常被称为分维。
二、分形的数学模型分形的数学模型可以通过递归函数或迭代法来实现。
其中,最著名的分形是曼德勃罗特集合(Mandelbrot Set)。
曼德勃罗特集合是由以下复数序列生成的:Z(n+1)= Z(n)^2 + C,其中Z(0)=0,C为复数常量。
对于每个C值,如果序列在有限次迭代后仍然保持有界,则该C值属于曼德勃罗特集合。
曼德勃罗特集合的图像呈现出复杂多样、充满细节的美感。
它已经成为了分形研究和艺术创作的重要素材。
三、分形的物理与生物学应用分形不仅在数学中有重要应用,还在物理学和生物学中发挥着关键作用。
在物理学领域,分形可以用来描述自然界中的多种现象。
例如,分形维度可以用来计算海岸线的长度,城市的空间分布,以及材料的表面形态等。
此外,分形理论还可以用于描述复杂流体、耗散结构和混沌系统等物理现象。
在生物学领域,分形理论被广泛应用于描述生物体的形态和内部结构。
例如,分形维度被用于研究树木的分枝结构、肺部的支气管系统,以及神经网络的连接方式等。
分形还可以用来研究生物体的动态行为和增长模式。
四、分形的艺术与设计应用分形的美学吸引力使得它成为了很多艺术家和设计师的灵感之源。
分形几何学谁创立了分形几何学?1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。
分形(Fractal)一词,是曼德勃罗创造出来的,其愿意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。
由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。
分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何与传统几何相比有什么特点:⑴从整体上看,分形几何图形是处处不规则的。
例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵在不同尺度上,图形的规则性又是相同的。
上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。
当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。
什么是分维?在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。
也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。
分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。
为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。
将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。
其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。
一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:a^D=b, D=logb/loga的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。
分形几何理论与应用分形几何理论是一种独特的数学理论,它研究的不是传统意义上的整数、有理数或代数等,而是那些细致、复杂、无规则的自相似结构。
这个理论的发展和应用可以追溯到上世纪60年代,由波兰数学家曼德博特和法国数学家朱利亚·帕西亚斯开创并推动。
分形几何理论的应用范围广泛,涉及到自然科学、工程技术、艺术设计等领域。
本文将介绍分形几何理论的基本概念、应用案例以及未来的发展趋势。
一、基本概念分形几何理论的核心概念是“分形”。
分形是一种具有自相似性质的几何形状或图形,即整体的某一部分与整体本身具有相似的结构。
分形可以是自然界中的云朵、树叶、山脉等,也可以是数学模型中的图形、曲线等。
分形具有以下基本特征:1. 自相似性:分形的一部分与整体具有相似的结构,无论进行何种放大或缩小,都能保持这种相似性。
2. 细节复杂性:分形结构的细节非常复杂,无法用简单的几何形状或方程进行描述。
3. 尺度无关性:分形的特征在不同尺度上都存在,并且不会随着放大或缩小而改变。
二、应用案例1. 自然科学领域:分形几何理论在自然科学领域的应用广泛。
例如,地理学家可以利用分形理论来研究地貌形态的分布规律,了解山脉、河流等地貌形状的演化过程。
生物学家可以利用分形模型来研究植物、动物体内的血管网络结构。
天文学家可以用分形几何理论解释银河系的分布规律等。
2. 工程技术领域:分形几何理论在工程技术领域的应用也非常广泛。
例如,在传输网络设计中,可以采用分形模型来提高网络的稳定性和可靠性。
在材料科学中,可以利用分形几何理论来研究材料的表面粗糙度和纹理结构,从而优化材料的性能。
在城市规划中,分形理论可以帮助设计人员更好地解决交通流量、建筑物布局等问题。
3. 艺术设计领域:分形几何理论对艺术设计也有很大的启发。
艺术家可以运用分形的特性创作出具有美感和复杂性的艺术作品。
分形图形的迭代、放大和变换等操作可以产生各种独特的视觉效果,被广泛用于绘画、雕塑和数字艺术等领域。
数学中的分形与自相似性数学领域中的分形理论与自相似性是近年来备受关注的热门话题。
从一系列具有自我重复特征的图形到数学函数的特殊性质,分形与自相似性在许多学科领域都具有深远的影响。
本文将介绍分形与自相似性的定义、基本原理以及应用领域,以帮助读者更好地理解这一概念。
一、分形的定义与特点分形(fractal)是指具有自相似性、无限细节和非整数维度的图形或者对象。
它们以其复杂而规律的形态受到了广泛的关注。
例如,分形的一个典型例子就是科赫曲线(Koch curve),它通过迭代无穷次地将线段中的每一部分替换为一小段线段而形成。
科赫曲线具有无限长度但却完全填充有限面积的特点。
分形的主要特点包括:1. 自相似性:分形图形的一部分与整体具有相似的形态,即无论放大多少倍都会出现相同的结构。
这种自我重复的特征是分形的重要标志。
2. 无限细节:分形图形的形态具有无限的细节,无论放大多少倍都可以一直看到新的结构,这种无限性使得分形呈现出丰富而复杂的几何形态。
3. 非整数维度:与传统的几何图形不同,分形具有非整数维度。
例如,科赫曲线的维度介于一维和二维之间,这种特殊的维度特征使分形在数学和物理学中具有独特的地位。
二、分形的基本原理分形的产生基于迭代和递归的原理。
通过将简单的几何形状进行重复、缩小、旋转或者变形等操作,可以生成复杂的分形结构。
在迭代过程中,规则的操作被无限次地应用,从而形成越来越复杂的图形。
通过数学函数和图形系统,可以描述和模拟分形结构的生成过程。
其中,最著名的是分形维度的概念,用于描述分形的形态特征。
分形维度常用于度量一个图形的复杂程度,它可以是非整数的,表示图形的填充密度和细节丰富程度。
三、分形的应用领域1. 自然界:分形的自相似性与自然界中许多事物的形态特征密切相关。
例如,树木的分形分支结构、海岸线的崎岖曲线、云层的形状等都具备分形的特性。
分形理论被广泛应用于自然科学领域,用于研究自然界的形态和规律。