当前位置:文档之家› 数学建模策略方法之遗传算法的最通俗解释内附图文解释

数学建模策略方法之遗传算法的最通俗解释内附图文解释

数学建模策略方法之遗传算法的最通俗解释内附图文解释
数学建模策略方法之遗传算法的最通俗解释内附图文解释

遗传算法的通俗解释之1

——来自网络,感谢一切为之付出的人们

为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。

例:求下述二元函数的最大值:

(1) 个体编码

遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。本题中,用无符号二进制整数来表示。

因x1, x2 为0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它

们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可

行解。

例如,基因型X=101110 所对应的表现型是:x=[ 5,6 ]。

个体的表现型x和基因型X之间可通过编码和解码程序相互转换。

(2) 初始群体的产生

遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。

本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。

如:011101,101011,011100,111001

(3) 适应度汁算

遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传

机会的大小。

本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接

利用目标函数值作为个体的适应度。

(4) 选择运算

选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。

本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。其具体操作过程是:

?先计算出群体中所有个体的适应度的总和∑fi( i=1.2,…,M );

?其次计算出每个个体的相对适应度的大小fi /∑fi,它即为每个个体被遗传到下一代群体中的概率,

?每个概率值组成一个区域,全部概率值之和为1;

?最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。

(5) 交叉运算

交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。

本例采用单点交叉的方法,其具体操作过程是:

? 先对群体进行随机配对;

? 其次随机设置交叉点位置;

? 最后再相互交换配对染色体之间的部分基因。

(6) 变异运算

变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进行改变,它也是产生新个体的一种操作方法。

本例中,我们采用基本位变异的方法来进行变异运算,其具体操作过程是:

? 首先确定出各个个体的基因变异位置,下表所示为随机产生的变异点位置,其中的数字表示变异点设置在该基因座处;

? 然后依照某一概率将变异点的原有基因值取反。

对群体P(t)进行一轮选择、交叉、变异运算之后可得到新一代的群体p(t+1)。

从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得到了明显的改进。事实上,这里已经找到了最佳个体“111111”。

[注意]

需要说明的是,表中有些栏的数据是随机产生的。这里为了更好地说明问题,

我们特意选择了一些较好的数值以便能够得到较好的结果,而在实际运算过程中有可能需要一定的循环次数才能达到这个最优结果。

2014美国数学建模A题解题思路大全

美国高速公路限速是多少?美国高速公路的限速一般在60至75英里之间,多数州规定不能超过限速100英里。也就是说,你在限速75英里的美国高速公路上跑到85英里,一般不会遭到警察追击。但再高上去,麻烦就来了,警车往往是在你毫无戒备的情况下出现的,那时候你根本不知道自己已经超速,更不知道自己已经成了某个警察的猎物。 1英里(mi.)=1760码=5280英尺=1.6093公里=3.2187市里=3.2187华里=1609.3米 中国最高车速不得超过每小时120公里<<中华人民共和国道路交通安全法实施条例>> 第七十八条高速公路应当标明车道的行驶速度,最高车速不得超过每小时120公里,最低车速不得低于每小时60公里。在高速公路上行驶的小型载客汽车最高车速不得超过每小时120公里,其他机动车不得超过每小时100公里,摩托车不得超过每小时80公里。同方向有2条车道的,左侧车道的最低车速为每小时100公里;同方向有3条以上车道的,最左侧车道的最低车速为每小时110公里,中间车道的最低车速为每小时90公里。道路限速标志标明的车速与上述车道行驶车速的规定不一致的,按照道路限速标志标明的车速行驶。 高速公路(简称为高速路或高速),一般是指双向2条车道以上、双向分隔行驶、完全控制出入口、 提出交通流模型前,应当将实际的涉及到车道数目、最高时速限制、交通路口、机械故障、驾驶员反 应能力等多种因素的实际问题理想化,以便于应用数学方法进行分析讨论。此处所做的假设包括: a.车辆沿一条无限长单向车道运动;

b.车辆在单向车道内只能朝一个方向运动; c.单向车道是全封闭的,即没有供车辆驶入或者驶出的岔路口; d.车辆相对于此序列中的其他车辆位置不发生改变,即没有抛锚或超车的情况。 基于上述的假设,对作匀速运动的恒定密度车流而言,交通流变量的函数关系为: q=P0 0 (4) 式中,P。为车辆运动时的恒定密度;。为车辆做匀速运动的速度。 实际的非恒定密度和非匀速运动的交通流仍然满足上述关系,其函数表达式为: g( ,t)=P( ,£)口( ,£ 车辆守恒方程 由基本的交通流变量中所做的假设可知车辆的总体数目不会因观测点、观测时间的变化而变化。 因此在单向车道的区间[a,b]内,车辆数目变化完全取决于在位置X=a处驶入的车辆及在位置x=b处 驶出的车辆数目之差。 交通流模型 将式(5)代人式(13)后,车辆守恒方程可以变形为: a£+’ (、ID,t,)=一0 (、14) 式(14)给出p和的关系。如果车流速度可知,则式(14)可以转化为关于密度P的偏微分方程,因 此可用于预测车流密度的变化情况。但是在实际应用中,车流的密度无法事先确定,因为对于各个具体 车辆而言,影响其速度的因素很多,包括驾驶者的意图和判断,交通状况的变化,驾驶者的反应速度等。如果要用数学模型的方法建构方程,则需对实际问题做进一步简化和假设。与车辆守恒方程中影响速 度的因素相关假设 问题A:保持向右行驶除非要超车的交通规则 在一些国家,汽车行驶在右边是规则,比如,美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地。多车道高速公路经常使用一个规则,就是要求司机在最右边的车道驾驶,除非它们要超车。超车就是他们开到左边的一个车道,超越,并恢复到原来的行驶车道。 (1)建立和分析一个数学模型来分析这一规则在车流量少和车流量大的不同时刻的表现。不妨检查权衡交通流量和其安全性。这些保持原车道或者被超车的速度限制(即限制最大速度和最小速度),或者其他的因素,可以不用考虑到问题中。 (2)这个规则,能有效地促进了更多的车流量吗?如果不能,提出并分析备选方案(之中最好不要用到题目中这类规则),能够促进更多的交通流量,安全性,或者你认为重要的其他因素。 (3)在一些国家,汽车行驶在左边是常态,讨论你的解决方案是否能够转用,

四年级简便运算

四年级下册简便计算归类总结简便计算 84x101 (300+6)x12 504x25 25x(4+8) 78x102 125x(35+8) 25x204 (13+24)x8 99x64 99X13+13 99x16 25+199X25 638x99 32X16+14X32 999x99 78X4+78X3+78X3 125X32X8 3600÷25÷4 25X32X12 5 8100÷4÷75 88X125 3000÷125÷8 72X125 1250÷25÷5 2 273-73-27

847-527-273 278+463+22+37 732+580+2 68 1034+780320+102 425+14+186 214-(86+1 4) 787-(87-29) 365-(65+118) 455-(155+23 0) 576-285+85 825-657+57 690-177+77 755-287+87 871-299 157-99 363-199 968-599 178X101-178 83X1 02-83X2 17X23-23X7 35X127-35X16-11X35 64÷(8X2)

1000÷(125X4) 375X(109-9) 456X(99+1) 容易出错类型(共五种类型) 600-60÷1520X4÷20 X4 736-35X20 25X4÷25X4 98-18X5+2 5 56X8÷56X8 280-80÷ 412X6÷12X6 175-75÷25 25X8÷25 80-20X2+6 0 36X9÷36X9 36-36÷6-6 25X8÷(25X 8) 100+45-100+45

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

数学建模算法动态规划

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来, 随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用, 而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。 (2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

简便方法计算方法总结

简便方法计算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。 【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。 1、加法交换律 定义:两个数交换位置和不变, 公式:A+B =B+A, 例如:6+18+4=6+4+18 2、加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。 公式:(A+B)+C=A+(B+C), 例如:(6+18)+2=6+(18+2) 3、引申——凑整 例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚才“多加的”要“减掉”。“多减的”要“加上”! (二)运用乘法的交换律、结合律进行简算。 1、乘法交换律 定义:两个因数交换位置,积不变. 公式:A×B=B×A 例如:125×12×8=125×8×12 2、乘法结合律 定义:先乘前两个因数,或者先乘后两个因数,积不变。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4) (三)运用减法的性质进行简算,同时注意逆进行。 1、减法 定义:一个数连续减去两个数,可以先把后两个数相加,再相减。 公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】 例如:20-8-2=20-(8+2) (四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。 1、除法 定义:一个数连续除去两个数,可以先把后两个数相乘,再相除。 公式:A÷B÷C=A÷(B×C), 例如:20÷8÷1.25=20÷(8×1.25)

数学建模在经济学中的应用

数学建模在经济学中的应用 摘要:高校的经济学教学中经常会融入一些数学模型的思想,实际上数学模型的建立与经济学的教学和研究有着很大的内在联系,两者之间有着必然的关系,文本笔者将会从数学与经济学的关系出发,具体的介绍数学经济模型及其重要性,并对构建数学经济模型以及一些实例进行具体的论述。 关键词:数学模型;经济学;高校教学;应用 现如今的高校教学当中可以说数学建模与经济学之间有着密切的关系,任何一项经济学的研究和计算都离不开数学模型的建立,采用数学模型来辅助经济学的发展可以更加直观的让人们从中看出经济的发展形势。例如在经济学的宏观控制和价格控制中,都有数学建模的融入,利用数学建模可以有助于经济学实验的宏观经济分析,在一些实验和价格控制当中,都经常会涉及到数学问题在微观经济中数理统计的实验设计,这时候就体现出了数学建模对于经济学的促进性作用。下面笔者将会针对数学建模对于经济学的重要作用进行具体的分析。 1.数学经济模型对于经济学研究的重要性: 一般情况下,单独的依靠数学模型是不够解决所有的经济学问题,很多经济领域中的问题是需要从微观角度进行细致的分析才能够总结出其中的规律。要想利用数学知识来

解决经济学中所出现的问题,就一定要建立适当的经济学模型。运用数学建模来解决经济学中的问题并不是没有道理的,很多时候从经济学的角度仅仅能够知道问题的方向和目的,至于其中的过程并不能有着详细的分析,而利用数学模型就可以彻底的解决这一问题。数学建模可以通过自身在数字、图像以及框图等形式来更加真实地反映出现有经济的实际状况。 2.构建经济数学模型的一般步骤: 要想利用数学模型来更好的解决现有的经济学问题,主要分为两个步骤,第一先要分清楚问题发生的背景并且熟悉问题,然后要通过假设的形式来完善现有的经济学问题,通过抽象以及形象化的方式来构建一些合理的数学模型。运用数学知识和技巧来描述问题中变量参数之间的关系。这样可以得出一些有关经济类的数据,进而将建模中得到的数据与实际情况进行对比和分析,最终得出结果。 3.应用实例: 商品提价问题的数学模型: 3.1问题: 现如今经济学在很多的商场中都有所运用,例如同样的商品要想获得最大的经济效益,既要考虑到规定的售价,又要考虑到销售的数量,如果定价过低,则销售数量较多,如果定价较高,利润是大了,但是却影响了销售数量。怎样

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模算法分类

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个 b数据呈现指数或曲线的形式 ②微分方程预测(备用) 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

小学简便计算方法总结

卓立教育-小学数学简便计算方法总结 一、拆分法:为了方便计算或能使计算变得简便,在进行计算时,会将某些数字拆分开来再进行重新组 合,这样的方法叫拆分法。 例题1:101+75=(100+1)+75=100+75+1=176 例题2:125×32=125×8×4=1000×4=4000 例题3:999×999+1999 =999×999+(1000+999)【将1999拆分】 =999×999+999+1000 去括号,并使用交换律交换位置 =999×999+999×1+1000 为使用乘法分配律,故将原式变形,给拆分出来的999乘以1 =999(999+1)+1000 使用乘法分配律,提取999 =999000+1000 =1000000 例题4:33333×66666+99999×77778 此题数字中最为特殊的是77778,我们发现这个数字加上22222正好等于100000,所以最好能从其他数字中拆分出来22222。经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222×3。 原式=33333×3×22222+99999×77778 =99999×22222+99999×77778 =99999(22222+77778) =9999900000 例题5:13000÷125=13×1000÷125=13×8=104 例题6:19881988÷20002000 = 1988×10001÷2000×10001 =1998÷2000,即 二、归零法:为了方便计算或能使计算变得简便,在进行计算时,要在计算式中加上一个数再减去同一 个数的方法叫归零法。(即等于加了个“0”,所以叫归零法) 例题1:++++++ =+++++++- 在上式中,我们加了一个又减去了一个,等于没加没减。这样一来,除最后一项之外,每一项与前一项相加就会等于前一项。则: =1- 三、凑整法:为了方便计算或能使计算变得简便,在进行计算时,要通过“凑”的方式让计算式中出现 整百、整千、整万等数字。 例题:99999+9999+999+99+9 =(99999+1)+(9999+1)+(999+1)+(99+1)+(9+1)- (加了5个1,所以减去5) =100000+10000+1000+100+10-5 =111110—5 =111105 四、代入法:为了方便计算或能使计算变得简便,在进行计算时,把一些相同项用字母代替的方法。例题:﹙++﹚×﹙++﹚-﹙+++﹚×﹙+﹚

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模算法大全排队论

第六章排队论模型 排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下: 1.2.1 输入过程 输入过程是指顾客到来时间的规律性,可能有下列不同情况: (i)顾客的组成可能是有限的,也可能是无限的。 (ii)顾客到达的方式可能是一个—个的,也可能是成批的。 (iii)顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。 (iv)输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等数字特征都与时间无关,否则是非平稳的。

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

四年级数学简便计算方法汇总

四年级数学简便计算:乘除法篇 一、乘法: 1.因数含有25和125的算式: 例如①:25×42×4 我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42. 同样含有因数125的算式要先用125×8=1000。 例如②:25×32 此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。 例如③:72×125 我们根据125×8=1000将72拆成8×9,原式变成8×125×9。 重点例题:125×32×25 =(125×8)×(4×25) 2.因数含有5或15、35、45等的算式: 例如:35×16 我们根据需要将16拆分成2×8,这样原式变为 35×2×8。因为这样就可以先得出整十的数,运算起来比较简便。 3.乘法分配率的应用: 例如:56×32+56×68 我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68) 如果是56×132—56×32 一样提出56,算是变成56×(132-32) 注意:56×99+56 应想99个56加上1个56应为100个56,所以原式变为56×(99+1) 或者56×101-56 =56×(101-1)另外注意综合运用,例如: 36×58+36×41+36 =36×(58+41+1) 47×65+47×36-47 =47×(65+36-1) 4.乘法分配率的另外一种应用: 例如:102×47 我们先将102拆分成100+2 算式变成(100+2)×47 然后注意将括号里的每一项都要与括号外的47相乘,算式变为: 100×47+2×47 例如:99×69 我们将99变成100-1 算式变成(100-1)×69 然后将括号里的数分别乘上69,注意中间为减号,算式变成: 100×69-1×69 二、除法: 1.连续除以两个数等于除以这两个数的乘积: 例如:32000÷125÷8 我们可以将算式变为32000÷(125×8) =32000÷1000 2.例如:630÷18 我们可以将18拆分成9×2 这时原式变为630÷(9×2) 注意要加括号,然后打开括号,原式变成 630÷9÷2=70÷2 三、乘除综合:

相关主题
文本预览
相关文档 最新文档