当前位置:文档之家› 基于Ansoft的永磁同步发电机建模与仿真

基于Ansoft的永磁同步发电机建模与仿真

基于Ansoft的永磁同步发电机建模与仿真
基于Ansoft的永磁同步发电机建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的 磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为 倍。

基于MATLAB的同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB 以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介 Simulink是Matlab软件下的一个附加组件,是一个用来对动态系统进行建模、仿真和分析的MATLAB软件包。支持连续、离散以及两者混合的线性和非线性系统,同时它也支持具有不同部分拥有不同采样率的多种采样速率的仿真系统。 由于 Simulink可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系统性能,另外Simulink还可以与MATLAB中的DSP工具箱、信号处理工具箱以及通讯工具箱等联合使用,进而实现软硬件的接口,从而成为实用的

高速永磁同步发电机设计研究毕业设计

毕业设计说明书题目:高速永磁同步发电机设计研究

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真” 软件设计 摘要 关键词 1前言 1.1建模仿真的发展现状 20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。仿真的三要素之间的关系可用三个基本活动来描述。如图1 图1 系统仿真三要素之间的关系 20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。从60-70代发展了面向仿真问题的仿真语言。20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。80年代初正式提出了“虚拟现实”一词。虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。图2体现

永磁同步电机理论

Measurement of Eddy-Current Loss Coefficient P EC -R ,Derating of Single-Phase Transformers,and Comparison with K-Factor Approach Ewald F.Fuchs ,Fellow,IEEE ,Deniz Yildirim ,Member,IEEE ,and W.Mack Grady ,Senior Member,IEEE Abstract—A power amplifier is used to supply sinusoidal cur-rents of different frequencies for measuring eddy-current losses of a 25kV A single-phase transformer under short-circuit condi-tion.Measured data show that eddy-current loss is a linear func-tion of frequency with power of 2and the eddy-current loss co- efficient linear is computed.New measurement techniques are applied to determine the derating of single-phase transformers with full-wave diode and thyristor rectifier loads.The derating of transformers has been defined such that for the (apparent,real)power transfer of a transformer the total losses are identical to the rated losses at rated temperature.A relation between apparent power,derating and K-factor is given taking into account iron-core and stray-power losses.Measured derating values are compared with computed results based on the eddy-current losses,iron-core losses,stray-power losses,and K-factors.The eddy-current loss co- efficient nonlinear is computed from harmonics caused by diode/thyristor bridge loads. Index Terms—Eddy-current loss,K-factor,nonlinear load,transformer derating. I.I NTRODUCTION R ECENT publications [1],[2]detail the separate measure-ment of the iron-core losses and copper losses of single-phase transformers under (non)sinusoidal load conditions.In order to make a contribution to the recommended practice for es-tablishing transformer capability when supplying nonsinusoidal load currents,the K-factor approach [3]–[5]is modified to im-prove the prediction of the derating [6]of single-phase trans-formers.In [7]the harmonic loss factor is employed not the K-factor as defined in [3].The objective of this paper is to es-tablish a relationship between derating,K-factor and iron-core losses and to measure - (total harmonic distortion of current)values,where the indi-vidual current harmonics can be adjusted within certain limits.Prior work includes the measurement of the temperature due to current harmonics [11]for the same type of pole transformer as tested in this paper:the temperatures were monitored in [11] Manuscript received February 27,1998;revised August 21,1998.This work was supported by the Electric Power Research Institute,Palo Alto,CA,under Contract RP 2951-07. E.F.Fuchs and D.Yildirim are with the University of Colorado,Boulder,CO 80309. W.M.Grady is with the University of Texas,Austin,TX 78712.Publisher Item Identifier S 0885-8977(00)00664-6. for THD

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

2.1同步发电机数学模型及运行特性

2.1同步发电机数学模型及运行特性 本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。 2.1.1 同步发电机稳态数学模型 理想电机假设: 1)电机铁心部分的导磁系数为常数; 2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称; 3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布; 4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。“同步”之名由此而来。 同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。 1.同步发电机的相量图 设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。U和I的d、q分量为: 图 2-1电势电压相量图 电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为: (2-3)

永磁同步风力发电机的设计说明

哈尔滨工业大学 《交流永磁同步电机理论》课程报告题目:永磁同步风力发电机的设计 院 (系) 电气工程及其自动化 学科电气工程 授课教师 学号 研究生 二〇一四年六月

第1章小型永磁发电机的基本结构 小型风力发电机因其功率低,体积小,一般没有减速机构,多为直驱型。发电机型式多种多样,有直流发电机、电励磁交流发电机、永磁电机、开关磁阻电机等。其中永磁电机因其诸多优点而被广泛采用。 1.1小型永磁风力发电机的基本结构 按照永磁体磁化方向与转子旋转方向的相互关系,永磁发电机可分为径向式、切向式和轴向式。 (1)径向式永磁发电机径向式转子磁路结构中永磁体磁化方向与气隙磁通轴线一致且离气隙较近,漏磁系数较切向结构小,径向磁化结构中的永磁体工作于串联状态,只有一块永磁体的面积提供发电机每极气隙磁通,因此气隙磁密相对较低。这种结构具有简单、制造方便、漏磁小等优点。 径向磁场永磁发电机可分为两种:永磁体表贴式和永磁体内置式。表贴式转子结构简单、极数增加容易、永磁体都粘在转子表面上,但是,这需要高磁积能的永磁体(如钕铁硼等)来提供足够的气隙磁密。考虑到永磁体的机械强度,此种结构永磁电机高转速运行时还需转子护套。内置式转子机械强度较高,但制造工艺相对复杂,制造费用较高。 径向磁场电机用作直驱风力发电机,大多为传统的内转子设计。风力机和永磁体内转子同轴安装,这种结构的发电机定子绕组和铁心通风散热好,温度低,定子外形尺寸小;也有一些外转子设计。风力机与发电机的永磁体外转子直接耦合,定子电枢安装在静止轴上,这种结构有永磁体安装固定、转子可靠性好和转动惯量大的优点,缺点是对电枢铁心和绕组通风冷却不利,永磁体转子直径大,不易密封防护、安装和运输[1]。表贴式和径向式的结构如图1-1 a)所示。 a)径向式结构 b)切向式结构

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

基于matlab的同步发电机励磁系统仿真分析与调试毕业论文设计

基于MATLAB的同步发电机励磁系统仿真分析与调试 摘要 同步发电机为电力系统提供能量,其控制性能的好坏将直接决定电力系统的安全与稳定运行状况。通过掌握利用MATLAB对励磁控制进行分析和研究的技能,能灵活应用MATLAB的SIMULINK仿真软件,分析系统的性能。通过使用这一软件工具从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 文章介绍了MATLAB/Simulink的主要特点、基本模块和功能,分析了同步发电机励磁调节系统的组成及其各个部分原理,建立了基于MATLAB的同步发电机及其励磁调节系统仿真模型,最后建立了以PID和PSS为励磁控制方式的同步发电机励磁调节系统数学模型,在Simulink环境下进行了仿真,收到了很好的效果。 关键词:MATLAB;同步发电机;励磁调节系统;建模;仿真;校正

ABSTRACT Synchronous generator is the energy of the power system provider, and its performance will directly determine the quality of power system security and stability in operation. Through mastering the use of MATLAB for analysis of the excitation control and research skills, flexibility SIMULINK of MATLAB simulation software to analyze performance of the system. Through the use of the software tools from the boring red tape out of the computational burden, and more reflection on the nature of the problem used to solve practical production and research issues. The article introduced the main features of the MATLAB/Simulink,the basic module and function,illustrated the composition of synchronous generator excitation system and its principle of every part,established the simulation model of generator from MATLAB and that of generator excitation system,established synchronous generator excitation system mathematical model that is controlled by the way of PID and PSS,simulate it in the environment of Simulink,get pretty good results. Key words: MATLAB;synchronous generator;excitation control system;modeling;simulation;Correction

PSCAD中的发电机模型

1.Synchronous Machine(同步机) 本组件有一选项是可以模拟Q轴的两个阻尼绕组,因此它可以作为隐极极或者凸极机使用。其速度可以由给“w”输入一个正值直接控制,或者将机械转矩输入到“Tm”上。 使用此组件模拟同步机有许多优势。对于一般应用,那些标注为“Advanced”的参数可以不用修改直接采用默认值,这样做不会改变设备的特性。本组件的这些特点主要是为了初始化仿真以及更快的达到期望的稳态。 期望的稳态由潮流可知。在仿真中一旦达到稳态,可能就要使用故障、扰动等等来看看系统的暂态响应。 2.Squirrel Cage Induction Machine(鼠笼感应电动机) 本组件可以运行于“速度控制”或“转矩控制”模式下。在“速度控制”模式下,电动机按照输入“W”的规定速度运转。在转矩控制模式下,速度根据设备的惯性、阻尼和输入转矩、输出转矩求得。 通常,此型电动机在启动时采用“速度控制”,输入“W”取值为额定标么转速(0.98),在电动机最初的暂态结束(过渡到稳态)后采用转矩控制。本组件可以和“Multi-Mass Torsional Shaft Interface”组件配合使用。 3.Wound Rotor Induction Machine(绕线转子感应电动机)

此感应电动机可采用“速度控制”和“转矩控制”模式运行。通常,通常,此型电动机在启动时采用“速度控制”,输入“W”取值为额定标么转速(0.98),在电动机最初的暂态结束(过渡到稳态)后采用转矩控制。本组件可以和“Multi-Mass Torsional Shaft Interface”组件配合使用。 4.Two Winding DC Machine(两绕组直流电机) 本绕组模拟了两绕组直流电机。如果外部接线正确的话,电枢绕组两端(right side + and -),磁场绕组两端(top + and -)。这样可以满足孤立励磁机、并联或串联电机仿真的需要。 组件“Multi-Mass Torsional Shaft Interface”可与本组件配合使用,以考虑转子的机械暂态。 注意:电机的典型连接和直流电机的多块模型已经再PSCAD例子中给出,可以供参考。本组件的输入输出信号的描述如下: ●W: 转子的输入机械转矩[p.u.]; ●Te: 电机的输出电气转矩[p.u.]。 5.Permanent Magnet Synchronous Machine(永磁同步电机) 本组件模拟了永磁同步电机。除了三个定子绕组外,又额外加入了两个短路绕组以

风力发电系统建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基 础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及 完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力 /m 的最方便最有价值的量;

同步发电机模型整理

同步电机定转子侧变量对应关系及名称 112X ()q q 励磁电动势=i 空载电动势(后面的电动势)=瞬变电动势(后面的电动势)q 轴超瞬变电动势(后面的电动势)d 轴超瞬变电动势(后面的电动势)→→'''→=''''''→=+-''''''→=-→=-'→=-f f f f ad f f d q ad f ad f q d q f f ad D q d q D f f D f D ad aq Q d d Q Q q d aq g a q d u u E E X r E E X i X ψE X E ψX X ψE X E X ψX ψX X X X ψE X E ψX i E X i X i E ????????????????????? q g g ψX 同步发电机16各变量: 13个电磁变量:定子侧6个(dq u 、dq i 、dq ψ);转子侧7个(f u 、fDQ i 、fDQ ψ) 3个机电变量:(m T 、r ω、δ) 同步发电机10个基本方程(dqfDQ u 、dqfDQ ψ): 00=-+-??=-++??=-+??=-+?=-+??=-++??=-+?=-++??=-++??=-+?d d d r q q q q r d f f f f D D D Q Q Q d d d ad f ad D q q q aq Q f ad d f f ad D D ad d ad f D D Q aq q Q Q u ri p ψωψu ri p ψωψu r i p ψr i p ψr i p ψψx i x i x i ψx i x i ψx i x i x i ψx i x i x i ψx i x i 三阶实用模型: 这种模型的导出基于如下假定: 忽略定子绕组暂态和阻尼绕组作用,计及励磁绕组暂态和转子动态 (1)忽略定子d 、q 轴暂态,即定子电压方程中d p ψ、q p ψ均为0; (2)在定子电压方程中,1(..)≈r ωp u ,在速度变化不大的过渡过程中,误差很小;

永磁风力发电机仿真

( 二〇一四年三月 风力发电系统综合设计 风力发电系统综合设计 题 目:5KW 永磁风力发电机仿真 学生姓名:xxxx 学 院:电力学院 系 别:电力系 专 业:风能与动力工程 班 级:x x x x 指导教师:xxxx

一、设计要求 对5KW永磁同步风力发电机进行仿真,要求查阅相关资料,选取合适的风机数据,通过MATLANB进行仿真,实现并网,并且各方面数据复合并网要求。 本设计开发的风力发电价为5KW直驱式永磁风力发电机,通过掌握电机设计的原理特点,熟悉永磁电机基本原理和应用,完成并设计出5KW永磁式风力发电机,完成后,并对 设计的电机进行各性能的计算,从而得出符合本设计的要求。 二、基本原理 在风力发电风力发电领域基于双馈感应发电机与PMSG的风电系统应用最为广泛。由于PMSG风电系统具有运行效率高、调速范围宽等优点, 且无需齿轮箱、滑环与电刷等,已成为大功率、海上风电领域极具潜力的发展方向。 5K永磁同步发电机是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电 机采用多极电机与叶轮直接连接进行驱动的方式,免去驱型风力发电机齿轮箱这一传统部件。 直驱风力发电机的优点是: 由于零件和系统的数量减少,维修工作量大大降低。最近开发的直驱机型多数是永磁同步发电机,不需要激磁功率,传动环节少,损失少,风能利用率高。运动部件少,由磨损等引起的故障率很低,可靠性高。采用全功率逆变器联网,并网、解列方便。采用全功率逆变器输出功率完全可控,如果是永磁发电机则可独立于电网运行。 直驱风力发电机的缺点是: 是由于直驱型风力发电机组没有齿轮箱,低速风轮直接与发电机相连接,各种有害冲击载荷也全部由发电机系统承受,对发电机要求很高。同时,为了提高发电效率,发电机的极数非常大,通常在100极左右,发电机的结构变得非常复杂,体积庞大,需要进行整机吊装维护。发电机尺寸大、重量大,运输、安装比较困难。 三、设计内容 1、永磁同步风力发电机结构原理 永磁同步发电机从结构上分有外转子和内转子之分。磁极在外转子内圆上,内定子嵌有三相绕组。如图1 其转子磁路结构多为切向式转子磁路结构,径向式转子磁路结构、混合式转子磁路结构、轴向式转子磁路结构。

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

相关主题
文本预览
相关文档 最新文档