当前位置:文档之家› 微弱信号检测的原理和方法

微弱信号检测的原理和方法

光电信号处理

微弱信号检测的基本原理与方法

第三章微弱信号检测的基本原理与方法§3.1 低噪声电子设计的适用范围

§3.2 窄带滤波法

§3.3 双路消噪法

§3.4 同步累积法

§3.5 锁定接收法

§3.6 取样积分法(Boxcar方法)

§3.7 相关检测法

§3.8 光子计数技术

§3.9 计算机处理方法

§3.10 常用弱检仪器

§3.1 低噪声电子设计的适用范围1低噪声电子设计的适用范围

前面我们讨论了噪声的基本概念,以及降低噪声的一些基本方法。

这些方法使用的前提是要求在电信号处理的输入端有足够大的信噪比,处理的结果是使信噪比不至于变坏。如果在信号处理系统的输入端,信噪比已很糟糕,甚至信号深埋于噪声之中,这时要想将信号检测出来,仅用低噪声电子设计的方法就不行了。

这时,必须根据信号和噪声的不同特点,采用相应的方法将信号与噪声分离。

2微弱信号检测的途径

微弱信号检测的途径:

●一是降低传感器与放大器的固有噪声,尽量提高其信噪比;

●二是研制适合弱信号检测的原理,并能满足特殊需要的器件,

●三是研究并采用各种弱信号检测技术,通过各种手段提取信号,

这三者缺一不可。

从数学表达式看,SNIR是噪声系数NF的倒数,但实质上两者是有差别的。

●噪声系数是对窄带噪声而言的,并且得到结论NF≥1。

这个结论的产生是由于假设了输入噪声的带宽等于或小于放大系统的带宽;

●实际上输入噪声的带宽要大于放大系统的带宽,因而噪声系数NF便有可能要小于1,同时又考虑到实际的情况,因此而给出信噪比改善的概念。

§3.2 窄带滤波法

●原理:利用信号的功率谱密度较窄而噪声的功率谱相对很宽的特点,

●方法:用一个窄的带通滤波器,将有用信号的功率提取出来。

●由于窄带通滤波器只让噪声功率的很小一部分通过,而滤掉了大部分的噪声功率,所以输出信噪比能得到很大的提高。

功率谱密度曲线:

有限正弦信号白噪声

由图看出:使用了窄带通滤波器后,

如果B 选得很窄,则输出信噪比还能更大一些,

窄带通滤波器在白噪声条件下的信噪比改善:

1

>划斜线的矩形面积

信号主峰下的面积

输出信噪比=ni

si n s P P P P SNIR //0

0=

窄带通滤波器的实现方式很多:

常见的有双T选频,LC调谐,晶体窄带滤波器等,其中双T选频可以做到相对带宽等于千分之几左右(f

为带通滤波器的中心频率)

晶体窄带滤波器可以做到万分之几左右。

即使是这样,这些滤波器的带宽还嫌太宽,

因为这种方法不能检测深埋在噪声中的信号,通常它只用在对噪声特性要求不很高的场合。

更好的方法是用锁定放大器和取样积分器,这在后面再作讨论。

§3.3双路消噪法

●原理:

利用两个通道对输入信号进行不同的处理,然后设法消去共同的噪声,最后得到有用的信号。

●特点:

这种方法只能用来检测微弱的正弦波信号是否存在,并不能复现波形。

双路消噪法的原理框图

z 设输入信号频率为f 0的正弦波,并混有强的噪声,将其送入上下两个通道。

z

进入上通道的信号经过放大器后,再经过一个中心频率为f 0的窄带带通滤波器,变成正弦波加窄带噪声,这个信号通过正向检波积分器后输出一个正极性直流电压,上面叠加了随机起伏的成分。

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

微弱信号检测技术 练习思考题

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

微弱信号检测装置(国科大电子电路大作业)要点

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1.1 微弱信号检测技术概述 (2) 1.2 信号检测的方法及微弱信号的特点 (2) 1.2.1 常规小信号的检测方法 (2) 1.2.2 微弱信号的检测方法 (4) 1.2.3 微弱信号的特点 (4) 1.3 本文的主要工作 (5) 第二章微弱信号检测装置设计方案选择与论证 (6) 2.1 方案选择与论证 (6) 2.1.1 系统方案的确定 (6) 2.1.2移相网络设计 (9) 2.2总体方案论述 (9) 第三章基于锁相放大的微弱信号检测装置设计 (10) 3.1 锁相放大器原理 (10) 3.2 移相网络 (10) 3.3 相敏检波器原理分析 (11) 3.4 电路设计 (12) 3.4.1加法器 (12) 3.4.2纯电阻分压网络 (12) 3.4.3前级放大电路模块 (13) 3.4.4带通滤波器 (13) 3.4.5相敏检波器 (13) 第四章仿真分析与程序设计 (16) 4.1 仿真分析 (16) 4.1.1 输入信号波形(前置两级放大电路输入波形) (16) 4.1.2 经过前置放大电路和带通滤波器后输出波形 (16) 4.1.3 参考信号输入输出波形 (17) 4.1.4 LM311过零比较器输出波形 (18) 4.1.5 开关乘法器输出波形 (18) 4.1.6 低通滤波输出波形 (19) 4.2 程序设计 (20) 第五章实物展示与测试方案及结果 (21) 5.1 实物展示 (21) 5.2 测试方案与测试结果 (21) 5.2.1 测试仪器 (21) 5.2.2 测试方案 (21) 5.3测试结果及分析 (23) 5.4 总结 (23)

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

微弱信号检测放大的原理及应用

《微弱信号检测与放大》 摘要:微弱信号常常被混杂在大量的噪音中 ,改善信噪比就是对其检测的目的,从而恢复信号的幅度。因为信号具备周期性、相关性,而噪声具有随机性,所以采用相关检测技术时可以把信号中的噪声给排除掉。在微弱信号检测程中,一般是通过一定的传感器将许多非电量的微小变化变换成电信号来进行放大再显示和记录的。由于这些微小变化通过传感器转变成的电信号也十分微弱,可能是VV甚至V或更少。对于这些弱信号的检测时,噪声是其主要干扰,它无处不在。微弱信号检测的目的是利用电子学的、信息论的和物理学的方法分析噪声的原因及其统计规律研究被检测量信号的特点及其相干性利用现代电子技术实现理论方法过程,从而将混杂在背景噪音中的信号检测出来。 关键词:微弱信号;检测;放大;噪声 1前言 测量技术中的一个综合性的技术分支就是微弱信号检测放大,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。这门技术研究的重点是如何从强噪声中提取有用信号,从而探索采用新技术和新方法来提高检测输出信号的信噪比。 微弱信号检测放大目前在理论方面重点研究的内容有: a.噪声理论和模型及噪声的克服途径; b.应用功率谱方法解决单次信号的捕获; c.少量积累平均,极大改善信噪比的方法; d.快速瞬变的处理; e.对低占空比信号的再现; f.测量时间减少及随机信号的平均; g.改善传感器的噪声特性; h.模拟锁相量化与数字平均技术结合。 2.微弱信号检测放大的原理 微弱信号检测技术就是研究噪声与信号的不同特性,根据噪声与信号的这些特性来拟定检测方法,达到从噪声中检测信号的目的。微弱信号检测放大的关键在于抑制噪声恢复、增强和提取有用信号即提高其信噪改善比SNIR 。根据下式信噪改善比(SNIR)定义

基于PWM调制的微弱信号检测的毕设论文 (本科).

学校代码: 11059 学号: Hefei University 毕业设计(论文)BACH ELOR DISSERTATION 论文题目:基于PWM调制的微弱信号检测 学位类别:工学学士 年级专业: 作者姓名:孙悟空 导师姓名: 完成时间: 2015年5月8号

中文摘要 工程设计领域中在强噪声环境下对微弱信号的检测始终是个技术难点。因此,全面地去研究、分析微弱信号在时域、频域等方面的特点,以及微弱信号的检测技术,都非常重要且有意义的。 本文首先介绍了在电子设备中元器件内部因为载流粒子的运动及外部因素导致系统噪声产生的原理。阐述了在分析研究微弱信号的方法中,时域分析法是目前应用范围最为广泛的分析方法,比如短时Fourier、小波变换。在此基础上,本文从工程设计的角度重点分析了PWM技术检测微弱信号的原理及实现的方法。PWM检测技术是利用PWM脉冲对微弱信号的调制, 从而达到进行频谱搬移。最后,对于调制后的信号,本文中采用带通、全波整形以及低通等三种方式实现了对待调制信号的解调,并在解调端得到最终的解调信号。 在电路仿真方面本文给出了基于Multisim软件的系统电路仿真图。通过搭建各个模块然后利用仿真电路给出了系统调制解调的各个过程及波形图。利用示波器对系统调制、解调等模块的波形检测可以发现各个模块的信号波形与理论波形基本吻合,系统的设计满足对微弱信号检测的要求。 关键词:微弱信号检测;频谱搬移;PWM调制

Abstract The detection of weak signal in the field of engineering design is always a technical difficulty.. Therefore, it is very important and meaningful to study and analyze the characteristics of weak signal in time domain and frequency domain and the detection technology of weak signal.. In this paper, we first introduce the in Zhongyuan electronic equipment device for load flow particle's motion and external factors lead to system noise principle. In the research of weak signal analysis, time-domain analysis is the most widely used method, such as short time Fourier and wavelet transform.. On this basis, the paper analyzes the principle and the method of the weak signal detection from the angle of the engineering design from the point of view of the engineering design.. PWM detection technology is the use of PWM pulse modulation of the weak signal, so as to achieve the frequency shift. Finally, for modulated signals, this paper by band-pass, full wave shaping and low pass in three ways the treated signal modulation and demodulation, and the final demodulation signal at the end of the demodulation. In the circuit simulation, the paper presents the simulation chart of the system circuit based on Multisim.. By building each module and using the simulation circuit, the process and the waveform of the system modulation and demodulation are given.. Using the oscilloscope system modulation and demodulation module of waveform detection can be found that each module of signal waveform and theoretical waveforms are basically consistent, the design of the system meet the requirements of weak signal detection. .Keyword:Weak signal detection ;Frequency shift ;PWM detection

《微弱信号检测技术》教学大纲

《微弱信号检测技术》教学大纲 课程类别:专业任选课课程代码:XZ8269 总学时:48学时学分:3 适用专业:电子信息科学与技术 先修课程:高等数学、模拟电子技术、信号与系统分析、高频电子线路、电子测量与仪器 一、课程的地位、性质和任务 本课程是电子信息科学与技术专业的专业限选课,其涵盖的内容是电子信息科学与技术专业本科学生所应具备的知识结构的重要组成部分。其任务是:通过本课程的学习,使学生掌握有关噪声的概念及低噪声设计方面的基本知识和基本方法,并具有初步的电磁兼容方面的知识与基本的技能,为毕业后从电子系统的设计打下基础。本课程的主要内容包括:噪声与低噪声测试系统的设计、屏蔽与接地技术、锁定放大器的工作原理、取样与取样积分原理、相关检测、自适应噪声抵消等。 二、课程教学的基本要求 要求学生掌握微弱信号的概念、噪声信号的数学分析方法、电子系统噪声的来源、锁定放大器的工作原理、屏蔽与接地技术,了解电磁兼容的概念及相关技术、取样与取样积分原理,一般了解相关检测和自适应噪声抵消。 三、理论教学内容与学时分配 1.噪声与低噪声设计(10学时) 噪声的基本概念;电阻的热噪声和过剩噪声;半导体器件的噪声特性;低噪声放大器设计;微弱信号检测系统的屏蔽与接地技术;电磁兼容的基本概念及基本方法。 2.锁定放大器的工作原理(16学时) 相关函数和相关检测;锁定放大器概述;锁定放大器中的相关器;锁定放大器中的同步积分器;旋转电容滤波器;几种典型的锁定放大器;锁定放大器的动态范围及动态协调;锁定放大器的应用。 3.取样与取样积分原理(10学时) 取样的物理过程;取样定理;实时取样与变换取样的基本概念;取样积分器原理和工作方式;门积分器的原理分析;几种典型的取样积分器;取样积分器的参数选择及应用;多点信号平均及其发展。 4.相关检测(6学时) 概述;相关函数的实际运算及误差分析;相关函数算法及实现;相关函数的峰点跟踪;相关检测的应用。。 5.自适应噪声抵消(6学时) 自适应噪声抵消原理;最陡下降法;最小均方算法;其他自适应算法;自适应滤波器应用。 四、教学方法的原则建议 教学重点:锁定放大器的原理及典型锁定放大器;相关检测。 教学难点:噪声的数学分析方法;屏蔽与接地技术;电磁兼容的概念及相关技术。 教学方法的原则建议:教学中应注意讲解理论与实际的联系,特别是具体电路和基本技术要重点讲解,务求让学生掌握。 五、考核方式及成绩构成 考核方式:开卷 成绩评定:平时30%,期末考试70%。

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

微弱信号检测学习总结分析方案

微弱信号检测学习总结报告 1本课程的基本构成 本课程目录: 第1章微弱信号检测与随机噪声 第2章放大器的噪声源和噪声特性 第3章干扰噪声及其抑制 第4章锁定放大 第5章取样积分与数字式平均 第6章相关检测 第7章自适应噪声抵消 本课程分为七章: 第一章主要介绍随机噪声的统计特性,是后续各章的理论基础。 第二章主要介绍电路内部固有噪声源及其特性,对各种有源器件的噪声性能进行分析,并阐述低噪声放大器设计中需要考虑的几个问题。 第三章介绍干扰噪声的来源、特点及各种耦合途径,并详细介绍屏蔽和接地对于各种干扰噪声的抑制作用,以及其他一些常用的抗干扰措施和微弱信号检测电路设计原则。 第四~七章分别为锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消,分别介绍这几种方法的理论基础、设计实现以及一些应用实例。 因此本课程<微弱信号检测)基本构成:微弱信号检测与随机噪声,放大器的噪声源和噪声特性、干扰噪声及其抑制、锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消。 2本课程研究的基本问题 微弱信号是相对背景噪声而言的,其信号幅度的绝对值很小、信噪比很低<远小于1)的一类信号。如果采用一般的信号检测技术,那么会产生很大的测量误差,甚至完全不能检测。微弱信号检测的主要目的是提高信噪比。微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是:如

何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 本课程<微弱信号检测)研究噪声的来源和统计特性,分析噪声产生的原因和规律,运用电子学和信号处理方法检测被噪声覆盖的微弱信号,并介绍几种行之有效的微弱信号检测方法和技术。 3学习本课程<微弱信号检测)后了解、掌握了哪些内容 通过对微弱信号这门课程的学习,我掌握的内容主要有以下几个方面: <1)了解了常规小信号检测的手段和方法,即滤波、调制放大与解调、零位法、反馈补偿法。 <2)掌握了随机噪声及其统计特征。 ①随机信号的概率密度函数 对于连续取值的随机噪声,概率密度函数(PDF>P(x>表示的是噪声电压x

第四章 微弱信号检测技术

第四章 微弱信号检测技术 4.1 被动信号检测 被动检测是一种常用的检测系统,它已广泛应用于水下引信信号检测及 其它工业领域。在被动信号检测中,常用的时域检测方法有以下几种:①宽带检测、②相干检测、③频率随机分布正弦信号的检测技术、④时域同步平均检测与波形恢复技术、⑤相关技术等等;而在频域的检测方法主要是基于FFT 算法的谱分析技术。 4.1.1宽带检测 在有些应用场合,干扰噪声和输入信号都是一有限长的限带零均值的高 斯分布随机过程,在此情况下一般使用宽带检测技术。 4.1.1.1最佳宽带检测器 最佳宽带检测器的结构框图如下: 图4.1 在高斯噪声中检测高斯信号的最佳系统结构 图 4.1中)(ωS 是信号的功率谱密度,()ωN 是干扰噪声的功率谱密度。而 2/12/12/1)]()()[()()(ωωωωωS N N S H +=表示预选滤波的频率响应。 当信号和噪声都是限带高斯分布白噪声时,信号和噪声的差别是信号和 噪声的功率级不同,)(ωH 为常值,最佳检测器是一个平均功率检测器。从理论上说无论噪声多强,信号多弱,只要他们是平稳的,且他们的方差可准确求出来,那么总可通过比较N 和N+S,发现信号。如果过程)(t r 是各态遍历的,那么方差可通过下式计算出来。 ?-≈=t T t r dt t r T t r E )(1)]([222 σ (4.1.1) 不难看出,由于截取的样本时间是滑动的,从而图 4.1可简化为平方积分系统。由于截断T 不是无限长的,所以输出)(t Z 并不等于2r σ,而是随t 在2r σ的均

值附近起伏。对于限带白谱:起伏的存在将掩盖信号加噪声(H 1)与噪声(H 0) 的差别。所以系统的信噪比计算公式如下: )()]()([)/(202 012Z Z E Z E N S σ-= (4.1.2) 在各态遍历条件下,T 越长系统的最佳性越好。 当信号和噪声的功率谱不是白谱时,可利用的信息不仅有能量差异,而且还有谱形状的差异。此时的预选滤波器的传输函数)(ωH 的幅度特性如下: 2/12/12/1)]()()[()()(ωωωωωS N N S H += (4.1.3) 在小输入信噪比情况下: ) ()()(1)()()(2/12/12/12/1ωωωωωωN S N N S H =≈ (4.1.4) 式(4.1.4)所描述的滤波器称为厄卡特滤波器。若假设信号和噪声有相同的谱形状,则: ) (1)(2/1ωωN H = (4.1.5) 上式所描述的是一个白化滤波器,信号和噪声通过后一律变成白噪声。非白谱小信号情况下,其)(ωH 相当于一个白化滤波器和一个匹配滤波器的级联。当信号与噪声有相同形状功率谱时,匹配网络的频率传输函数等于常数,厄卡特滤波器退化为一个白化滤波器,此时虽然不能提高系统输出端的信噪比,但却通过改善噪声谱的形状(白化)提高了系统的等效噪声谱宽。 4.1.1.2实用宽带检测器 在实际应用中,由于信号和噪声的功率谱很难知道,因此预选滤波器一 般没有白化和对信号进行匹配的能力,因此它对系统的输出信噪比影响很小。在实用的宽带检测系统中,主要研究的是宽带能量检测器,对这种接收机一般以系统的输出信噪比的大小或系统处理增益作为衡量系统性能的指标。宽带能量检测器在判决检测前都相应有一个等效积分器,为使讨论具有一般性,可将积分器理解为一个低通滤波器,积分器的传输函数记为H(w),输入端Y 处与输出端Z 处的信噪比可按如下公式计算: )()]()([)/(20201Y Y E Y E N S Y σ-= (4.1.6) ) ()]()([)/(20201Z Z E Z E N S Z σ-= (4.1.7) 它们和系统参数的关系如下:

微弱信号检测装置

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓 摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器 目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二 三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算

五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据 3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求:

(1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为 100。衰减器的输入信号频率范围为100Hz-10KHz。(2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。 (3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。 (4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。

2012TI电子设计大赛——微弱信号检测装置(A题).doc要点

微弱信号检测装置 四川理工学院刘鹏飞、梁天德、曾学明

摘要: 本设计以TI的Launch Pad为核心板,采用锁相放大技术设计并制作了一套微弱信号检测装置,用以检测在强噪声背景下已知频率微弱正弦波信号的幅度值,并在液晶屏上数字显示出所测信号相应的幅度值。实验结果显示其抗干扰能力强,测量精度高。 关键词:强噪声;微弱信号;锁相放大;Launch Pad

Abstract: This design is based on the Launch Pad of TI core board, using a lock-in amplifier technique designed and produced a weak signal detection device, to measure the known frequency sine wave signal amplitude values of the weak in the high noise background, and shows the measured signal amplitude of the corresponding value in the liquid crystal screen. Test results showed that it has high accuracy and strong anti-jamming capability. Keywords: weak signal detection; lock-in-amplifier; Launch Pad

微弱信号检测装置

微弱信号检测装置 Prepared on 24 November 2020

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓 摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器 目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二

三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算 五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据 3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求:

(1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为100。衰减器的输入信号频率范围为100Hz-10KHz。 (2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。 (3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。 (4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。 信噪比定义:, 正弦信号功率为:其中表示正弦信号的有效值。 白噪声信号功率为:其中表示白噪声信号的有效值。 表示加法电路的输入阻抗。 (5)当微弱正弦信号输入信号的幅度有效值为1mV-5mV,信噪比在-20dB 时,要求对输入微弱正弦信号幅度有效值检测误差不超过10%。 2、发挥部分: (1)实现对固定频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率分别为1KHz,5KHz,10KHz时,幅度有效值范围为10uV-50uV时,微弱正弦信号幅度有效值检测误差不超过10%。 (2)当微弱正弦信号输入信号的幅度有效值为100uV-500uV,信噪比在-20dB 时,要求对输入微弱正弦信号幅度有效值检测误差不超过10%。 二、系统方案 对于参考通道和相关器部分,拟采用题目所介绍使用的CD4046和CD4066两款芯片来做,对于信号通道,有不同的可采用方案。

相关主题
文本预览
相关文档 最新文档