耦合电感与理想变压器
- 格式:ppt
- 大小:5.66 MB
- 文档页数:136
第十四章 耦合电感和理想变压器14-1 耦合电感及其伏安关系一、单个线圈的电感11()i f i N N Lid diu Ldtdtψψφψφψ=====设单个线圈的磁链为,它是电流的函数若线圈匝数为,则磁链与磁通()的关系为磁通的参考方向与电流的参考方向采用关联方向,即符合右手螺旋定则。
如图14.1-1所示。
二、耦合电感当两个线性的时不变电感线圈L 1与L 2相距很近时,就有磁场的耦合作用,每个线圈的磁链不仅与该线圈本身的电流也与邻近线圈的电流有关,即在满足条件1)两个电感线圈都是线性的时不变电感线圈; 2)线圈周围媒质为非铁磁性物质;3)磁通与电流参考方向关联(符合右手螺旋定则)有111122222211()()()()()()t L i t M i t t L i t M i t ψψ=±=±其中:1)M 12、M 21称为互感,单位为亨(H )。
可以证明M 12=M 21121122222()()d di diu t L M dt dt dtd di diu t L M dt dt dt ψψ==±==±当电压、电流参考方向关联,自磁通与互磁通参考方向一致(磁通相助)时,互感电压项取正;当自磁通与互磁通参考方向不一致(磁通相消)时,互感电压项取负。
自感电压总带正号。
2)同名端当电流分别从两线圈各自的某端同时流入(或流出)时,若两者产生的磁通相助,则这两端称为两互感线圈的同名端, 用标志“·”或“*”表示。
如图14.1-3和14.1-4所示若电流的参考方向由线圈的同名端指向另一端,那么,这个电流在另一线圈内产生的互感电压参考方向也应由该线圈的同名端指向另一端。
这就是说:电流i 1与 1di M dt 的参考方向对同名端一致。
如果i 1指向相反,则 1diM dt的指向也必须相反 。
对图14.1-3有1211di di u L M dt dt =+ 2122di di u L M dt dt=+对图14.1-4有1211di di u L M dt dt =- 2122di di u L M dt dt=-结论:当电压、电流均采用关联的参考方向时,若电流(i 1、i 2)皆由同名端入(出),M 为正;电流(i 1、i 2)是一入一出,则M 为负。
电路分析基础耦合电感和理想变压器耦合电感(mutual inductance)是指两个或多个电感器件之间由于相互作用而产生的互感现象,其中一个电感器件的磁通变化会在另一个电感器件中感应出电动势。
理想变压器(ideal transformer)是一种特殊的耦合电感,其工作原理是利用磁感应定律,将输入电压和输出电压之间按一定的变比比例转换。
在电路分析中,耦合电感和理想变压器经常被用来探讨和解决一些特定的问题。
下面将分别介绍其基本原理和应用。
1.耦合电感:耦合电感的基本原理是根据电磁感应定律,当一个电感器件中通过的电流变化时,会在另一个电感器件中感应出电动势。
考虑两个简单的线圈,分别为主线圈和副线圈。
当主线圈中的电流变化时,根据电磁感应定律,在副线圈中也会感应出一个与主线圈中电流变化相关的电动势。
这种相互作用可以由一个耦合系数k表示,取值范围为0-1,表示两个线圈之间磁通的共享程度。
耦合电感可以用于共振电路、振荡电路等。
在共振电路中,当主线圈与副线圈之间有耦合时,可以通过调整耦合系数k来改变电路的共振频率,实现频率调谐的效果。
在振荡电路中,耦合电感可以提供正反馈,增强电路的振荡效果。
2.理想变压器:理想变压器是电路分析中常用的电气元件之一,其特点是无能量损耗、无电阻、无磁滞,能够以一定的变比将输入电压转换为输出电压。
理想变压器的基本结构由两个线圈绕制在共同的磁芯上组成。
理想变压器的工作原理是利用电磁感应定律和电压平衡原理。
当输入线圈(初级线圈)中通过的电流变化时,根据电磁感应定律,在输出线圈(次级线圈)中也会感应出一个与输入电流变化相关的电动势。
由于磁通守恒,输入线圈的磁通变化与输出线圈的磁通变化成一定的比例,从而实现输入电压和输出电压之间的变比转换。
理想变压器可以用于电压调整、功率传递等电路。
在电压调整电路中,通过改变输入线圈和输出线圈的匝数比例,可以实现对输入电压和输出电压之间的调整。
在功率传递电路中,根据变压器的功率平衡原理,输入功率和输出功率之间的关系可以用变压器变比关系表示。