高效液相色谱法
- 格式:ppt
- 大小:902.00 KB
- 文档页数:22
高效液相色谱法高效液相色谱法(《中国药典》2010年版二部附录V D)系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。
注入的供试品,由流动相带人柱内,各组分在柱内被分离,并依次进入检测器,由积分仪或数据处理系统记录和处理色谱信号。
1 对仪器的一般要求所用的仪器为高效液相色谱仪,由输液泵、进样器、色谱柱、检测器和色谱数据处理系统组成,仪器应按现行国家技术监督局"液相色谱仪检定规程"定期检定并符合有关规定。
1.1 色谱柱最常用的色谱柱填充剂为化学键合硅胶。
反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶(如氰基键合硅烷和氨基键合硅烷等〉也有使用。
正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。
离子交换色谱系统使用离子交换填充剂;分子排阻色谱系统使用凝胶或高分子多孔微球等填充剂;对映异构体的分离通常使用手性填充剂。
填充剂的性能(如载体的形状、粒径、孔径、表面积、键合基团的表面覆盖度、含碳量和键合类型等)以及色谱柱的填充,直接影响供试品的保留行为和分离效果。
孔径在15nm(lnm= lOA)以下的填料适于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在30nm以上的填料。
除另有规定外,分析柱的填充剂粒径一般在3~10µm之间。
粒径更小(约2µm)的填充剂常用于填装微径柱(内径约2mm)。
使用微径柱时,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也需作适当的调整。
当对其测定结果产生争议时,应以品种正文规定的色谱条件的测定结果为准。
以硅胶为载体的键合固定相的使用温度通常不超过40°C,为改善分离效果可适当提高色谱柱的使用温度,但不宜超过60°C。
流动相的pH值应控制在2~8之间。
当pH值大于8时,可使载体硅胶溶解;当pH值小于2时,与硅胶相连的化学键合相易水解脱落。
简述高效液相色谱法和气相色谱法的主要异同点。
高效液相色谱法和气相色谱法是两种常用的分离分析技术,它们的主要异同点如下:
相同点:
1.都是基于化学物质在不同的移动相中具有不同的亲和性来实现分离的。
2.都是一种高效、灵敏、快速和准确的分离分析方法。
3.都可以被用于分离分析各种类型的化合物,如有机物、无机物、生物分子等。
4.都会产生检测数据,检测标准基于化合物的比较。
不同点:
1.高效液相色谱法的分离是在液相中进行的,而气相色谱法的分离是在气相中进行的。
2.高效液相色谱法主要适用于那些不太易于挥发的化学物质,而气相色谱法主要适用于具有足够蒸发性和揮發性的样品。
3.两种方法所需的设备和技术协议不同,高效液相色谱法需要一个柱和高压泵,而气相色谱法需要一个装有固定相的管道和可变压力气瓶。
4.两种方法在较高和较低的分子量范围内的分离效率和样品分析速度可能也略有不同。
综上所述,高效液相色谱法和气相色谱法有相似之处,但是它们都有其自己的适用场景和技术妥协方案,包括用于分离、检测物质的属性、分析仪器和条件的型号和适用范围,以及液-气和气-液之间模式的差别。
高效液相色谱法原理
高效液相色谱法(HPLC)是一种广泛应用于化学、生物化学
和制药等领域的分离和分析技术。
它基于样品在固定态填料上与移动相(溶液)之间存在的不同亲和力以实现分离。
HPLC的基本原理是将待分离的混合物溶解在移动相中,然后
通过高压泵将其推向色谱柱。
色谱柱是由填料构成的管状结构,填料种类多样,如疏水性、亲水性、离子交换性等。
移动相在填料中的传播速度取决于样品分子与填料的相互作用力。
相互作用力较强的样品分子会在填料中停留时间较长,相互作用力较弱的样品分子会以较快的速度通过填料。
为了获得更准确的分离结果,可以通过控制移动相的成分和流速来调节分离效果。
常用的移动相包括水、有机溶剂和缓冲溶液,通过改变它们的比例和浓度可以影响样品的保留时间和分离程度。
此外,还可以添加其他化合物作为添加剂,以提高分离选择性。
在样品通过色谱柱后,通过检测器检测各组分的浓度,并生成相应的信号。
检测器常用的有紫外(UV)检测器、荧光检测器、电化学检测器等。
这些信号可以被记录并转换为色谱图,进而进行数据分析和定量计算。
HPLC是一种精密、高灵敏度和高选择性的分析方法,广泛应
用于药物分析、环境监测、食品安全等领域。
它的优势在于样品制备简单、分离效果好、操作方便快捷。
简述高效液相色谱法用于杂质检测的几种方法及适用
条件
高效液相色谱法(HPLC)是一种常用的分离和分析技术,可用于检测各种杂质。
以下是几种常见的HPLC检测杂质的方法及适用条件:
1. 离子对色谱法:适用于离子和极性化合物的检测,包括无机离子、有机酸、有机碱等。
通常使用离子对柱,并加入离子对试剂作为流动相添加剂,以提高分离度和灵敏度。
2. 反相色谱法:适用于极性和非极性化合物的检测,包括许多药品和农药等。
使用非极性反相柱,并使用有机溶剂作为流动相添加剂,以提高分离度和灵敏度。
3. 大孔毛细管色谱法(GPC):适用于分离高分子化合物的杂质,如聚合物和蛋白质。
使用大孔柱,并在流动相中加入钙离子等添加剂,以提高分离度和灵敏度。
4. 气化柱组合技术(GC):适用于检测挥发性和半挥发性化合物的杂质,如有机溶剂和挥发性芳香化合物。
使用毛细管柱与气相质谱仪(GC/MS)组合,可提高分离度和灵敏度。
以上几种方法在HPLC中广泛应用,适用条件包括样品的物化性质、温度、压力、流动相种类和浓度等。
选取合适的HPLC方法和条件可以有效地分离和检测各种
杂质。
高效液相色谱法《中国药典》2015年版高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。
注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。
1.对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。
色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。
超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。
(1)色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。
常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。
正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。
常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。
氨基键合硅胶和氰基键合硅胶也可用作反相色谱。
离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。
有阳离子交换色谱柱和阴离子交换色谱柱。
手性分离色谱柱:用手性填充剂填充而成的色谱柱。
色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。
温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。
为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。
残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2~8之间。
残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。
(2)检测器最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。