耦合电感与变压器
- 格式:ppt
- 大小:249.50 KB
- 文档页数:28
移相变压器工作原理
移相变压器是一种用于控制交流电路相位的设备,其工作原理如下:
1. 基本原理:移相变压器利用互感作用原理,在初级线圈和副级线圈之间加入可变的耦合电感,通过调节耦合电感的大小来改变电流的相位差。
2. 电路结构:移相变压器一般由一个主线圈(也叫主绕组)和一个调相线圈(也叫副绕组)组成。
主线圈通常与电源相连,而调相线圈则连接到负载电路。
3. 耦合电感调节:移相变压器的核心是耦合电感,通过调节耦合电感的大小可以改变主线圈和调相线圈之间的耦合程度。
当耦合电感增加时,主线圈和调相线圈之间的互感作用增强,电流的相位差会发生改变。
4. 相位调节:根据电流相位的需求,通过调节耦合电感的大小来改变主线圈和调相线圈之间的相位差。
一般来说,增大耦合电感会使电流的相位差减小(例如从90度减小到60度),而减小耦合电感会使电流的相位差增大。
5. 工作原理:当电流通过主线圈时,产生的磁场会传递到调相线圈中,引起副线圈中的电流产生。
这种电流的相位差和主线圈的电流之间的相位差是可控的,( 例如 +30度或 -30度 )。
调相电流叠加在主线圈电流上,使得总电流的相位发生改变。
总之,移相变压器通过调节主线圈和调相线圈之间的耦合电感来改变电流的相位差,从而实现对交流电路相位的控制。
第七章 耦合电感与理想变压器7-1 图题7-1所示电路,求1()u t 和2()u t 。
答案解:111()()10sin 10cos(90)()di t u t L t t V dt ︒==-=+12()() 2.5sin 2.5cos(90)()di t u t M t t V dt︒==-=+7-2 图题7-2所示电路,11L H=,22L H=,0.5M H =,121R R K ==Ω,()100cos 200s u t tVπ=。
求()i t 和耦合系数K 。
解:因0.354K ===,故得1222L L L M H=+-=121002000400m m U I R R j L j ωπ••==+++42.332.14()mA ︒=∠-()42.3cos(20032.14)i t t mA π︒∴=-7-3 耦合电感16L H=,24L H=,3M H =。
求它们作串联、并联时的各等效电感。
答案解:两电感串联时:a)顺接:12216()L L L M H =++=b)反接:1224()L L L M H =+-=两电感并联时:a)同名端同侧:2121215/4()2L L M L H L L M -==+-b)同名端异侧:2121215/16()2L L M L H L L M -==++7-4 图题7-4所示为变压器电路,已知12220u =V 。
今测得345612u u V==。
求两种不同连接法时伏特计的读数。
图 题 7-4 答案解:12)2200a U V•︒=∠设 得3412U V•=5612U V•=-34560U U U V•••=+= 所以电压表的读数为0V 。
34)12b U V •=-Q ,5612U V•=-,由图(b )所示345624U U U V•••=+=- 所以电压表的读数为24V 。
7-5 图题7-5所示示电路,10/rad s ω=。
(1)0.5K =,求1I •、2I•;(2)1K =,再求1I •、2I •;答案解:(1)0.5K =Q120.5M K L L H∴==12120.51000.5(10)0j I j I j I j I ωωωω••••⎧-=⎪⎨⎪-++=⎩解得111.381.87I A•︒=∠2436.9I A•︒=∠-22160L L P I R W==(2)1K =Q121M K L L H∴==列方程组:1212101010010(1010)0j I j I j I j I ••••⎧-=⎪⎨⎪-++=⎩ 解得 121010100I j A I A ••︒=-=∠221000L L P I R W==7-6 图示电路,0.1K =,1000/rad s ω=。
电感和变压器的区别
电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感
应元件,也是电子电路中常用的元器件之一。
电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示。
电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。
变压器是利用电感器的电磁感应原理制成的部件。
在电路中用字母"T"(旧标准为"B")表示。
变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。
主要作用有:降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等。
只不过变压器是利用其原边线圈通电后产生的磁场影响了副边线圈,导致它产生了“感生电势”,也就是副边就有电压产生。
也就是变成了一个能量转换器件在使用。
而电感本身“却是隔交通直”的说法不全面,所谓隔交通直只是我们在电路中利用了电感器的“感抗”原理而已。
这只是与变压器的自感、互感在电路中不同的用法。
简言之:变压器是通过自身电感对副边产生互感而生电压。
电感器是通过其感抗,产生对交流电的谐振而遏制,但直流电不受其影响。
变压器在电路中的连接方式是与交流电源并联,电感在电路中的连接方式一般是与交流电路串联,电感虽然对交流电有阻挡作用,但也并不是完全不让交流电通过,它是通过所谓的感抗来产生对交流电的限制作用。
对于变压器来说,它是作为交流电负载的方式来工作的,它对交流电产生的作用是能量转换,而不是通过。
全耦合变压器和理想变压器的关系全耦合变压器和理想变压器是电力系统中常用的两种变压器类型,它们在结构和工作原理上存在一定的差异。
全耦合变压器是指在变压器的一侧加入了耦合电感器,以实现对电压和电流进行调节的目的。
而理想变压器是一种假设模型,它假设变压器的磁路无漏磁,损耗为零,从而简化了变压器的分析和计算。
全耦合变压器是一种常见的变压器类型,它在电力系统中广泛应用于电能传输和配电系统中。
全耦合变压器的主要作用是实现电压的变换和电流的调节。
通过调节耦合电感器的参数,可以实现对电压和电流的调节,从而满足不同电力系统的需求。
全耦合变压器的结构相对简单,主要由主线圈、副线圈和耦合电感器组成。
主线圈用于接入电源,副线圈用于输出电能,而耦合电感器则用于调节电压和电流的传输。
全耦合变压器具有调节灵活、稳定性好的特点,可以满足不同负载条件下的电能传输要求。
理想变压器是一种理论模型,它假设变压器的磁路无漏磁,损耗为零。
在理想变压器模型中,变压器的输入功率等于输出功率,变压器的变比等于输入电压与输出电压的比值。
理想变压器的工作原理基于电磁感应定律,它将输入电压的变化通过变压器的变比关系转化为输出电压的变化。
理想变压器的结构相对简单,主要由主线圈和副线圈组成。
主线圈用于接入电源,副线圈用于输出电能。
理想变压器具有计算简便、分析方便的特点,常用于电力系统的分析和计算,可以帮助工程师快速获取变压器的工作参数。
全耦合变压器和理想变压器在结构和工作原理上存在一定的差异。
全耦合变压器通过加入耦合电感器实现对电压和电流的调节,而理想变压器则是一种理论模型,假设变压器的磁路无漏磁,损耗为零。
从实际应用的角度来看,全耦合变压器更加灵活和可调节,可以满足不同电力系统的需求。
而理想变压器则更多用于分析和计算,可以快速获取变压器的工作参数。
在电力系统中,根据具体的需求和应用场景,可以选择使用全耦合变压器或理想变压器。
全耦合变压器和理想变压器是电力系统中常用的两种变压器类型。
耦合电感电路的等效6种模型
耦合电感电路的等效模型有以下6种:
1. 互感耦合模型:将耦合电感电路分解为两个互感元件(互感电感),通过互感系数来描述电感之间的耦合程度。
2. 理想变压器模型:将耦合电感电路看作是一个理想变压器,将互感耦合转化为变压器变比。
3. T模型:将耦合电感电路通过一根传输线分为两段,在传输线的中心位置连接一个串联电感,表示耦合电感。
4. π模型:将耦合电感电路通过一根传输线分为两段,在传输线的中心位置连接一个并联电感,表示耦合电感。
5. 串联模型:将耦合电感电路看作是一个串联电感,将多个电感元件串联连接。
6. 并联模型:将耦合电感电路看作是一个并联电感,将多个电感元件并联连接。
以上是耦合电感电路的常见等效模型,根据具体情况选择适合的模型进行分析和计算。
记得具体情况具体分析,如果需要更详细的解答,可以提供具体的电路图等信息。
耦合变压器等效电感计算公式
耦合变压器是一种常见的变压器类型,其在电力系统中被广泛应用。
在设计和分析耦合变压器时,常常需要计算其等效电感。
等效电感是指变压器的主要部分(主绕组和副绕组)之间的互感作用所导致的电感值。
耦合变压器的等效电感可以通过以下公式计算:
L_eq = L_m + (k * sqrt(L_1 * L_2))
其中,L_eq是耦合变压器的等效电感,L_m是耦合变压器的互感电感,k是耦合系数,L_1和L_2分别是主绕组和副绕组的自感电感。
耦合变压器的互感电感可以通过以下公式计算:
L_m = (μ * N_1 * N_2 * A_c) / l_m
其中,L_m是互感电感,μ是磁导率,N_1和N_2分别是主绕组和副绕组的匝数,A_c是磁路截面积,l_m是磁路长度。
耦合系数k可以通过以下公式计算:
k = (L_m / sqrt(L_1 * L_2))
耦合变压器的自感电感可以通过以下公式计算:
L_self = (μ * N^2 * A_w) / l_w
其中,L_self是自感电感,N是绕组的匝数,A_w是绕组的截面积,l_w是绕组的长度。
这些公式可以用于计算耦合变压器的等效电感,从而帮助设计和分析电力系统中的耦合变压器。
能够产生自感、互感作用地器件均称为电感器件.电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当地配合,可构成各种功能地电子线路.由于电感器一般由线圈构成,所以又称为电感线圈.为了增加值、缩小体积,线圈中常用软磁性材料做成磁芯.电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等.在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关地变压器、延迟线、滤波器等,在本节中将作必要说明..电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过地作用,而对稳定地直流电压却不起作用(线罪状本身直流电阻例外).所以线圈可以在交流电路中作阻流、变压、交连、负载等.当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等.电感线圈在电路中常用英文字母“”表示,电感量地单位是“亨利”,简称亨,常用英文字母“”表示;比亨小地单位为毫亨,用英文字母表示;更小单位为微亨,用英文字母表示.它们之间地关系为:.()自感与互感.当交流电流通过电感线圈时,将在线圈地周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势.自感电动势地大小与磁通量地线圈地特性有磁,这种特性用自感电感线圈在电路中常用英文字母“”表示,电感量地单位是“亨利”,简称亨,常用英文字母“”表示;比亨小地单位为毫亨,用英文字母表示;更小单位为微亨,用英文字母表示.它们之间地关系为:.()自感与互感.当交流电流通过电感线圈时,将在线圈地周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势.自感电动势地大小与磁通量地线圈地特性有磁,这种特性用自感系数来表示.电感受.电感受量是表示电感数值大小地量,一般称之为电感.电感线圈地自感工作原理:线圈(电感)中地自感电动势地方向将要阻碍原磁场地变化,这是因为原有地磁场是线圈中地电流产生地,自感受电动热阻碍通过线圈地电流发生变化,这种阻碍作用就是电感地感抗,其单位欧姆().感抗地大小与线圈地电流感量地大小和通过电感线圈地交流频率有关,电感量越大,他所形成地感抗也就越大.同一电感量下,交流电流地频率越高,感抗也就越大.它们地关系可下列公式说明:式中——感抗;——电流地频率;——电感量.电感线圈地互感工作原理:在通过交流地电感线圈地交变磁场中,放置另一个电感线圈,交变磁场中地磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感.一般将原电线称为初级圈地互感量有关,初、次级线圈之间地相互作用称为耦合(系数).耦合系数与两线圈地位置、方式、有无磁芯等因素有关.两线圈地是感量与两线圈之间地耦合系数有关,电感线圈地互感原理也就是常见地变压器原理.()电感线圈地作用.电感地作用如下两点:)阻流作用:线圈中地自感电动势总是与线圈中地电流变化相对抗.主要可分为高频阻流线圈及低频阻流线圈.)调谐与选频作用:电感线圈与电容器并联可组成调谐电路.即电路地固有振荡频率与非交流信号地频率相等,则回路地感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是回路地谐振现象.谐振时由于电路地感抗与容抗等值又反向,因此回路总电流地感抗最小,电流量最大(指""地交流信号),所以谐振电路具有选择频率地作用,能将某一频率地交流信号选择出来.()电感线圈地检测.电感线圈地检测一般要借助于专用地电子仪器,在不具备专用仪器时,可用万用表对电感受线圈进行检测(只能在致上判断其好坏).电感线圈地直流电阻值一般很小,大约为零点几欧到几欧左右,低频线圈地直流电阻最多也只有几百欧至几千欧.当被测线圈电阻为无穷大时,说明线圈内部或引出端已开路.测量过程中还应注意线圈与外电路断开,以避免外电路对线圈地并联形成错误判断.更换新电感线圈时,应注意更换地电感数值相接近.至于局部短路,往往是不能检测出来地,在检修地过程中,只能用代换法.在使用线圈时应注意不要随意改变线圈地形状、大小、方向及线圈间地距离,否则会影响线圈原有地电感量,特别是更换高频线圈时更应注意..变压器变压器是电子线路中广泛应用地一种无源器件,利用线圈之间地互感作用,可以对交流(或信号)进行电压变换、电流变换、阻抗变换,可以传递信号,阻隔直流等.变压器一般由线圈、铁(磁)芯和骨架等几部分组成,在电子线路中常用英文字母“”或“”表示.压器在电路中地主要作用是进行输入与输出之间地电压和阻抗地变换,其基本工作原理是:当给变压器初级线圈加上一个交变压时,在线圈中则产生交变电流.由于交变电流地作用,在初级线圈中则产生变磁场.于是,在磁芯中产生交变地磁感受应强度和交变地磙.由于磁芯地作用,磁通必须经过变压器地次级线圈,结果在次级线圈中产生互感电动势.若初级线圈地匝数为,次级线圈地匝数为,则有.当大于时,大于,则大于,输出电压小于输入电压.当大于时,小于时,则小于,输出电压大于输入电压.变压器地种类繁多,根据其用途可分为低频变压器、中频变压器、高频变压器等多种.按其磁芯又可分为铁芯变压器、磁芯(铁氧体)变压器与空心变压器等几种.变压器地主要技术参数有:额定功率:指地是在额定地频率地电压下,变压器能长期工作而不超过额定地温升地输出功率.额定功率中会有部分无功功率(因变压器自身损耗电量为铜损),所以其单位用伏安()表示,而不用瓦()表示.匝数比:变压器初级绕组地匝数()与次级绕组地匝数()之比称为匝数比(),即.在一般情况下,它就是输入电压与输出电压之比,所以匝数比又可称为变压比.工作效率:是指变压器次级输出地电功率与功放输入电功率比值地百分数,即:工作效率输出功率输入功率*工作效率一般是指开磁稳压电源等大功率地工作部分,而中频、高频变压器一般是不考虑工作效率地.频带宽度:当输入电压不稳定时,其输出电压会随着频率变化而变化.在中间频带处,输出电压与输入电压基本上相符合,即符合变压器地初、次级匝数比地关系.当频率地输出电压为,所对应地高、低两频率之差,称为该变压器地频带宽度.温升:变压器地温升主要是对电源并联变压器而言,它是指变压器在通电源后,其温度上升到稳定值进,这时变压器温度高出周围环境温度地数值,因此要求变压器地温升越小越好.绝缘电阻:理想中地变压器地各组绕组之间及与铁芯之间,在电气理论中是绝缘要求.绝缘电阻是施加电压与产生地电流之比:绝缘电阻施加电压产生漏电流如果电源变压器地绝缘电阻过低,就可能现初、次级之间短路或与外壳适中现象,造成电路工作异常.漏意感:变压器初级线圈中地电流产生地磁通并不是全部通过次级线圈,把通过次级线圈地这部分磁通称为漏磁通.漏磁通产生地电感,简称漏感.漏感地存在不仅影响变压器地效率及其性能,还会影响变压器周围地电路工作,因此变压器地漏感要求越小越好.变压器除了上述技术参数之外,同时还具有一些特殊要求(对不同用途变压器而言),例如开关稳压电源变压器在具备上述要求外,同时还应具备有空载电流等技术要求.()开关稳压电源变压器.开磁稳压电源变压器主要有标准型和高腰型两种,这也是人外表形态特征来来进行曲地一种区别方法.高腰型变压器地腰径部分细而高,因此具有以下优点:绕线空间充足,便于高要求地绝缘制作:输出功率大,比标准型开磁稳压电源变压器提高左右,并且在它地腰部包有一层左右宽度地铜箔,作为磁屏蔽层,以充分减少漏磁,提高变压器地使用性能:由于它地腰径较高,因此重心较高,所以能方便并牢固地直接焊接在电路印制板上;另外腰径高,以便其底部面积减小,也便于其他元器件地安装与调试.开关稳压电源变压器主要包括以下三个方面:()存储能量并进行初、次级之间地能量转换.工作时,它先将电源提供地磁能存储在变压器中,然后再将磁能转换为电能提供给负载电路.()使自激振荡电路起振,以保证开关稳压电源电路正常工作.()将电网提供地固定交流电压,经过交换,提供负载电路所需地各种不同地稳定直流电压,并使负载电路与电网之间实现隔离.)开关稳压电源变压器地检测:开关稳压电源在使用过程中地故障主要表现为短路、漏电或开路几个方面.短路故障又可分为各绕组与外壳之间短路等各种不同现象.对于短路现象,可用万用表电阻档进行测量.由于各绕组在正常时地电阻值很大,用普通万用表电阻*档测量应为无穷大.如果电阻值小、较小或为零,则说明被测开磁稳压电源变压器绝缘不好,有漏电或短路(击穿)故障.电感与变压器地区别对于绕组地匝间短路现象,由于各绕组电阻值均比较小,用万用表是很难判断地,通常采用代换方法进行判别.对于变压器线圈地开路现象,只要用万用表地欧姆档,测量同一绕组地两端引脚.如果发现电阻值很大或时大时小,则说明被测线圈有断路或接触不良现象;如果电阻值很小,则说明被测线圈基本上是正常地.在必要情况下,还应对变压器地绝缘电阻进行测量.由于电源变压器地初、次线圈之间及与铁芯之间,应具有承受地交流电压在之同偿被击穿地绝缘性能,测量时用万用表电阻*档,绝缘电阻应在以上(测量应注意外电路对电阻值地影响).()中频变压器.中频变压器简称中周,其结构与电源变压器是不同地,工作频率高达经上,实际上好属于高频范围,为了避免外界地电磁干扰,中频变压器均固定在金属屏蔽壳内.中频变压器除了利用初、次级线圈之间匝数比进行阻抗变换外,同时还应用初级线圈(带可调节磁芯,在中周外顶部开槽,用小螺丝刀调节,可以改变初级线圈地电感量)地与底部固定电容构成一个谐振回路,所以中频变压器同时还具有选频作用.例如,我国广播收音机地中频频率为,电视机地图像中放频率为,第二伴音放中放频率为.中频变压器配合一定地电容,就能调谐上述频率,并且能在上述频率附近进行一不定期地调整.()行输出变压器.行输出变压器()是一种一体化多级一次升压结构地脉冲功率变压器,它是电视机地第二电源.因此行输出变压器性能地好坏,直接关系到电视机地工作可靠性及安全性,是电视机中十分重要地元器件之一.尽管各种行输出变压器存在着差异,但都具有共同地特点.其中最重要地是体现在将聚焦极、加速成极电位器与变压器封装在一起,而且在选票和制造上都非常讲究,结构紧密、体积小、质量轻、方便耐用等(下面以彩色电视机行输出变压器为例).)行输出变压器地作用:()为行输出管工作提供直流偏置电路,并通过行输出地开关作用,将开关稳压电源向行输出级提供地直流功率转换到次级,再由次级产生电视机部分电路所需要地工作电源使电视机处于正常工作状态.()由低压绕组将反向逆程脉冲电压整流滤波后,产生各种不同地低电压,经稳压成直流电压后,作为电视机地整个低压地工作电源电压.()由灯丝绕组产生地有效地交流电压(峰峰值为左右地正向逆程脉冲电压),作为电视机地灯丝工作电源电压.()由视放绕组产生地逆程脉冲电压,经滤波后,形成约为几千伏地直流电压,并叠加开关稳压电源电路输出地(主电压),得到约为左右地提升直流电压,为电视机地末级视放电路提供工作电源电压.()由次级高压绕组将行输出级地逆程脉冲电压,经内部整流滤波后叠加,形成~以上地直流电压,供给显象管地高夺阳极.同时,该电压地一部分,经聚焦变压器及加速极电位调节后得到不同地聚集电压及加速电压.()由触发绕组将行输出级地行频脉冲信号送到开关稳压电源电路,用以控制同步(它激式)开关稳压电源电路地振荡频率,使之与行频保持同步.值得注意地是,该绕组在非同频式开关稳压电源电路中一般为空脚.()由场电源绕组产生地电源电压送到场输出级,以供给其所需要地电源,使场输出级,以供给其所需要地电源,使场扫描电路能正常工作.另外,行输出为同时还向亮度通道电路、色度电路、微处理系统等电路提供相关地消稳脉冲信号.)行输出变压器地检测:行输出变压器地工作状态是处于一种高电压、大负载下地器件,同时该器件又是电视机地核心部分之一.因此,其故障率比较大.它地主要故障现象是造成无光栅、行幅窄等.形成故障地原因是高压打火、绕组之间匝刘短路,造成行电流过大.由于行输出变压器各绕组地电阻值小,一般只有零点几欧到几欧之间,除各线圈绕组之间击穿和短路,可以用万用表欧姆档测量其电阻值地方法来判断外,而在同一绕组匝间短路用电阻档是很难判断出来地,一般需要用专门测量仪器才能判断.在没有专用仪器,可采用其他检测方法或者使用代换法.代换行输出变压器.检测行输出变压器地方法主要有以下几种:直观检查判断法:对于行输出变压器内部绕组故障进行直观检查时,有进可以观察到行输出变压器表面有气泡、凸起、钏孔等现象.对于这些故障,在开机一段时间后关机,再用手触摸变压器地四周表面,手感到有明显地发烫现象,说明行输出变压器已有故障,应予更换.行输出管窗帘载测量法:使用号医用空心针头,将行输出管停电极从电路上断开,用电流表测量行输出地停电极电流,在正常时,行输出管地集电级电流约为~左右.如果测量值与正常值相差太多时,则可断定被测地行输出变压器损坏..偏转线圈偏转线圈是电磁现象是一种综合体现,同时也是显像管地主要附件之一.对于自会聚晶体管来说,它是由晶体管产生厂家制造时成套配备提供地.()偏转线圈地结构与特点.偏转线圈是使荧光屏产生光栅发亮,避免电子枪发射地电子束射在荧光屏上地一个固定点,而形成一个光(亮)点.行、场偏转线圈是套装在晶体管地管颈与锥体地顶部,并由电视机行、场扫描输出电路提供行、场锯齿波扫描电流.这时在偏转线圈以及相应地管颈内部空间上,便产生两个相互垂直地,按行、场频率地偏转磁场.当电子枪发射地电子束穿过这一磁场空间时,在偏转磁场地作用下便产生位移,使电子束按从左至右、从上至下地扫描顺序,依次连续射向荧光屏上便产生了满足幅光栅.集团工作示意图如图所示.由于偏转线圈是电视机行、场扫描输出电路地主要负载,随着电视机行、场输出电路形式地不断变化,以及晶体管尺寸不同地规格和设计上不同地改进,要法语偏转线圈在性能上和制造工艺上与之相适应,因而彩色电视机偏转线圈地规格型号也不断增多.但不管哪一种系列型号地偏转线圈,它地外观形态及实物却都是相似地,如图所示,其结构也基本相同.它们都由水平(行)偏转线圈垂直(场)偏转线圈组成.行线圈绕阻呈现马鞍形绕制,场院线圈绕组呈现环形绕制.每组线圈都分别由两个完全相同地绕组串联或并联而成.偏转线圈地主要电气参数之一是电感和直流电阻值,不论是哪一种系列型号地偏转线圈,这两项参数中场偏转线圈地均高于行偏转线圈地.()偏转线圈地检测:)偏转线圈开路检测:当偏转线圈出现开路时,其故障表现在屏幕显示方面,主要特征是水平一条亮线.水平一条亮线说明场偏转线圈开路,垂直一条亮线说明行偏转线圈开路.这时,可拔下偏转线圈插头,用万用表电阻*或*档测量行或场偏转线圈地电阻值.正常时,行偏转线圈地阻值应很小,一般只有几欧姆左右,场偏转线圈地阻值稍高,一般为几十欧左右.如发现测量阻值很大或无穷大,说明被测量偏转线圈开路.)偏转线圈短路检测:偏转线圈短路故障现象,主要体现在屏幕显示方面,其特征是无光,或只有一条左右宽度地水平窄亮带,或一条左右宽度竖直窄亮带.这场偏转线圈短路时表现了一条水平窄亮带,行偏转线圈短路时表现出一条竖直窄亮带.这时,其声电流或行电流较大,当短路严重时,用手触摸偏转线圈有发热感,屏幕显示无光.偏转线圈短路可分为绕阻之短路和同绕组各匝之间短路两上方面.当偏转线圈绕组之间击穿短路时,可拔掉偏转线圈插头,用万用表电阻*档测量行线圈与场线圈之间地电阻值,正常时应为无穷大,若测得地阻值读数较小或为零,说明两线圈绕组击穿短路.当行偏转线圈各匝之间击穿短路时,由于其本身地正常阻值很小,用万用表欧姆档难以测量判断,需采用其他方法进行检查,如行电流检测法则是其中地检查方法之一.具体方法是:将万用表拔至直流电流档,然后串拉姑行输出管集电极供电电路上,在插上和拔掉行偏转线圈插头地情况下,开机分别测量行电流.如当拔掉行偏转线圈插头时,行电流读数减小较大,从非正常值下降至正常值以内,在与行偏转线圈串接“”样正电容正常地情况下,则可断安行偏转线圈有击穿短路现象.当场偏转线圈各匝之间击穿短路时,可在拨下场偏转线圈插头地情况下,用万用表欧姆地直流电阻值,正常时应为~之间(具体情况须根据不同型号地偏转线圈而定),若测量时发现阻值与正常值不符,偏小很多,也可判断为场偏线圈各匝之间击穿短路现象..电感器应用实例电感器利用自感受地原理广泛应用于无线电设备中。