聚丙烯的生产工艺
- 格式:doc
- 大小:140.50 KB
- 文档页数:11
Spheripol工艺由巴塞尔(Basell)聚烯烃公司开发成功。
该技术自1982年首次工业化以来,是迄今为止最成功、应用最为广泛的聚丙烯生产工艺。
Spheripol工艺是一种液相预聚合同液相均聚和气相共聚相结合的聚合工艺,工艺采用高效催化剂,生成的PP粉料粒度其催化剂生产的粉料呈园球形,颗粒大而均匀,分布可以调节,既可宽又可窄。
可以生产全范围、多用途的各种产品。
其均聚和无规共聚产品的特点是净度高,光学性能好,无异味。
Spheripol工艺采用的液相环管反应器具有以下优点:(a)有很高的反应器时-空产率(可达400kgPP/h.m3),反应器的容积较小,投资少;(b)反应器结构简单,材质要求低,可用低温碳{TodayHot}钢,设计制造简单,由于管径小(DN500或DN600),即使压力较高,管壁也较薄;(c)带夹套的反应器直腿部分可作为反应器框架的支柱,这种结构设计降低了投资;(d)由于反应器容积小,停留时间短,产品切换快,过渡料少;(e)聚合物颗粒悬浮于丙烯液体中,聚合物与丙烯之间有很好的热传递。
采用冷却夹套撤出反应热单位体积的传热面积大,传热系数大,环管反应器的总体传热系数高达1600W/(m2.℃);(f)环管反应器内的浆液用轴流泵高速循环,流体流速高达7m/s,因此可以使聚合物淤浆搅拌均匀,催化剂体系分布均匀,聚合反应条件容易控制而且可以控制得很精确,产品质量均一,不容易产生热点,不容易粘壁,轴流泵的能耗也较低;(g)反应器内聚合物浆液浓度高(质量分数大于50%),反应器的单程转化率高,均聚的丙烯单程转化率为50%-60%。
以上这些特点使环管反应器很适宜生产均聚物和无规共聚物。
Spheripol工艺一开始使用GF-2A、FT-4S、UCD-104等高效催化剂,催化剂活性达到40kgPP/gcat,产品等规度为90%-99%,可不脱灰、不脱无规物。
目前该技术已经发展到第二代。
与采用单环管反应器的第一代技术相比,第二代技术使用双环管反应器,操作压力和温度都明显提高,可生产双峰聚丙烯。
聚丙烯纤维工艺流程在现代纺织工业中,聚丙烯纤维是一种常用的合成纤维材料。
聚丙烯纤维具有轻巧、耐磨、易打理等优点,在服装、家居用品等方面都有广泛的应用。
本文将介绍聚丙烯纤维的生产工艺流程。
原料准备制备聚丙烯纤维的最主要原料是聚丙烯树脂。
聚丙烯树脂通常以粉末或颗粒的形式存在,生产之前需要对聚丙烯树脂进行精细的筛选和处理,确保原料质量良好,以提高后续生产工艺的稳定性。
熔融纺丝将经过处理的聚丙烯树脂投入到高温熔融装置中,加热至合适的熔融温度,使其变成熔融状态。
随后,将熔融的聚丙烯树脂通过纺丝孔板,将熔融聚丙烯挤出成细丝,同时冷却固化,形成初步的聚丙烯纤维。
拉伸拉力初步形成的聚丙烯纤维通过一系列的拉伸拉力过程,使纤维分子排列更加均匀,增强纤维的拉伸强度和柔软度。
在拉伸拉力的过程中,需要控制合适的温度和速度,以确保纤维质量达到要求。
热固化拉伸拉力完成后,聚丙烯纤维需要经过热固化工艺。
在高温条件下,使纤维分子间的结合更加牢固,提高纤维的热稳定性和耐磨性,确保纤维的品质。
切断整理热固化后的聚丙烯纤维经过切断整理,将长纤维裁剪成合适长度,并进行整理处理,使纤维表面光滑、整齐,适合后续的染色或加工。
切断整理是生产环节中的最后一道工序,直接影响着聚丙烯纤维的最终质量。
总结通过以上工艺流程,我们可以生产出高质量的聚丙烯纤维,为纺织产业提供优质原材料。
聚丙烯纤维在日常生活中有着广泛的应用前景,其轻便、易打理、耐磨等特性使其成为人们喜爱的纤维材料之一。
希望通过本文的介绍,能够更加了解聚丙烯纤维的生产工艺流程,促进纺织产业的发展与创新。
聚丙烯原材料聚丙烯(PP)是一种常见的塑料原料,广泛应用于各种领域,如包装、医疗器械、汽车零部件等。
作为一种热塑性塑料,聚丙烯具有优异的物理性能和化学性能,因此备受青睐。
本文将从聚丙烯的原材料、生产工艺以及应用领域等方面进行介绍。
聚丙烯的原材料主要是丙烯,丙烯是一种石油化工产品,是石油的裂解产物。
丙烯通过聚合反应可以得到聚丙烯。
聚丙烯的生产工艺主要包括石油的提炼、丙烯的裂解和聚合等环节。
在生产过程中,需要考虑原材料的纯度、稳定性以及生产设备的安全性和稳定性。
此外,还需要考虑生产过程中的环保和能源消耗等问题。
聚丙烯具有良好的物理性能,如硬度、耐磨性、耐高温性等,因此在包装领域得到广泛应用。
聚丙烯包装材料可以用于食品包装、医药包装、化妆品包装等,能够有效保护产品,延长产品的保质期。
此外,聚丙烯还可以用于制作各种容器、瓶盖、瓶塞等,应用十分广泛。
在医疗器械领域,聚丙烯也有重要的应用。
聚丙烯具有良好的生物相容性和耐腐蚀性,因此可以用于制作医疗器械和医疗用品。
例如,手术器械、输液瓶、输液管等都可以采用聚丙烯作为原材料,确保产品的质量和安全性。
此外,聚丙烯在汽车零部件领域也有重要的应用。
聚丙烯具有良好的耐磨性和耐高温性,因此可以用于制作汽车内饰件、车身零部件等。
例如,汽车座椅、车门内饰板、仪表盘等都可以采用聚丙烯材料,提高产品的质量和使用寿命。
总的来说,聚丙烯作为一种重要的塑料原料,具有广泛的应用前景。
随着科技的进步和工艺的改进,聚丙烯的性能和品质将得到进一步提升,为各个领域提供更优质的材料,推动产业的发展和进步。
5大聚丙烯生产工艺字体大小:大 | 中 | 小 2006-11-0915:12 - 阅读:556- 评论:2目前,聚丙烯的生产工艺按聚合类型可分为淤浆法、溶液法、本体法、气相法和本体法-气相法组合工艺5大类。
具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo气相工艺、Basell 公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。
1 淤浆法工艺淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。
从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。
典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。
这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。
近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。
近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。
目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。
2 溶液法工艺溶液法生产工艺是早期用于生产结晶聚丙烯的工艺路线,由Eastman公司所独有。
该工艺采用一种特殊改进的催化剂体系-锂化合物(如氢化锂铝)来适应高的溶液聚合温度。
催化剂组分、单体和溶剂连续加入聚合反应器,未反应的单体通过对溶剂减压而分离循环。
PP挤出成型工艺流程在塑料加工行业中,PP挤出成型是一种常见且重要的生产工艺。
PP,即聚丙烯,是一种热塑性塑料,具有优异的物理性能和耐热性,在各种领域得到广泛应用。
挤出成型是将塑料颗粒加热融化后通过模具形成所需截面形状的工艺过程。
以下是PP挤出成型的工艺流程概述:1. 原料准备在PP挤出成型过程中,首先需要准备好所需的PP颗粒原料。
这些颗粒通常具有特定的尺寸和形状,以确保在挤出过程中能够均匀加热并形成理想的成型品。
2. 加料混合将准备好的PP颗粒原料与可能的添加剂,如增塑剂、色素等,按照一定的配比加入到挤出机的料斗中进行混合。
确保混合均匀可以提高最终产品的质量。
3. 加热融化混合好的原料在挤出机中被送入螺杆筒内,通过旋转的螺杆推动,在机筒内受到高温的加热和高压的作用,使PP颗粒逐渐融化成熔体。
在这一过程中,控制加热温度和螺杆的旋转速度是至关重要的。
4. 挤出形成融化好的PP熔体被挤压通过模头,在模具的作用下形成所需的截面形状。
模具的设计和温度控制直接影响了挤出后产品的尺寸精度和表面质量。
5. 冷却固化经过挤出形成后的产品继续通过一定长度的冷却区,以使其迅速降温并固化。
在这一阶段,水冷却或者风冷却都是常用的冷却方式,以确保产品在尺寸上达到设计要求。
6. 切割定长最后,经过冷却固化的PP产品被送入切割机,按照设定的长度进行切割,得到最终的成品。
切割后的产品可以进一步进行后续处理,如打磨、包装等。
通过上述步骤,完成了PP挤出成型的全过程。
挤出成型工艺不仅适用于PP材料,也可以广泛应用于其他热塑性塑料的生产加工中,为塑料制品的生产提供了高效、稳定的工艺解决方案。
聚乙烯聚丙烯工艺原理及生产方法聚乙烯和聚丙烯是常用的塑料材料,它们广泛应用于包装、建筑、家具等领域。
本文将介绍聚乙烯和聚丙烯的工艺原理及生产方法。
聚乙烯的工艺原理:聚乙烯是由乙烯单体聚合而成的高分子聚合物。
聚乙烯的工艺原理主要包括以下几个步骤:1.首先,将乙烯单体通过压缩空气送入反应器中,反应器内的催化剂将乙烯分子打开,形成自由基。
2.自由基会依次与其他乙烯分子结合,形成链状聚合物。
链状聚合物的长度和分子量取决于乙烯分子的结合数。
3.反应完成后,聚乙烯从反应器中流出,并通过冷却和切割等工艺处理,最终得到聚乙烯颗粒。
聚乙烯的生产方法:聚乙烯的生产方法主要分为以下几种:1.热聚合法:将乙烯单体在高压高温下聚合。
此方法得到的聚乙烯为高密度聚乙烯,具有高强度和硬度。
2. Ziegler-Natta催化剂法:这是一种通过催化剂来加速乙烯聚合反应的方法。
此方法得到的聚乙烯为线性低密度聚乙烯,具有柔软和可塑性。
3.高压聚合法:将乙烯单体在较低压力下聚合。
此方法得到的聚乙烯为低密度聚乙烯,具有较高的柔软性。
聚丙烯的工艺原理:聚丙烯是由丙烯单体聚合而成的高分子聚合物。
聚丙烯的工艺原理主要包括以下几个步骤:1.首先,将丙烯单体与催化剂混合,并在高温条件下进行聚合反应。
催化剂可以是金属催化剂或有机催化剂。
2.聚合反应发生后,丙烯单体的碳双键打开,并与其他丙烯单体结合,形成链状聚合物。
3.反应完成后,聚丙烯被冷却和切割等工艺处理,最终得到聚丙烯颗粒。
聚丙烯的生产方法:聚丙烯的生产方法主要分为以下几种:1.前驱体法:通过将丙烯单体与氧化剂进行氧化反应,得到丙酮和丙烯酸。
然后,丙酮和丙烯酸经过还原、烷化等反应,最终形成聚丙烯。
2. Ziegler-Natta催化剂法:这是一种通过催化剂来加速丙烯聚合反应的方法。
催化剂可以是金属催化剂或铂催化剂。
此方法得到的聚丙烯具有较高的结晶性和熔融温度。
3.燃烧热力法:将丙烯单体在高温下与空气中的氧气进行燃烧反应,生成二氧化碳和水。
pp板生产工艺PP板,全称聚丙烯板,是一种高性能工程塑料板材。
它具有优异的机械性能、耐腐蚀性能和热稳定性,广泛应用于建筑、电子、化工、食品等领域。
下面简述PP板的生产工艺。
1. 原料准备:PP板的主要原料是聚丙烯颗粒,还需要添加适量的增强剂、稳定剂、填充剂等辅助材料。
原料的质量和配比直接影响到产品的质量和性能。
2. 预热和干燥:将原料粒子放入干燥机中进行预热和干燥处理,目的是去除原料中的水分,提高原料的熔体流动性。
预热温度一般为70-100℃,时间为2-4小时。
3. 熔融挤出:将预热和干燥处理后的原料粒子加入挤出机,通过加热和搅拌使其熔化。
熔融温度一般为170-240℃,挤出机通过旋转的螺杆将熔融的原料挤出成型,形成一条连续的PP板带。
4. 冷却定型:将挤出的PP板带通过冷却辊或者水冷辊进行快速冷却,使其恢复到室温。
冷却的目的是使熔融的PP板带进行固化和定型。
冷却定型的速度要适中,以免引起应力集中和变形。
5. 拉伸和切割:在冷却定型后,将PP板带进行拉伸处理,增加其拉伸强度和韧性。
拉伸的温度和速度要根据产品的要求进行调整。
随后,通过切割机将拉伸后的PP板带进行切割,获得所需尺寸的PP板。
6. 后处理:切割好的PP板需要进行后处理,一般包括修边、表面处理和检验。
修边处理是为了去除切割留下的毛刺和边缘缺陷;表面处理可以根据需要进行光洁处理或者涂覆处理;最后对产品进行外观、尺寸等方面的检验,确保产品质量符合要求。
以上所述是PP板的生产工艺。
通过科学严谨的生产工艺,能够生产出高质量、高性能的PP板,满足不同行业的需求。
1.4 Novolen聚丙烯工艺Novolen 聚丙烯工艺可以生产全范围的聚丙烯产品,采用PTK 催化剂,以液相丙烯为载体,通过特殊设计的设备加入到反应器中。
可生产融指(MFR)在0.2~100g/10min 之间的聚丙烯树脂,等规度高达90%~99%,且产品拉伸模量较高,Novolen 工艺两个反应器即可串联操作生产抗冲共聚物,也可并联操作生产均聚物和无规物[3]。
1.5 Unipol聚丙烯工艺Unipol 工艺采用气相流化床技术,其特点是流程简单,装置布置紧凑,所需设备不多,项目投资也相对较少。
另外,Unipol 工艺还可进行超冷凝态气相流化床工艺操作,反应器在体积不增加的情况下可大大提高生产能力,实验证明如果将反应器内液相的比例提高到45%,则反应器生产能力能提高到200%,两台串联反应器生产的抗冲共聚产品分子量分布很宽,抗冲共聚物乙烯含量最高可达21%,橡胶相含量为35%[4]。
2 国内聚丙烯生产现状2.1 聚丙烯产能2019年是中国聚丙烯产能投放大年,总产能达到2549万吨,较去年增长9%,聚丙烯投产装置达到113套,华北地区12套,占总产能8.4%;东北地区14套,占总产能11.26%;华东地区21套,占总产能22.73%;华南地区20套,占总产能18.20%;华中地区9套,占总产能4.55%;西南地区2套,占总产能2.35%;西北地区35套,占总产能33.46%。
由此可看出,我国聚丙烯生产装置西北地区较多,华东以及华南地区次之。
西北地区煤炭蕴藏丰富,导致煤制聚丙烯装置多建于此地区,2019年煤制聚丙烯总量达654万吨,占比26.16%。
由于东部沿海地区丙烷采购较为方便,丙烷脱氢(PDH)制聚丙烯装置多集中在华东地区,2019年以丙烷脱氢(PDH)为来源的聚丙烯产能占9%左右,发展速度较快。
石油制聚丙烯装置占总产能60%以上,主要分布在中石油、中石化等国有企业所在地,以及部分地方企业。
一、聚丙烯的生产工艺聚丙烯生产工艺气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF公司在Ludwigshafen建成一套采用立式搅拌床反应器的气相聚丙烯工艺中试装置。
1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反应器建成世界上第一套2.5万吨/年气相聚丙烯工业装置,命名为Novolen工艺。
20世纪70年代,美国Amoco公司开发出采用接近活塞流的卧式搅拌床气相反应器的气相法PP生产工艺。
80年代初期,UCC公司将其成熟的气相流化床Unipol 聚乙烯工艺用于聚丙烯生产中,推出了Unipol气相聚丙烯工艺。
日本的Sumitomo 公司也于同期开发出采用气相流化床的气相法工艺。
目前,世界上气相法PP生产工艺主要有BP公司的Innovene工艺、Chisso工艺、联碳公司的Unipol工艺、BASF公司的Novolen工艺以及住友化学公司的Sumitomo工艺等。
1)Innovene工艺。
Innovene工艺又名BP-Amoco工艺。
工艺的主要特点是采用独特的接近活塞流的卧式搅拌床反应器。
用这种独特的反应器,因颗粒停留时间分布范围很窄,可以生产刚性和抗冲击性非常好的共聚物产品。
这种接近平推流的反应器可以避免催化剂短路。
当有乙烯存在时,可以生成大颗粒共聚物,而不是在均聚物颗粒内生成细粉,这些细粉将降低共聚物的低温冲击强度,并形成不必要的胶状体。
因此,该工艺很窄的反应停留时间分布可以实现用多个全混反应釜均聚反应器才能生产的高抗冲共聚物的要求。
另外,由于这种独特的反应器设计,该工艺的产品过渡时间很短,理论上产品的过度时间要比连续搅拌反应器或流化床反应器短2/3,因而产品切换容易,过渡产品很少。
Innovene工艺采用丙烯闪蒸的方式撤热。
液体丙烯以一种能保持反应器床层干燥的方式从各个进料点喷人反应器内,液体丙烯汽化后,其单体的分压小于它的露点压力,并足以撤走反应热。
聚丙烯的生产工艺 摘要:聚丙烯(简称PP)是一种热望性合成树脂,用途十分广泛,市场需求一直呈快速增长态势。在聚烯烃树脂中,己成为仅次于聚氯乙烯、聚乙烯的第三大塑料,在合成树脂中占有越来越重要的地位。。聚丙烯生产工艺主要有4 种;溶液聚合法、浆液法、液相本体聚合法、气相聚合法。而液相本体法聚丙烯工艺自1978年工业化以来,由于具有工艺流程短、操作简单、生产成本低、装置投资小、经济效益好等特点,被广泛用于国内许多炼油厂中的聚丙烯生产。
关键字:聚丙烯 间歇式 液相本体法 1.聚丙烯的简介 1.1聚丙烯产品性质
聚丙烯(PP)分为等规、无规和间规三种,是一种热塑性合成树脂塑料,分子式(c3H6)n,分子量2545万,为白色固体粉状,表观密度低(约为0.4-0.489/cm3),透明性及表面光泽好,机械性能良好,化学稳定性好,制品耐热性好(熔点高达167℃,可在沸水中使用或蒸汽消毒),无毒性,也是一种最轻的塑料树脂。 2.聚丙烯的生产 2.1聚合配方及工艺参数 丙烯纯度:>99.2% 催化剂:Ticl3-异戊醚-TiCI4-AIEt2CI AI/Ti 2-6mol 催化剂效率:70000g聚丙烯/g钛 丙烯转化率60% 聚合物浓度:35% 调节剂:H2 聚合温度: 50-60℃ 聚合压力:1.1-1.2mpa 聚合等规度:95-96% 无规物:4-5% 2.2原料丙烯来源 聚丙烯主要原料是丙烯,目前它主要由石油炼制裂化所得的液化气以及石油烃裂解气,进行馏分分离、提纯而制得。另外,丙烷脱氢也可制得丙烯。下面对两种主要方法作简要介 绍: 2.2.1石油烃裂解 石油烃裂解是指在隔绝空气的高温条件下,大分子烃发生分解而生成小分子烷烃和烯烃的过程。裂解产生的裂解气一般通过深冷分离过程进行分离,其中丙烯约为裂解气的11~16%(W)。 2.2.1炼厂气回收: 炼厂气是石油炼制过程中产生的气体总称,主要有热裂化气、催化裂化气、焦化气、重整气和加氢裂化气等。催化裂化的裂化气中液化气量较多,为原料的8~15%(W),其中丙烯含量较高,占原料的4.0~5.0%(W),特别是新开发的催化裂解工艺,丙烯可达原料的18%(W)左右,因此,催化裂化、催化裂解释炼厂气丙烯的主要来源。经气体净化(脱硫化氢、脱硫醇)、气体分馏后,可获得高纯度的丙烯。 2.3活化剂
活化剂所起的作用是将TiCl4还原成TiCl3并生成Ti-C键,形成活性中心。另外还有一个也相当重要的作用是清除反应系统中的有害杂质,如水、氧等。丙烯聚合所用的活化剂一般是三烷基铝。由于三烷基铝比早期催化剂使用的DEAC有更高的还原能力,因而可以容易地和路易斯碱发生反应或络合。到目前为止效果最好的三烷基铝是三乙基铝和三异丁基铝,而其他的氯化烷基铝因为性能较差,因此只能与三烷基铝配合使用。 不同的烷基铝对丙烯聚合活性的影响顺序如下: AlHEt2>AlEt3>AlEt2Cl>AlEt2Br>AlEt2I>Al(OEt)Et2 AlH(iBu)2>AliBu3>AliBu2Cl>AL(iOBu)3 不同的烷基铝对丙烯聚合等规度的影响见表2-21。 表2-21 不同烷基铝对丙烯聚合等规度的影响
烷基铝 AlEt3 AlEt2Cl AlEt2Br AlEt2I AlEt2Cl+nBu4I Al(Ph3N)3 等规度 80~85 91~94 94~96 96~98 98 52 聚合条件:δ-TiCl3,70℃。 2.4催化剂 2.4.1 第一代催化剂 聚丙烯最早是由Montecatini和Hercules实现工业化的,它们在1957年首先建成了工业生产装置,所使用的催化剂是三氯化钛和一氯二乙基铝体系。该催化体系的产率和等规度 都比较低,产品的等规指数大约只有90%。为了使所得到的聚丙烯树脂能作为正式产品提供给下游塑料加工用户使用,还需要从聚合物中脱除催化剂残渣(脱灰)和无规聚合物组分(脱无规),因此,此时的聚丙烯装置工艺流程很长,工序多而复杂。 2.4.2 第二代催化剂 是关于减小催化剂微晶的尺寸,增加催化剂表面活性钛原子比例方面的研究工作,最成功的例子是70年代初由Solvay公司开发成功的三氯化钛催化剂。Solvay公司的研究人员为了增加可接触的钛原子中心,引入了路易斯碱,由此开发出了新的三氯化钛催化剂,虽然Solvay催化剂的活性得到了大幅度提高,但是此类催化剂中大部分的钛盐仍然是非活性的,它们会以残渣的形式残留在聚合物中从而影响产品的质量,因此仍需要将其除去。故采用此类催化剂的聚合工艺仍需有后处理系统。 2.4.3 第三代催化剂 采用将钛化合物载负在高比表面的载体上以提高催化剂效率的方法,研究发现,加入适当的给电子体化合物可以提高催化剂的丙烯聚合定向能力。通过将氯化镁、四氯化钛及一种给电子体(通常称为内给电子体I.D.或路易斯碱)共研磨就可以得到活性高、立构规整性好的聚丙烯催化剂。聚合时,该催化剂与助催化剂三烷基铝与第二种给电子体(通常称为外给电子体E.D.或路易斯碱)联合使用。这个催化剂体系可以简单地表示为: MgCl2•TiCl4•PhCOOEt - AlEt3•CH3PhCOOEt 尽管此催化剂活性很高,可以在聚合工艺中免去脱除催化剂残渣的步骤,但是其聚合定向能力还不够理想,还有6%~10%的无规聚合物需要脱除,另外催化剂的颗粒性能也有待改进。 2.4.4 第四代催化剂 采用邻苯二酸酯作为内给电子体,用烷氧基硅烷(或硅烷)为外给电子体的催化剂体系后,可以得到很高活性和立构规整度的聚丙烯。Montell根据此催化剂体系使用的给电子体由单酯改变为双酯,并且聚合性能有显著提高,因此将其定为第四代聚丙烯催化剂。此代催化剂可表示如下: MgCl2•TiCl4•Ph(COOiBu)2 - AlEt3•Ph2Si(OMe)2 现在许多聚丙烯工业生产装置正在使用的就是这种催化剂。对于此类催化剂,开始时所用的外给电子体是二苯基二甲氧基硅烷(DDS)。后来发现DDS中的苯基会给聚合物带来残留毒性,因此改用甲基环己基二甲氧基硅烷(简称CHMMS)。 在第四代聚丙烯催化剂中,还有一种由Himont公司开发的球形载体催化剂,这类催化剂除了具有第四代催化剂相类似的聚合活性和立体定向能力外,特别突出的是它能直接生成 1~5mm的聚丙烯树脂颗粒,可以不经造粒而直接供后加工使用,为开发无造粒工序的聚丙烯工艺创造了条件。 2.4.5第五代催化剂 80年代的后半期,Montell公司发现了一种新的给电子体1,3-二醚类化合物。在催化剂合成中采用这种给电子体化合物,不仅可以得到具有极高活性和立构规整性的催化剂,而且最特别的是此催化剂可以在不加入任何外给电子化合物的情况下达到同样效果。仅仅用内给电子体即可保持催化剂的高活性和高定向能力,因此Montell公司将其列为第五代聚丙烯催化剂。 2.4.6 第六代催化剂 茂金属催化剂是有茂金属化合物和助催化剂组成的催化体系。起可以展现独特的乙烯共聚能力,能得到其他催化剂不能获得的产物,另外,这种催化剂合成简单、产率高、高活性、活性中心单一、具有可控性。 各代催化剂的性能
各代催化剂的比较 活性/kgPP/gcat① (kgPP/gTi) 等规度/% 形态控制 工艺要求 1 δ-TiCl30.33AlCl3+DEAC 0.8~1.2(3~5) 90~94 不能② 脱灰,脱无规 2 δ-TiCl3/Ether+DEAC 3~5(12~20) 94~97 可以 脱灰
3 TiCl4/Ester/MgCl2+AlR3/Ester 5~10(~30) 90~95 可以 脱无规,不脱灰
4 TiCl4/Diester/MgCl2+TEA/Silane 10~25(300~600) 95~99 可以 不脱灰,不脱无规
5 TiCl4/Diester/MgCl2+TEA/Silane 25~35(700~1200) 95~99 可以 不脱灰,不脱无规
6 茂金属+MAO 5×103~9×103(以锆计③) 90~99④ 可能成功 不脱灰,不脱无规 2.5 第三组分外给电子体DDC 外给电子体的选择主要取决于它自身的碱性以及活
化剂的酸性,因为在这两组分之间会发生一定程度的络合反应。 2.6 聚丙烯的生产工艺原理 丙烯聚合反应属于阴离子配位聚合,首先是烯烃单体的C=C双键与催化剂的活性中心的过渡原子如(Ti)的空d轨道进行配位,然后进一步发生移位,是单体插入到—C键之间,重复此过程便增长为高分子链。
2.7 聚合反应的基本历程 聚合反应通常包含链引发、链增长、链转移和链终止等基本历程。 a) 链引发
52C H3CHCHCH
2
[cat]
2CHCHCH3+3CH2CH
[cat]
1
k1
k22[cat]H+
3CHCH
CH
2[cat]
2CHCH
CH3
2
(端基为乙基)(端基为正丙基)
b) 链增长 n)3CHCH(CH23CHCHCH23CHCHnCH2+2CHCHCH3C H[cat]37KpC H37
[cat]
c) 链终止 自动终止即单分子链终止:
n)C H3CHCH
(CH
2
3CH
C2CH
H+
2
CHCH
CH3
2(CHCH
CH3
C H)n37
[cat][cat]
37
(端基为乙烯基)
K3
d) 烷基铝转移 几乎所有烷基铝都以二聚体形式存在,而且烷基铝的解离系数很小。