当前位置:文档之家› 场效应管基础知识

场效应管基础知识

场效应管基础知识
场效应管基础知识

MOS管基础知识

MOS管基础知识 MOS管场效应管 知识要点: 场效应管原理、场效应管的小信号模型及其参数 场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。 1.1 1.1.1 MOS场效应管 MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 根据图3-1,N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P 型半导体称为衬底,用符号B表示。 图3-1 N 沟道增强型EMOS管结构示意 一、工作原理 1.沟道形成原理 当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。 当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加VGS,当VGS>VGS(th)时( VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟 1 线性电子电路教案 道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。 gm 的量纲为mA/V,所以gm也称为跨导。 跨导的定义式如下: constDS==VGSDVIgmΔΔ (单位mS) 2. VDS对沟道导电能力的控制 当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图3-2所示。根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS

常用场效应管型号全参数管脚识别及检测表

常用场效应管型号参数管脚识别及检测表场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一

只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。 (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法

场效应管(MOS管)综合知识

场效应管(MOS管) 6.1场效应管英文缩写:FET(Field-effect transistor) 6.2 场效应管分类:结型场效应管和绝缘栅型场效应管 6.3 场效应管电路符号: 结型场效应管 S S N沟道 P沟道 6.4场效应管的三个引脚分别表示为:G(栅极),D(漏极),S(源极) D D D D G G G G 绝缘栅型场效应管 增强型 S 耗尽型 N沟道 P沟道 N沟道 P沟道 注:场效应管属于电压控制型元件,又利用多子导电故称单极型元件,且具有输入电阻高,噪声小,功耗低,无二次击穿现象等优点。 6.5场效应晶体管的优点:具有较高输入电阻高、输入电流低于零,几乎不要向信号源吸取电流,在 在基极注入电流的大小,直接影响集电极电流的大小,利用输出电流控制输出电源的半导体。 6.6场效应管与晶体管的比较 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。

(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管 6.7 场效应管好坏与极性判别:将万用表的量程选择在RX1K档,用黑表笔接D极,红表笔接S极,用手同时触及一下G,D极,场效应管应呈瞬时导通状态,即表针摆向阻值较小的位置,再用手触及一下G,S极, 场效应管应无反应,即表针回零位置不动.此时应可判断出场效应管为好管. 将万用表的量程选择在RX1K档,分别测量场效应管三个管脚之间的电阻阻值,若某脚与其他两脚之间的电阻值均为无穷大时,并且再交换表笔后仍为无穷大时,则此脚为G极,其它两脚为S极和D极.然后再用万用表测量S极和D极之间的电阻值一次,交换表笔后再测量一次,其中阻值较小的一次,黑表笔接的是S极,红表笔接的是D极.

场效应管对照表

场效应管对照表(分2页介绍了世界上场效应管的生产厂家和相关参数) 本手册由"场效应管对照表"和"外形与管脚排列图"两部分组成。 在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。) 所到厂家的英文缩写与中文全称对照如下: ADV 美国先进半导体公司 AEG 美国AEG公司 AEI 英国联合电子工业公司 AEL 英、德半导体器件股份公司 ALE 美国ALEGROMICRO 公司ALP 美国ALPHA INDNSTRLES 公司AME 挪威微电子技术公司 AMP 美国安派克斯电子公司 AMS 美国微系统公司 APT 美国先进功率技术公司 ATE 意大利米兰ATES公司 ATT 美国电话电报公司 AVA 美、德先进技术公司 BEN 美国本迪克斯有限公司 BHA 印度BHARAT电子有限公司CAL 美国CALOGIC公司 CDI 印度大陆器件公司 CEN 美国中央半导体公司 CLV 美国CLEVITE晶体管公司 COL 美国COLLMER公司 CRI 美国克里姆森半导体公司 CTR 美国通信晶体管公司 CSA 美国CSA工业公司 DIC 美国狄克逊电子公司 DIO 美国二极管公司 DIR 美国DIRECTED ENERGR公司LUC 英、德LUCCAS电气股份公司MAC 美国M/A康姆半导体产品公司MAR 英国马可尼电子器件公司 MAL 美国MALLORY国际公司DIT 德国DITRATHERM公司ETC 美国电子晶体管公司 FCH 美国范恰得公司 FER 英、德费兰蒂有限公司 FJD 日本富士电机公司 FRE 美国FEDERICK公司 FUI 日本富士通公司 FUM 美国富士通微电子公司 GEC 美国詹特朗公司 GEN 美国通用电气公司 GEU 加拿大GENNUM公司 GPD 美国锗功率器件公司 HAR 美国哈里斯半导体公司 HFO 德国VHB联合企业 HIT 日本日立公司 HSC 美国HELLOS半导体公司 IDI 美国国际器件公司 INJ 日本国际器件公司 INR 美、德国际整流器件公司 INT 美国INTER FET 公司 IPR 罗、德I P R S BANEASA公司ISI 英国英特锡尔公司 ITT 德国楞茨标准电气公司 IXY 美国电报公司半导体体部KOR 韩国电子公司 KYO 日本东光股份公司 LTT 法国电话公司 SEM 美国半导体公司 SES 法国巴黎斯公司 SGS 法、意电子元件股份公司

场效应管复习知识点

hyj 1.4 场效应管 场效应管(简称FET )是一种电压控制器件(u GS ~i D )。工作时,只有一种载流子参与导电,因此它是单极型器件。 FET 因其制造工艺简单、功耗小、热稳定性好、输入电阻极高、便于集成等优点,得到了广泛应用。 场效应管根据结构不同分为两大类: 结型场效应管(JFET ) 输入阻抗 Ω 9 610~10绝缘栅场效应管(MOSFET ) 输入阻抗Ω 14 12 10~10

hyj 1.4.1 结型场效应管(JFET ) S 源极 D 漏极 G 栅极 G S D +P + P N 1 结构 N 沟道管:电子导电P 沟道管:空穴导电 一、JFET 的结构 (1)N 沟道管 ?在一块N 型半导体两边各扩散一个高浓度的P 型区,形成P +N 结;?两个P 型区的引线连在一起作为一个电极,称为栅极G ;?在N 型区两端引出两个电极分别称为源极S 和漏极D ; ?两个P +N 结之间的N 区是电流流通的通道,称为导电沟道; ?符号中箭头的方向代表了栅源P +N 结正偏时栅极的电流方向。

hyj G S D P +N + N G 栅极 D 漏极 S 源极 (2)P 沟道管 导电沟道为P 型半导体,称为P 型沟道管。 ?在一块P 型半导体两侧分别扩散一个高浓度的N 型区,形成N +P 结;?两个N 型区的引线连在一起作为一个电极,称为栅极G ; ?在P 型区两端引出两个电极分别称为源极S 和漏极D ;?两个P +N 结之间的P 区称为导电沟道; ?符号中箭头的方向代表了栅源P +N 结正偏时栅极的电流方向。

hyj 1PN 结反偏,耗尽层导电沟道 + P + P G S D N GS U 一般: | U GS |导电沟道沟道电阻当U GS =U GS(off)时 沟道夹断 ?当U GS =0时: 为平衡PN 结,导电沟道最宽。 u DS =0时,u GS 与对沟道电阻的控制作用夹断电压: U GS(off) 二、工作原理 ?当U GS < 0时:

常用全系列场效应管MOS管型号参数封装资料

场效应管分类型号简介封装DISCRETE MOS FET 2N7000 60V,0.115A TO-92 DISCRETE MOS FET 2N7002 60V,0.2A SOT-23 DISCRETE MOS FET IRF510A 100V,5.6A TO-220 DISCRETE MOS FET IRF520A 100V,9.2A TO-220 DISCRETE MOS FET IRF530A 100V,14A TO-220 DISCRETE MOS FET IRF540A 100V,28A TO-220 DISCRETE MOS FET IRF610A 200V,3.3A TO-220 DISCRETE MOS FET IRF620A 200V,5A TO-220 DISCRETE MOS FET IRF630A 200V,9A TO-220 DISCRETE MOS FET IRF634A 250V,8.1A TO-220 DISCRETE MOS FET IRF640A 200V,18A TO-220 DISCRETE MOS FET IRF644A 250V,14A TO-220 DISCRETE MOS FET IRF650A 200V,28A TO-220 DISCRETE MOS FET IRF654A 250V,21A TO-220 DISCRETE MOS FET IRF720A 400V,3.3A TO-220 DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE

mos管基础知识

MOS管的基础知识 什么是场效应管呢?场效应管式是利用输入回路的电场效应来控制输出回路 电流的一种半导体器件,并以此命名。由于它是靠半导体中的多数载流子导电,又称单极性晶体管。它区别晶体管,晶体管是利用基极的小电流可以控制大的集电极电流。又称双极性晶体管。 一, MOS管的种类,符号。 1JFET结型场效应管----利用PN结反向电压对耗尽层厚度的控制来改变导电沟道的宽度,从而控制漏极电流的大小。结型场效应管一般是耗尽型的。 耗尽型的特点: a,PN结反向电压,这个怎么理解,就是栅极G,到漏极D和源极s有个PN吉, b,未加栅压的时候,器件已经导通。要施加一定的负压才能使器件关闭。 C,从原理上讲,漏极D和源极S不区分,即漏极也可作源极,源极也可以做 漏极。漏源之间有导通电阻。 2IGFET绝缘栅极场效应管----利用栅源电压的大小来改变半导体表面感生电荷

的多少,从而控制漏极电流的大小。 增强型效应管特点: A, 栅极和源极电压为0时,漏极电流为0的管子是增强型的。 B, 栅源电压,这个之间是个绝缘层,绝缘栅型一般用的是 SIO 2绝缘层。 耗尽 型绝缘栅场效应晶体管 的性能特点是:当栅极电压U 0 =0时有一定的漏 极电流。对于N 沟道耗尽型绝缘栅场效应晶体管,漏极加正电压,栅极电压从 0 逐渐上升时漏极电流逐渐增大,栅极电压从 0逐渐下降时漏极电流逐渐减小直至 截 止。对于P 沟道耗尽型绝缘栅场效应晶体管,漏极加负电压,栅极电压从 0逐 渐下降时漏极电流逐渐增大,栅极电压从 0逐渐上升时漏极电流逐渐减小直至截 绝缘栅型场效应 管: N 沟道增强型,P 沟道增强型,N 沟道耗尽型,P 沟道耗 尽型 MOSFET 増强型 N 沟道 二,用数字万用表测量MO 管的方法 用数字万用表判断MOS 的管脚定义。 1, 判断结型场效应管的 栅极的判断, 我们以N 沟道为例,大家知道,结型场效应管在 VGS 之间不施加反向电压 的 话,DS 之间是导通的,(沟道是以N 型半导体为导电沟道),有一定的 阻值,所以止0 1, 2, 按功率分类: A, 小信号管,一般指的是耗尽型场效应管。主要用于信号电路的控制。 B, 功率管,一般指的是增强型的场效应管,只要在电力开关电路,驱动 电路等。 按结构分类: 结型场效应管: 型) 增强型, 耗尽型 N 沟道结型场效应管 P 沟道结型场效应管(一般是耗尽 ZU 耗尽型 ZK7 工4

用场效应管参数大全.pdf2

用场效应管参数大全 宏瑞电子|家电维修|电子技术|家电维修技术2009-12-0620:30:24作者:zhangzi来源:文字大小:[大][中][小] 型号材料管脚用途参数 3DJ6NJ低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS开关600V11A150W0.36 2SJ117PMOS GDS音频功放开关400V2A40W 2SJ118PMOS GDS高速功放开关140V8A100W50/70nS0.5 2SJ122PMOS GDS高速功放开关60V10A50W60/100nS0.15 2SJ136PMOS GDS高速功放开关60V12A40W70/165nS0.3 2SJ143PMOS GDS功放开关60V16A35W90/180nS0.035 2SJ172PMOS GDS激励60V10A40W73/275nS0.18 2SJ175PMOS GDS激励60V10A25W73/275nS0.18 2SJ177PMOS GDS激励60V20A35W140/580nS0.085 2SJ201PMOS n 2SJ306PMOS GDS激励60V14A40W30/120nS0.12 2SJ312PMOS GDS激励60V14A40W30/120nS0.12 2SK30NJ SDG低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108NJ SGD音频激励开关50V1-12mA0.3W701DB 2SK118NJ SGD音频话筒放大50V0.01A0.1W0.5dB 2SK168NJ GSD高频放大30V0.01A0.2W100MHz1.7dB 2SK192NJ DSG高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193NJ GSD高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214NMOS GSD高频高速开关160V0.5A30W 2SK241NMOS DSG高频放大20V0.03A0.2W100MHz1.7dB 2SK304NJ GSD音频功放30V0.6-12mA0.15W 2SK385NMOS GDS高速开关400V10A120W100/140nS0.6 2SK386NMOS GDS高速开关450V10A120W100/140nS0.7 2SK413NMOS GDS高速功放开关140V8A100W0.5(2SJ118) 2SK423NMOS SDG高速开关100V0.5A0.9W4.5 2SK428NMOS GDS高速开关60V10A50W45/65NS0.15

场效应管知识点

场效应管工作原理 场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。 为解释MOS 场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应

场效应管参数查询库(精)

型号电压电流功率封装极性 15N80 800V 15A TO-3PN IGBT 16N06 60V 16A 1N60 600V 1A 20N60 600V 20A TO-3PN N-FET 25N120 1200V 25A TO-3PN IGBT 2N60 600V 2A 54W TO-220 N-FET 2N60 小 N-FET 30N120 1200V 30A TO-3PN IGBT 4N50 500V 4A 75W TO-220 N-FET 4N80 800V 4A 75W TO-220 N-FET 50N06 46A 60V 105W TO-220 N-FET 6N60 600V 6A 125W TO-220F N-FET 7N60 600V 7A 147W TO-220F N-FET BUP203 1000V 23A 165W TO-220 IGBT BUP304 1000V 35A 310W TO-3PN IGBT GT40T101 1500V 40A TO-3PN IGBT GT60N90 900V 60A TO-3PN IGBT IRF1010E 55V 84A 170W TO-220 N-FET IRF150 100V 40A 150W TO- 3PN N-FET IRF250 200V 30A 150W TO-3 N-FET IRF460 500V 21A 300W TO-3 N-FET IRF4905 55V 74A 200W TO-220 P-FET IRF530 100V 14A 79W TO-220 N-FET IRF5305 55V 31A 110W TO-220 N-FET IRF540N 100V 28A 150W TO-220 N-FET IRF540N 100V 28A 150W TO-220 N-FET IRF610 200V 3.3A 40W TO-220 N-FET IRF620 200V 5A 40W TO-220 N-FET IRF630 200V 9A 75W TO-220 N-FET IRF630 200V 9A 75W TO-220 N-FET IRF640 200V 18A 125W TO-220 N-FET IRF640 200V 18A 125W TO-220 N-FET IRF710原 400V 2A 36W TO-220 N-FET IRF730 400V 5.5A 75W TO-220 N-FET IRF730 400V 5.5A 75W TO-220 N-FET IRF740 400V 10A 125W TO-220 N-FET IRF740 400V 10A 125W TO-220 N-FET IRF830 500V 4.5A 75W TO-220 N-FET IRF830 500V 4.5A 75W TO-220 N-FET IRF840 500V 8A 125W TO-220 N-FET IRF840 500V 8A 125W TO-220 N-FET IRF9530 100V 12A 75W TO-220 P-FET IRF9530 100V 12A 75W TO-220 P-FET IRF9540 100V 19A 125W TO-220 P-FET IRF9630 200V 6.5A 75W TO-220 P-FET IRF9630 200V 6.5A 75W TO-220 P-FET IRF9640 200V 11A 125W TO-220 P-FET IRF9Z34 60V 18A 74W TO-220 N-FET IRFP150A 43A 100V 193W TO-3PN N-FET IRFP250 200V 33A 180W TO-3PN N-FET IRFP260 200V 46A 280W TO-3PN N-FET IRFP264 250V 38A 280W TO-3PN N-FET IRFP350A 400V 17A 200W TO-3PN N-FET IRFP450 500V 14A 180W TO-3PN N-FET IRFP460 500V 20A 250W TO-3PN N-FET IRFZ44N 55V 49A 110W TO-220 N-FET IRG4BC30F 600V 30A TO-220 IGBT K1081 800V 7A 125W TO-3PN N-FET K1082 800V 8A 125W TO-3PN N-FET K1117 600V 6A 100W TO-220 N-FET K1118

场效应管的基础知识

场效应管的基础知识 英文名称:MOSFET(简写:MOS) 中文名称:功率场效应晶体管(简称:场效应管) 场效应晶体管简称场效应管,它是由半导体材料构成的。 与普通双极型相比,场效应管具有很多特点。 场效应管是一种单极型半导体(内部只有一种载流子—多子) 分四类: N沟通增强型;P沟通增强型; N沟通耗尽型;P沟通耗尽型。 增强型MOS管的特性曲线 场效应管有四个电极,栅极G、漏极D、源极S和衬底B,通常字内部将衬底B与源极S相连。 这样,场效应管在外型上是一个三端电路元件场效管是一种 压控电流源器件,即流入的漏极电流ID栅源电压UGS控制。 1、转移特性曲线: 应注意: ①转移特性曲线反映控制电压VGS与电流ID之间的关系。 ②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V。 ③无论是在VGS 2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。可分三个区域。 ①夹断区:VGS ②可变电阻区:VGS>VTN且VDS值较小。VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。 ③恒流区:VGS>VTN且VDS值较大。这时ID只取于VGS,而与VDS无关。 3、MOS管开关条件和特点:管型状态,N-MOS,P-MOS特点 截止VTN,RDS非常大,相当与开关断开 导通VGS≥VTN,VGS≤VTN,RON很小,相当于开关闭合 4、MOS场效应管的主要参数 ①直流参数 a、开启电压VTN,当VGS>UTN时,增强型NMOS管通道。 b、输入电阻RGS,一般RGS值为109~1012Ω高值 ②极限参数 最大漏极电流IDSM击穿电压V(RB)GS,V(RB)DS 最大允许耗散功率PDSM 5、场效应的电极判别 用R×1K挡,将黑表笔接管子的一个电极,用红表笔分别接另外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),另外两极为源(S)、漏(D)极,而且是N型沟场效应管。 在测量过程中,如出现阻值相差太大,可改换电极再测量,直到出现两阻值都很大或都小为止。 如果是P沟道场效应管,则将表笔改为红表笔,重复上述方法测量。 6、结型场效应管的性能测量 将万用表拨在R×1K或R×10K挡上,测P型沟道时,将红表笔接源极或漏极,黑表笔接栅极,测出的电阻值应很大,交换表笔测时,阻值应该很小,表明管子是好的。

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

场效应管基础知识资料

场效应管基础知识 一、场效应管的分类 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 1、I DSS —饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏

源电流。 2、UP —夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、UT —开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、gM —跨导。是表示栅源电压U GS —对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。 5、BUDS —漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。 6、PDSM —最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。 7、IDSM —最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM 几种常用的场效应三极管的主要参数 四、场效应管的作用 2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。 3、场效应管可以用作可变电阻。

场效应管参数用途大全解析

型号材料管脚用途参数 3D J6N J低频放大20V0.35M A0.1W 4405/R9524 2E3C N M O S G D S开关600V11A150W0.36 2S J117P M O S G D S音频功放开关400V2A40W 2S J118P M O S G D S高速功放开关140V8A100W50/70n S0.5 2S J122P M O S G D S高速功放开关60V10A50W60/100n S0.15 2S J136P M O S G D S高速功放开关60V12A40W70/165n S0.3 2S J143P M O S G D S功放开关60V16A35W90/180n S0.035 2S J172P M O S G D S激励60V10A40W73/275n S0.18 2S J175P M O S G D S激励60V10A25W73/275n S0.18 2S J177P M O S G D S激励60V20A35W140/580n S0.085 2S J201P M O S n 2S J306P M O S G D S激励60V14A40W30/120n S0.12 2S J312P M O S G D S激励60V14A40W30/120n S0.12 2S K30N J S D G低放音频50V0.5m A0.1W0.5d B 2S K30A N J S D G低放低噪音频50V0.3-6.5m A0.1W0.5d B 2S K108N J S G D音频激励开关50V1-12m A0.3W701D B 2S K118N J S G D音频话筒放大50V0.01A0.1W0.5d B 2S K168N J G S D高频放大30V0.01A0.2W100M H z1.7d B 2S K192N J D S G高频低噪放大18V12-24m A0.2W100M H z1.8d B 2S K193N J G S D高频低噪放大20V0.5-8m A0.25W100M H z3d B 2S K214N M O S G S D高频高速开关160V0.5A30W 2S K241N M O S D S G高频放大20V0.03A0.2W100M H z1.7d B 2S K304N J G S D音频功放30V0.6-12m A0.15W 2S K385N M O S G D S高速开关400V10A120W100/140n S0.6 2S K386N M O S G D S高速开关450V10A120W100/140n S0.7 2S K413N M O S G D S高速功放开关140V8A100W0.5(2S J118) 2S K423N M O S S D G高速开关100V0.5A0.9W4.5 2S K428N M O S G D S高速开关60V10A50W45/65N S0.15 2S K447N M O S S D G高速低噪开关250V15A150W0.24可驱电机2S K511N M O S S D G高速功放开关250V0.3A8W5.0 2S K534N M O S G D S高速开关800V5A100W4.0 2S K539N M O S G D S开关900V5A150W2.5 2S K560N M O S G D S高速开关500V15A100W0.4 2S K623N M O S G D S高速开关250V20A120W0.15 2S K727N M O S G D S电源开关900V5A125W110/420n S2.5

常用场效应管参数大全(1)

型号材料管脚用途参数 3DJ6NJ 低频放大 20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关 600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关 400V2A40W 2SJ118 PMOS GDS 高速功放开关 140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关 60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关 60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关 60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励 60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励 60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励 60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励 60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励 60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频 50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频 50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关 50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大 50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大 30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大 18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大 20V0.5-8mA0.25W100MHz3dB

场效应管功能及参数介绍

2.2场效应管功能及参数介绍 开关电源的基本电路由“交流一直转换电路”, “开关型功率变换器”, “控制电路”和整流稳波电路”而组成.输入的电网电压通过“交流一直流转换电路”中的整流和稳器转换成直流电,该直流电源作为“开关型功率变换器”的输入电源,经过“开关型功率更换器”将直流电转变为高频脉冲电波电压输出给“整流滤波电路”,变成平滑直流供给负载,控制电路则起着控制“开关型功率变换器”工作的作用.开关型功率变换器是开关电源的主电路,开关电源的能量转换,电压变换就由它承担.在直流变换器的基础上,由于高频脉冲技术及开关变换技术的进一步发展,出现了推挽式开关型功率变换器,全挢式开关型功率变换器,半挢式﹑单端正激式.单端反激式开关型功率变换器.其控制方法可分为脉冲宽度调制(PWM)和脉冲频调制(PFM)两种. 开关电源最重要的组件是MOSFET,它的开通和关短控制着整个电源运转.MOSFET原意是MOS(METAL OXIDE SEWILONDUCTOR,金属氧化物半导体)FET(FIELD DFFECT TRAHSISTOR,场效应晶体),即以金属层(M)的栅极隔着氧化层(0),利用电场的效应来控制半导体(S)的场效应晶体管. 功率场应晶体管也分为结型绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semi Conductor FET),简称功率MOSFET(Power MOSPET).结型功率场效应晶体管一般称作静电感应晶体管(STATIC INTUCTION TRANSISTOR,缩写为SIT).其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,电流容量小,耐压低,一般只适用于功率不超过10KW的电力电子装置.国际整流器公司.(在International Rectifier,缩写IR)把MOSFET用于高压的器件归纳为第3,6,9代,其中包括3,5代,而用于低压的则为第5,7,8代. 功率MOSFET按导电沟通可分P沟道和N沟道;按栅极电压幅值可分为耗尽型(当栅极电压为零时漏,源极之间就存在导电沟道)和增强型(对于N或P沟道器,件栅极电压大珪或小于零时才存在导电沟道,功率MOSFET主要是N沟道增强型). 2.2.1.功率MOSFET的结构 功率MOSPET的内部结构和电气符号如下周所示,其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管.导电机理与小功率MOS管相同,但结构上有极大区别.小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET.大大提高了MOSFET 器件的耐压和耐电流能力. 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET的结构为多元集.如国际整流器公司的HEXFET采用六边形单元;西门子公司的STPMOSFET采用了正方形单元;摩托罗拉公司的TMOS采用了矩形单元按“品”字形排列. 2.2.2功率MOSFET的工作方式 截止:漏极间加正电源,栅源极间电压为零.P基区与N漂移区之间形成的PN结,反偏;漏源极之间无电流流过. 导电:在栅源极间加正电压Vgs,栅极是绝缘的,所以不会有栅极电流流过.但栅极的正电压会将其下P区中的空穴推开.,而将P区中的少子---电子吸引到栅极下面的P区表面. 当Vgs大于UT(开启电压或阀值电压)时,栅极下面P区表面的电子浓度将超过空穴的浓度,P型半导体反型成N型而成为反型层,该反型层形成N沟道而PN结缩小消失,漏极和源极导电. 2.2.3功率MOSFET的基本特性 1.静态特性 其转移特性和转出特性如图所示 漏极电流Id和栅源间电压Vgs的关系为MOSFET的转移特性.Id较大时,Id与Vgs的关系近似线性 ,曲线的斜率定义为跨导Gfs.在恒流区内,N信道增强型MOSFET的Id可近似表示为: id=Ido(Vgs/VT-1)2 (Vgs>VT)

相关主题
文本预览
相关文档 最新文档