当前位置:文档之家› 风电场接入电网具体要求

风电场接入电网具体要求

风电场接入电网具体要求
风电场接入电网具体要求

风电场接入电网具体要求

依照国网公司企业标准Q/GDW_392-2009《风电场接入电网技术规定》和《风电功率预测系统功能规范》的要求,对风电场接入电网提出如下要求。

一、风电场接入系统的技术要求

1 风电场有功功率

1.1 基本要求

风电场应具备有功功率调节能力,能根据电网调度部门指令控制其有功功率输出。为了实现对有功功率的控制,风电场需配置有功功率控制系统,接收并自动执行调度部门远方发送的有功功率控制信号,确保风电场最大有功功率值及有功功率变化值不超过电网调度部门的给定值。

1.2 有功功率变化限值

风电场应具有限制其有功功率变化的能力,在风电场并网以及风速增长过程中,风电场有功功率变化应当满足电网调度部门的要求。有功功率变化包括1min有功功率变化和10min 有功功率变化。风电场有功功率变化限值的推荐值可参考表1。

有功功率变化超出最大有功功率变化限值的情况可以接受。

风电场有功功率变化限值电网调度部门可根据所接入电网的调频能力及其他电源调节特性做相应修改。

1.3 紧急控制

在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。必要时可通过安全自动装置快速自动切除或降低风电场有功功率。

a)电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电设备发生过载,确保电力系统稳定性。

b)当电网频率高于50.2赫兹时,依据电网调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。

c)若风电场的运行危及电网安全稳定,电网调度部门有权暂时将风电场切除。

事故处理完毕,电网恢复正常运行状态后,应尽快恢复风电场的并网运行。

2 风电场功率预测

风电场应配置风电功率预测系统,系统具有0~48h短期风电功率预测以及15min~4h 超短期风电功率预测功能。

风电场每15min自动向电网调度部门滚动上报未来15min~4h的风电场发电功率预测曲线,预测值的时间分辨率为15min。

风电场每天按照电网调度部门规定的时间上报次日0~24时风电场发电功率预测曲线,预测值的时间分辨率为15min。

风电场的风电功率预测系统向上级调度机构的风电功率预测系统上报风电功率预测曲

线时,同时上报与预测曲线相同时段的风电场预计开机容量和测风数据。

风电场的风电功率预测系统应能够向上级调度机构的风电功率预测系统实时上传风电场测风塔的测风数据,时间分辨率不大于5分钟。

风电场的风电功率预测系统应与调度机构的风电功率预测系统运行于同一安全区。

3 风电场无功配置

3.1 无功电源

a)风电场的无功电源包括风电机组及风电场无功补偿装置。

b)风电场首先充分利用风电机组的无功容量及其调节能力,仅靠风电机组的无功容量不能满足系统电压调节需要的,应在风电场集中加装适当容量的无功补偿装置,无功补偿装置应具有自动电压调节能力。

3.2 无功容量

a)风电场的无功容量应按照分(电压)层和分(电)区基本平衡的原则进行配置和运行,并应具有一定的检修备用。

b)对于直接接入公共电网的风电场,其配置的容性无功容量除能够补偿并网点以下风电场汇集系统及主变压器的感性无功损耗外,还要能够补偿风电场满发时送出线路一半的感性无功损耗;其配置的感性无功容量能够补偿风电场送出线路一半的充电无功功率。

c)对于通过220k伏(或330k伏)风电汇集系统升压至500k伏(或750k伏)电压等级接入公共电网的风电场群,其风电场配置的容性无功容量除能够补偿并网点以下风电场汇集系统及主变压器的感性无功损耗外,还要能够补偿风电场满发时送出线路的全部感性无功损耗;其风电场配置的感性无功容量能够补偿风电场送出线路的全部充电无功功率。

d)风电场无功容量配置的要求与电网结构、送出线路长度及风电场总装机容量有密切关系,风电场需配置的无功容量范围推荐结合每个风电场实际接入情况通过风电场接入电网专题研究来确定。

4 风电场电压

4.1 电压运行范围

当风电场并网点的电压偏差在其额定电压的-10%~+10%之间时,风电场内的风电机组应能正常运行;当风电场并网点电压偏差超过+10%时,风电场的运行状态由风电场所选用风电机组的性能确定。

4.2 电压控制要求

a)风电场应配置无功电压控制系统;根据电网调度部门指令,风电场通过其无功电压控制系统自动调节整个风电场发出(或吸收)的无功功率,实现对并网点电压的控制,其调节速度和控制精度应能满足电网电压调节的要求。

b)当公共电网电压处于正常范围内时,风电场应当能够控制风电场并网点电压在额定电压的97%~107%范围内。

c)风电场变电站的主变压器应采用有载调压变压器。风电场具有通过调整变电站主变压器分接头控制场内电压的能力,确保场内风电机组在条款4.1所规定的条件下能够正常运行。

5 风电场低电压穿越

5.1 基本要求

图1为对风电场的低电压穿越要求。

a)风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625m秒的能力;

b)风电场并网点电压在发生跌落后 2秒内能够恢复到额定电压的 90%时,风电场内的风电机组能够保证不脱网连续运行。

5.2 不同故障类型的考核要求

对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下:

a)当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意一线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。

b)当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意一线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。

c)当电网发生单相接地短路故障引起并网点电压跌落时,风电场并网点各相电压在图中电压轮廓

线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意一相电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。

5.3 有功恢复

对电网故障期间没有切出电网的风电场,其有功功率在电网故障清除后应快速恢复,以至少10%额定功率/秒的功率变化率恢复至故障前的值。

6 风电场运行频率

风电场可以在表2所示电网频率偏差下运行:

表2 风电场在不同电网频率偏差范围下的允许运行时间

7 风电场电能质量

风电场电能质量指标的要求限值应满足国家电能质量标准对于电网公共连接点的要求限值,如果风电场供电区域内存在对电能质量有特殊要求的重要用户,可提高对风电场电能质量的相关要求。

当风电场并网点的闪变值满足国家标准GB/T 12326—2008《电能质量电压波动和闪变》、谐波值满足国家标准GB/T 14549—1993《电能质量公用电网谐波》、三相电压不平衡度满足国家标准GB/T 15543—2008《电能质量三相电压不平衡》的规定时,风电场内的风电机组应能正常运行。

7.1 电压偏差

风电场接入电力系统后,并网点的电压正、负偏差的绝对值之和不超过额定电压的10%,一般应为额定电压的3%~+7%。限值也可由电网调度部门和风电场开发运营企业根据电网特点、风电场位置及规模等共同确定。

7.2 电压变动

风电场在并网点引起的电压变动d(%)应当满足表3的要求。

表3 电压变动限值

注 d表示电压变动,为电压方均根值曲线上相邻两个极值电压之差,以系统标称电压的百分数表示;r表示电压变动频度,指单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。不同方向的若干次变动,若间隔时间小于30m秒,则算一次变动。

7.3 闪变

风电场所接入的公共连接点的闪变干扰值应满足GB/T 12326—2008《电能质量电压波动和闪变》的要求,其中风电场引起的长时间闪变值按照风电场装机容量与公共连接点上的干扰源总容量之比进行分配。

7.4 谐波

风电场所接入的公共连接点的谐波注入电流应满足GB/T 14549—1993《电能质量公用电网谐波》的要求,其中风电场向电网注入的谐波电流允许值按照风电场装机容量与公共连接点上具有谐波源的发/供电设备总容量之比进行分配。

7.5 监测与治理

风电场应配置电能质量监测设备,以实时监测风电场电能质量指标是否满足要求;若不满足要求,风电场需安装电能质量治理设备以确保风电场合格的电能质量。

8 风电场模型和参数

8.1 风电场模型

风电场开发商应提供可用于系统仿真计算的风电机组、电力汇集系统及风电机组/风电场控制系统模型及参数,用于风电场接入电力系统的规划、设计及调度运行。

8.2 参数变化

风电场应跟踪其各个元件模型和参数的变化情况,并随时将最新情况反馈给电网调度部门。

9 风电场通信与信号

9.1 基本要求

风电场的二次设备及系统应符合电力系统二次部分技术规范、电力系统二次部分安全防护要求及相关设计规程。

风电场与电网调度部门之间的通信方式、传输通道和信息传输由电网调度部门作出规定,包括提供遥测信号、遥信信号、遥控信号、遥调信号以及其他安全自动装置的信号,提供信号的方式和实时性要求等。对于接入220千伏及以上电压等级的风电场应配置PMU系统,保证其自动化专业调度管辖设备和继电保护设备等采用与电网调度部门统一的卫星对时系统。

风电场实时功率数据的采集频率应小于5分钟,风电场端风电功率预测系统的数据应取自风电场升压站计算机监控系统。

风电机组状态数据的采集频率应小于15分钟,其中:电网调度机构的风电功率预测系统的数据应通过电力调度数据网由风电场端风电功率预测系统获取;风电场端风电功率预测系统的数据应取自风电场计算机监控系统。

9.2 正常运行信号

在正常运行情况下,风电场向电网调度部门提供的信号包括但不限于:

a)单个风电机组运行状态;

b)风电场实际运行机组数量和型号;

c)风电场并网点电压;

d)风电场高压侧出线的有功功率、无功功率、电流;

e)高压断路器和隔离开关的位置;

f)风电场的实时风速和风向等实时气象数据,应满足如下要求:

测风塔位置应在风电场5公里范围内且不受风电场尾流效应影响,宜在风电场主导

风向的上风向;

应至少包括10米、70米及以上高程的风速、风向以及气温、气压等信息,时间分

辨率应不小于5分钟;

风电场风电预测系统应通过GPRS或光纤采集测风塔实时气象信息,时间间隔不大

于5分钟;

风电场应通过电力调度数据网向电网调度机构风电功率预测系统传送风电场实时

气象数据,时间间隔不大于5分钟。

9.3 故障信息记录与传输

在风电场变电站需要安装故障记录装置,记录故障前10秒到故障后60秒的情况。该记录装置应该包括必要数量的通道,并配备至电网调度部门的数据传输通道。

二、风电场接入系统的资料要求

1 风电场接入系统需向新疆省调提供的资料

2 签订《并网调度协议》需要提供的资料

2.1 电厂全称、登记注册的部门全称、发电业务许可证编号、税务登记号、详细地址、法定代表人姓名。

2.2 电厂并入电网的并网线路

包括线路名称、电压等级;电厂上网的电能量关口计量点位置。

2.3 接到调度指令后所有机组出力减至零负荷的最短停机时间。

2.4 电厂认可的电能计量系统检测机构名称。

2.5 电厂认可的解决并网调度协议发生争议事宜的机构名称。

2.6 电厂指定的通知与送达收件人姓名、联系电话、传真、邮政编码、通信地址。

三、风电场接入系统的电网测试要求

1 基本要求

a)当接入同一并网点的风电场装机容量超过40兆瓦时,需要向电网调度部门提供风电场接入电网测试报告;累计新增装机容量超过40兆瓦,需要重新提交测试报告。

b)风电场在申请接入电网测试前需已具备并提供土地、质检和环保等部门出具的审批证明;并确保风电场功率预测系统已投入运行。

c)风电场在申请接入电网测试前需向电网调度部门提供风电机组及风电场的模型、参数、特性和控制系统特性等资料。

d)风电场接入电网测试由具备相应资质的机构进行,并在测试前30日将测试方案报所接入地区的电网调度部门备案。

e)风电场应当在全部机组并网调试运行后6个月内向电网调度部门提供有关风电场运行特性的测试报告。

2 测试内容

a)有功/无功控制能力测试。

b)电能质量测试,包含电压变动、闪变与谐波。

c)单个风电机组低电压穿越能力的测试,及基于仿真的风电场低电压穿越能力的验证。

d)调度运行部门要求的其它并网调试项目。

附表1:风机数学模型参数(提供电子版本)异步风电机组需提供的基本参数:

1转子电阻:

2转子电抗:

3定子电阻:

4 激磁电抗

5定子电抗:

T':

6时间常数

d

T:

7时间常数

j

T:

8传动系统时间常数

h

ω:

9电机额定转速

g

双馈或直驱风电机组需提供的基本参数:一、电机参数

P:

有功功率

G

ω:

电机转速

g

T:

时间常数

j

二、无功控制

恒电压控制还是恒功率因数控制?

三、风轮叶片参数

半径:

时间常数:

转速:

四、传动轴系模型

轴系模型:双质块还是单质块?

K:

D:

三、变流器参数列表

附表2:机组电压及频率特性参数表(提供电子版本)

附表3:风电机组无功补偿装置表(提供电子版本)

附表4:风电场接入电网技术要求表(提供电子版本)

附表5:国网要求填报的风电场基本情况调查表(提供电子版本)

风电场电气系统课程设计报告

风能与动力工程专业 风电场电气系统课程设计报告 题目名称:48MW(35/110KV升压站)风 电场电气一次系统初步设计指导教师:贾振国 学生姓名: 班级: 设计日期:2014年07月 能源动力工程学院

课程设计成绩考核表

摘要 根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。本期按发电机单台容量2000kW计算,装设风力发电机组24台。每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。 本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。并且我们设计出了三张图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感谢小组成员们的辛勤付出和贾老师的耐心指导。 关键词:主接线电气设备配电装置架空线路防雷与接地

Abstract According to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station. Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact. This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here. Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding

风电接入电网技术规定(通用版)

风电接入电网技术规定(通用 版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

风电接入电网技术规定(通用版) 1.1基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。 1.2最大功率变化率 风电场应限制输出功率的变化率。最大功率变化率包括 1min功率变化率和10min功率变化率,具体限值可参照表1。 表1风电场最大功率变化率推荐值

风电场装机容量(MW) 10min最大变化量(MW) 1min最大变化量(MW) 150 100 30 在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。 1.3紧急控制 在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。

GBT 19963 风电场接入电力系统技术规定--报批稿

ICS 中华人民共和国国家标准 风电场接入电力系统技术规定 Technical rule for connecting wind farm to power system 中华人民共和国国家质量监督检验检疫总局 发 布

GB/T 19963—200 目次 前言...................................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 风电场送出线路 (2) 5 风电场有功功率 (2) 6 风电场功率预测 (3) 7 风电场无功容量 (3) 8 风电场电压控制 (3) 9 风电场低电压穿越 (4) 10 风电场运行适应性 (5) 11 风电场电能质量 (6) 12 风电场仿真模型和参数 (6) 13 风电场二次系统 (6) 14 风电场接入系统测试 (7) 参考文献 (9) I

GB/T 19963—200 II 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划 项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司、南方电网科学研究院有限责任公司、中国电力工程顾问集团公司。 本标准主要起草人:王伟胜、迟永宁、戴慧珠、赵海翔、石文辉、李琰、李庆、张博、范子超、陆志刚、胡玉峰、陈建斌、张琳、韩小琪。

风电接入电网技术规定

风电场接入电网技术规定 1、风电场有功功率 1.1 基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。 1.2 最大功率变化率 风电场应限制输出功率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。 表1 风电场最大功率变化率推荐值 在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。 1.3 紧急控制 在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。 a) 电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电设备

发生过载,确保电力系统稳定性。 b) 当电网频率高于50.5Hz时,依据电网调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。 c) 在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后,应尽快恢复风电场的并网运行。 2、风电场无功功率 2.1 无功电源 a) 风电场应具备协调控制机组和无功补偿装置的能力,能够自动快速调整无功总功率。风电场的无功电源包括风电机组和风电场的无功补偿装置。首先充分利用风电机组的无功容量及其调节能力,仅靠风电机组的无功容量不能满足系统电压调节需要的,在风电场集中加装无功补偿装置。 b) 风电场无功补偿装置能够实现动态的连续调节以控制并网点电压,其调节速度应能满足电网电压调节的要求。 2.2 无功容量 a) 风电场在任何运行方式下,应保证其无功功率有一定的调节容量,该容量为风电场额定运行时功率因数0.98(超前)~0.98(滞后)所确定的无功功率容量范围,风电场的无功功率能实现动态连续调节,保证风电场具有在系统事故情况下能够调节并网点电压恢复至正常水平的足够无功容量。 b) 百万千瓦级及以上风电基地,其单个风电场无功功率调节容量为风电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。 c) 通过风电汇集升压站接入公共电网的风电场,其配置的容性无功补偿容量能够补偿风电场满发时送出线路上的无功损耗;其配置的感性无功补偿容量能够补偿风电场空载时送出线路上的充电无功功率。 d) 风电场无功容量范围在满足上述要求下可结合每个风电场实际接入情况通过风电场接入电网专题研究来确定。 3、风电场电压范围

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

11-第11章-《风电场接入系统》

第11章 1、【风电场接入系统】是保证风电场正常运行,通过【电网】向终端用户输送电能的重要环节。 2、电力系统是一个包括【发电】、【输电】、【配电】、【变电】、【用电】等环节的非常复杂的动态系统。 3、与电力系统相关的概念还有【“电力网”】和【“动力系统”】。 4、电能生产必须与【消费】保持平衡。 5、电能的【集中开发】与【分散使用】,以及电能的连续供应与负荷的随机变化,对电力系统的结构和运行带来了极大的约束。 6、电力系统的主体结构由【电源】、【电力网络】和【负荷中心】组成。 7、电力网络由【电源的升压变电站】、【输电线路】、【负荷中心变电所】、【配电线路】等构成。 8、电力系统中千千万万个网络节点交织密布,【有功潮流】、【无功潮流】、【高次谐波】、【负序电流】等以光速在全系统内传播。 9、总装机容量----指系统中实际安装的发电机【额定容量】的总和。 10、总装机容量以【千瓦(kW)】、【兆瓦(MW)】、【吉瓦(GW)】为单位计。 11、年发电量----指系统中所有发电机组全年【实际发出电能】的总和。 12、年发电量以【千瓦时(kW·h)】、【兆瓦时(MW·h)】、【吉瓦时(GW·h)】为单位计。 13、最大(小)负荷----指规定时间内,电力系统【总有功功率负荷】的最大值(最小值。) 14、【输电电压的高低】是输电技术发展水平的主要标志。 15、世界各国常用的输电电压有【220kV】及以下的高压输电,【330-765kV】的超高压输电、【1000kV】及以上的特高压输电。 16、配电系统由【配电变电所】、【髙压配电线路】、【配电变压器】、【低压配电线路】以及相应的控制保护设备组成。 17、【3kV】电压等级系统只限于工业企业内部用。 18、【220kV】及以上电压等级系统多用于大电力系统主干线。 19、只有负荷中心【高压电动机】比重很大时,才考虑以6kV配电方案。 20、交流电的瞬时功率不是一个恒定值,功率在一个周期内的【平均值】叫有功功率,它是指在电路中【电阻部分】消耗的功率。 21、发电机【有功功率供应】与【负荷需求】不匹配时,发电机的【转子转速】会发生变化,脱离【同步转速】,因此系统的【频率】会发生变化。 22、为建立【交变磁场】和【感应磁通】而需要的电功率称为无功功率。 23、潮流计算是研究【电力系统稳态】运行情况的一种基本电气计算。 24、潮流计算的结果是电力系统【稳定计算】和【故障分析】的基础。 25、暂态过程分两种,【机电暂态】和【电磁暂态】。 26、机电暂态过程主要是由于【机械转矩】和【电磁转矩(或功率)】之间的不

参考-风电接入电网技术规定

管理制度参考范本 参考-风电接入电网技术规定 撰写人:__________________ 部门:__________________ 时间:__________________

1.1基本要求风电场具有功功率调节能力,并能根据电网调度部 门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风 电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发 送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超 过电网调度部门的给定值。1.2最大功率变化率风电场应限制输出功 率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。表1风电场最大功率变化率推荐值风电场装机容量(MW)10min最大变化量(MW)1min最大变化量(MW)3020630-150装机容量/1.5装机容量/515010030在风电场并网以 及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于 风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引 起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据 风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。1.3紧急控制在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的 有功功率,并保证风电场有功控制系统的快速性和可靠性。a)电网故 障或特殊运行方式下要求降低风电场有功功率,以防止输电设备发生 过载,确保电力系统稳定性。b)当电网频率高于50.5Hz时,依据电网 调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。 c)在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门 有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后, 应尽快恢复风电场的并网运行。、风电场无功功率2.1无功电源a)风

风电场接入电力系统技术规定

《风电场接入电力系统技术规定》全文 所属分类: 新闻资讯来源: 国家标准化管理委员会更新日期: 2012-09-20 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准实施后代替GB/Z 19963-2005。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司,南方电网技术研究中心,中国电力工程顾问集团公司。 本标准主要起草人:王伟胜,迟永宁,戴慧珠,赵海翔,石文辉,李琰,李庆,张博,范子超,陆志刚,胡玉峰,陈建斌,张琳,韩小琪。 风电场接入电力系统技术规定 1 范围 本标准规定了风电场接入电力系统的技术要求。 本标准适用于通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场。 对于通过其他电压等级与电力系统连接的风电场,可参照执行。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 20320-2006 风力发电机组电能质量测量和评估方法 DL 755-2001 电力系统安全稳定导则 DL/T 1040-2007 电网运行准则 SD 325-1989 电力系统电压和无功电力技术导则 3 术语和定义 下列术语和定义适应于本文件。 4、风电机组wind turbine generator system; WTGS 将风的动能转换为电能的系统。

国家电网风电场接入电网技术规定(试行)

国家电网风电场接入电网技 术规定(试行) 1 范围 本规定提出了风电场接入电网的技术要求。 本规定适用于国家电网公司经营区域内通过110(66)千伏及以上电压等级与电网连接的新建或扩建风电场。 对于通过其他电压等级与电网连接的风电场,也可参照本规定。 2 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定;凡是不注日期的引用文件,其最新版本适用范围于本规定。 GB 12326-2000 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 12325-2003 电能质量供电电压允许偏差 GB/T 15945-1995 电能质量电力系统频率允许偏差 DL 755-2001 电力系统安全稳定导则 SD 325-1989 电力系统电压和无功技术导则 国务院令第115号电网调度管理条例(1993) 3 电网接纳风电能力 (1)风电场宜以分散方式接入系统。在风电场接入系统设计之前,要根据地区风电发展规划,对该地区电网接纳风电能力进行专题研究,使风电开发与电网建设协调发展。

(2)在研究电网接纳风电的能力时,必须考虑下列影响因素: a)电网规模 b)电网中不同类型电源的比例及其调节特性 c)负荷水平及其变化特性 d)风电场的地域分布、可预测性与可控制性 (3)在进行风电场可行性研究和接入系统设计时,应充分考虑电网接纳风电能力专题研究的结论。为便于运行管理和控制,简化系统接线,风电场到系统第一落点送出线路可不必满足“N-1”要求。 4 风电场有功功率 (1)基本要求 在下列特定情况下,风电场应根据电力调度部门的指令来控制其输出的有功功率。 1)电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电线路发生过载,确保电力系统稳定性。 2)当电网频率过高时,如果常规调频电厂容量不足,可降低风电场有功功率。 (2)最大功率变化率 最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1,也可根据风电场所接入系统的电网状况、风力发电机组运行特性及其技术性能指标等,由电网运营企业和风电场开发运营企业共同确定。 表1 风电场最大功率变化率推荐值

风电场模型及其对电力系统的影响

第31卷增刊2 电 网 技 术V ol. 31 Supplement 2 2007年12月Power System Technology Dec. 2007 文章编号:1000-3673(2007)S2-0330-05中图分类号:TM938文献标识码:A学科代码:470·4017 风电场模型及其对电力系统的影响 娄素华1,李志恒1,高苏杰2,吴耀武1 (1.华中科技大学电气与电子工程学院,湖北省武汉市 430074; 2.国网新源控股有限公司,北京市东城区 100005) Wind Farms Models and Its Impacts on Wind Farms Integration into Power System LOU Su-hua1,LI Zhi-heng1,GAO Su-jie2,WU Yao-wu1 (1.School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,Hubei Province,China;2.State Grid Xin Yuan Company Limited,Dongcheng District,Beijing 100005,China) 摘要:介绍了风力发电系统建模的一般思路及常用的风电场模型,然后对风电并网几个重要课题的分析方法进行了研究,比较了适用于不同研究目的的风电场模型的优劣及相应的分析方法,指出了风电场建模方法存在的主要文体,总结了风电接入对系统影响的几个主要方面。 关键词:风力发电;风电场模型;潮流;电能质量;稳定性0引言 作为一种可再生能源,风电由于其分布较广的特点及其相对成熟的开发技术而在全世界得到了长足的发展。风电的优势在于其环境友好性,但它的缺点也是很明显的:风力的随机性和间歇性不能保证输出平稳的电力,这对电力系统的稳定性以及发电和运行计划的制定带来很多困难;风电场一般远离负荷中心,承受冲击的能力很弱,随着风电装机规模的扩大,风电的不可控性将给电力系统带来新的挑战。因此,合理地对风电场建模、分析风电的容量可信度[1-2]、研究风电与其它电源的配合问题对于保证含风电系统的安全经济运行十分重要。 本文对风电并网的不同研究领域所采用的风电模型及其分析方法作了系统地对比和分析,指出了上述模型和分析方法的优点和局限性;总结了风电接入对系统影响的几个主要方面,这将会有助于分析系统中其它电源与风电的配合问题。 1风电场模型 1.1 风力发电机组动态建模的基本理论 1.1.1 风的统计理论与风速建模 风是风力发电的源动力,与发电部分具有独立性。风的自然特性包括风向和风速,具有间歇性、随机性和难以预测性。风向与风速的建模是风力发电机组建模的重要组成部分。在风力发电系统的研究中,人们更多地关注风速的特性,而弱化风向的影响。在描述风速的分布函数中,最常见的是Weibull分布[3-4],其分布函数为 w ()1exp(/)k F V V C =??(1) 式中:C为尺度参数;k为形状参数;V为风速。 文献[3]以Weibull分布为基础,使用时间序列自动回归和移动平均技术模拟风速。文献[4]借助于马尔科夫链和Weibull分布对风速、风向进行随机性分析建模,并在模型中考虑了风速和风向的相关性。Weibull分布侧重于对风能资源的统计描述,它表示的是风速在10min或更长时间内的平均值。在与风速相关的动态建模中,经常使用4分量模型,该模型将风分为基本风、阵风、渐变风和随机风4个部分[5],PSCAD仿真软件使用的就是这种模型。目前,这种模型的局限性在于没有给出确定阵风分量参数的方法,仅适用于简单的模拟计算。现在的风力发电系统研究中,更多采用的是平均风速与湍流分量相叠加的风速模型。在这种模型中,风速均值在数分钟至数十分钟的时间尺度内保持不变,风速的变化由湍流分量给出,而湍流分量作为一个平稳的随机过程来处理。 1.1.2风力发电机组模型 一个典型的风力发电系统主要包括风力机、传动机构、发电机和相应的控制系统4个模块。风力机结构复杂,在模型中人们关注的主要问题是风速与机械出力的关系,一种常见的处理方法是由风力机铭牌数据得到风力驱动产生的动力转矩[6],或通

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

GBT_19963-2011风电场接入电力系统技术规定

ICS ICS

GB/T 19963—200 目次 前言...................................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 风电场送出线路 (2) 5 风电场有功功率 (2) 6 风电场功率预测 (3) 7 风电场无功容量 (3) 8 风电场电压控制 (3) 9 风电场低电压穿越 (4) 10 风电场运行适应性 (5) 11 风电场电能质量 (6) 12 风电场仿真模型和参数 (6) 13 风电场二次系统 (6) 14 风电场接入系统测试 (7) 参考文献 (9) I

GB/T 19963—200 II 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划 项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司、南方电网科学研究院有限责任公司、中国电力工程顾问集团公司。 本标准主要起草人:王伟胜、迟永宁、戴慧珠、赵海翔、石文辉、李琰、李庆、张博、范子超、陆志刚、胡玉峰、陈建斌、张琳、韩小琪。

风力发电对电力系统运行的影响

风力发电对电力系统运行的影响 摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方而的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这此技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。 关键词:风力发电,电能质量,稳定性,解决方案 0引言能源是推动社会进步和人类赖以生存的物质基础。目前,全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度。在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。对于可再生能源的开发和利用变得颇为急切。 在各种可再生能源利用中,风能具有很强的竟争力。风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。 我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力。江苏省如东县建设了我国第一个风电场特许权示范项目。该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。 大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。尽管欧美的风电大国对风力发电的建设和运行已经有一些实际经验和技术规定,但由于和我国电网结构的实际情祝差别很大,并不能完全适合我国的情况。本文主要介绍风力风电并网对电力系统的影响。 1风力发电对电力系统的影响 风力发电在电力中的比例逐年增加,而在风力资源丰富地区,电网往往较弱,风力发电对电网间的影响也是应该考虑的问题。风电场并入电网主要会面临以下一些技术问题:风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等。 1.1风力发电场的规模问题 目前,我国正在进行全国电网互联,电网规模日益增大。对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。 风力发电的原动力是自然风,因此风电场的选址主要受风资源分布的限制,在规划建设风电场时,首先要考虑风能储量和地理条件。然而风力资源较好的地区往往人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了局部电网的潮流分布,对局部电网的电压质量和稳定性有很大影响,限制了风电场接入系统的方式和规模。 另外风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。在现有的技术水平下风力发电还无法准确预报,因此风电基木上是不可调度的。从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。 1.2对电能质量的影响 风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等。影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。 异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过5~6倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。 1.3对稳定性的影响 风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范

风电对电力系统的影响

风力发电对电力系统运行的影响 杨彬彬,李扬,范见修,郑亚先 (东南大学电气工程系,江苏南京210096) 摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方面的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这些技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。 关键词:风力发电,电能质量,稳定性,解决方案 0引言 能源是推动社会进步和人类赖以生存的物质基础。目前全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度.在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。对于可再生能源的开发和利用变得颇为急切。 在各种可再生能源利用中,风能具有很强的竞争力。风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。 我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力[1,2]。江苏省如东县建设了我国第一个风电场特许权示范项目。该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。 大规模的风力发电必须要实现并网运行[3~6]。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。尽管欧美的风电大国对风力发电的建设和运行已经有一些实际经验和技术规定[7,8],但由于和我国电网结构的实际情况差别很大,并不能完全适合我国的情况。本文主要介绍风力风电并网对电力系统的影响。 1风力发电对电力系统的影响 风力发电在电力中的比例逐年增加,而在风力资源丰富地区,电网往往较弱,风力发电对电网间的影响也是应该考虑的问题。风电场并入电网主要会面临以下一些技术问题[3~6]:风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等。 1.1风力发电场的规模问题 目前,我国正在进行全国电网互联,电网规模日益增大。对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。 风力发电的原动力是自然风,因此风电场的选址主要受风资源分布的限制,在规划建设风电场时首先要考虑风能储量和地理条件。然而风力资源较好的地区往往人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了局部电网的潮流分布,对局部电网的电压质量和稳定性有很大影响,限制了风电场接入系统的方式和规模[9]。 另外风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点[10]。在现有的技术水平下风力发电还无法准确预报,因此风电基本上是不可调度的。从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。 1.2对电能质量的影响 风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量[11],,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。电压波动和闪变[12]是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等。影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机

相关主题
文本预览
相关文档 最新文档