燃烧理论与基础 12第十二章 燃烧诊断技术
- 格式:ppt
- 大小:1.82 MB
- 文档页数:42
一、预混燃烧的基本介绍1.贫燃预混燃烧的介绍贫燃预混燃烧是在保证燃料充分燃烧的情况下,增大空气的供给量,从而降低燃烧室的温度,满足较低的污染物排放标准(可以做到低NOx的排放)。
但是与常规的扩散燃烧技术相比,贫燃预混燃烧是在偏离正常化学当量比下进行的,这就会产生燃烧的不稳定性(主要包括回火以及振荡燃烧),严重阻碍了贫燃预混燃烧技术的发展。
维持贫燃预混燃烧室内的正常燃烧,其关键就在于避免火焰的吹熄与振荡燃烧。
火焰吹熄现象是因为燃烧室内当量比被控制在接近贫燃熄火极限,以便尽量降低火焰温度以及的排放,而在这种燃烧状况下,火焰传播速度很低,在相对高速的火焰流场中,会导致火焰的熄灭现象,这种现象发生的时间很短,被称为静态不稳定。
因此要避免火焰吹熄,维持预混火焰的稳定燃烧,关键就在于保持火焰燃烧速度与流场速度的平衡,可从以下两种方法着手:①提高燃烧速度;②降低燃气供给速度。
提高燃烧速度可使用端流产生器提高火焰瑞流强度,而降低燃气平均速度可以通过减少燃气供给做到,但是燃机的总效率也会下降,通常采用在燃烧室内安装钝体稳焰器或在燃烧室避免加工凹槽形成局部低速区域,使火焰燃烧速率与流场速率均衡,以便维持火焰的燃烧。
另外除上述方法外,旋流因为其特殊的流动特性,也常用于稳定湍流火焰。
预混燃烧的不稳定受燃料种类、进气温度、燃料一空气过量空气系数、燃烧室几何参数、燃烧室温度以及压力等众多参数的影响。
按压力振荡频率可将燃烧不稳定分为:低频振荡、中频振荡、高频振荡。
按照压力振荡涉及的燃烧系统部件可以将其定义为三类:燃烧系统不稳定、燃烧室腔体不稳定以及固有燃烧不稳定。
根据燃烧系统内不同扰动间的相互关系,可将燃烧不稳定分为受迫燃烧不稳定和自激燃烧不稳定,也可称为受迫振荡和自激振荡。
二、国内外研究现状及进展Lieuwen等人对预混燃烧室内的燃烧不稳定性进行了理论和实验研宄,将预混燃烧室分为进口区域、燃烧区域以及燃烧产物区域三个部分,用“完全撞拌反应器”模型(WSR)对当量比波动引起燃烧热释放波动的机理进行了描述和分析。
油机喷雾燃烧光学诊断技术及应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!油机喷雾燃烧光学诊断技术及应用引言随着燃烧技术的不断发展,油机的燃烧过程已成为工程界关注的焦点之一。
燃烧学燃烧学是研究燃烧现象、实践和理论的科学。
燃烧是涉及到化学、热力学、传热传质学和流体力学等问题的复杂过程。
燃烧学是研究着火、熄火和燃烧机理的学科。
燃烧是指燃料与氧化剂发生强烈化学反应,并伴有发光发热的现象。
燃烧不单纯是化学反应,而是反应、流动、传热和传质并存、相互作用的综合现象。
燃烧学的研究内容通常包括燃烧过程的热力学,燃烧反应的动力学,着火和熄火理论,预混气体的层流和湍流燃烧,液滴和煤粒燃烧、液雾、煤粉和流化床燃烧,推进剂燃烧,焊震燃烧,边界层和射流中的燃烧,湍流和两相燃烧的数学模型,以及燃烧的激光诊断等。
远古时代,火的使用使人类从野蛮状态走向文明。
十世纪以前,人们认为物质燃烧取决于一种特殊的“燃素”。
18世纪中叶,法国化学家拉瓦锡和俄国科学家罗蒙诺索夫根据他们的实验,分别提出燃烧是物质氧化的理论。
19世纪,人们用热化学和热力学方法研究燃烧,发现了燃烧热、绝热燃烧温度和燃烧产物平衡成分等重要特性。
20世纪初,苏联化学家谢苗诺夫和美国化学家刘易斯等人发现,影响燃烧速率的重要因素是反应动力学,而且燃烧反应有分枝链式反应的特点,即中间生成物可以加速燃烧过程。
20 世纪20年代,苏联科学家泽利多维奇、弗兰克·卡梅涅茨基和美国的刘易斯等又进一步发现:燃烧现象,无论是着火、熄灭和火焰传播,还是缓燃和爆震等,都是化学反应动力学和传热传质等物理因素的相互作用。
在研究了预混火焰和扩散火焰、层流燃烧、湍流燃烧、液摘燃烧和碳粒燃烧等基本规律之后,人们认识到,控制燃烧过程的主导因素往往不是化学反应动力学,而是流动和传热传质,于是初步形成燃烧理论。
20世纪40~50年代,由于航空、航天技术的发展,使燃烧的研究由一般动力机械扩展到喷气发动机、火箭和飞行器头部烧蚀等问题中,并取得了迅速的发展。
因此,力学家卡门和中国的钱学森建议用连续介质力学方法来研究燃烧,提出了“化学流体力学”这一名称。
许多人运用粘性流体力学和边界层理论对层流燃烧、湍流燃烧、着火、火焰稳定和燃烧振荡等问题进行了更深入的定量分析。
燃烧机理分析林树军浙江温岭燃烧过程高速摄影1燃料和空气混合气缸混合气残余废气过程湍流火焰燃气混合物燃料空气点火TDC@1430r/min&部分负荷Lamberda=1.30喷油角度为30CRA BTC出现火焰达到离火花塞最远的气缸壁理论温度最高点燃烧阶段划分火焰高速传播期火焰传播火焰扩散期早期火焰传播火焰终止火花点燃2燃烧机理解释内燃机的燃烧过程是湍流燃烧,而湍流燃烧是一种极其复杂的带化学反应的流动现象,湍流与燃烧的相互作用涉及许多因素,流动参数与化学动力学参数之间的耦合的机理极其复杂,用数值模拟方法分析和预测湍流燃烧现象的关键问题是正确模拟平均化学反应率,即燃料的湍流燃烧速率。
3燃烧湍流模型Eddy Break up(涡团破碎模型)Spalding的涡团破碎模型,其基本思想是:对预燃火焰、湍流燃烧区中的已燃气体和未燃气体都是以大小不等并作随机运动的涡团形式存在。
化学反应在这两种涡团的交界面上发生。
化学反应的速率取决于未燃气体涡团在湍动能作用下破碎成更小的涡团的速率,而此破碎速率正比于湍流脉动动能k的耗散率,其基本表达方式如下:该模型是AVL公司fire软件里面计算燃烧的基础计算模型。
4缸内传热模型5内燃机的传热既是与燃烧现象密切耦合的一个子过程,又是整个燃烧循环模拟的一个重要环节。
然而,内燃机的传热问题又被认为热问题中最复杂的一个,这是因为由于内燃机工作过程强烈非定温度变化的高度瞬变性,以致在毫秒量级的时间内,燃烧室表面的热流量从零变化到10MW/m2,同时温度和热流的空变化也非常剧烈。
在1cm 的位置上,热流峰值相差可达5MW/m2。
一般而言,发动机的传热计算包括3个方面:(1)工质与燃烧室热量的交换(包括对流和辐射两种方式);(2)燃烧室壁内部的热传导;(3)燃烧室外壁与冷却对流和沸腾传热。
对于内燃机燃烧过程来说,主要考虑的第一项,因而对于内燃机传热模型方面主要考虑两个方面:1、工质与壁面之间的对流换热模型,2、是辐射换热模型。