当前位置:文档之家› 材料超塑性成型

材料超塑性成型

材料超塑性成型
材料超塑性成型

目录

一.超塑性的定义 (2)

二.超塑性的发展 (2)

三.超塑性的分类 (3)

四.典型的超塑性材料 (4)

五.超塑性的应用 (5)

⑴超塑性在压力加工方面的应用 (6)

⑵相变超塑性在热处理方面的应用 (6)

⑶相变超塑性在焊接方面的应用 (7)

⑷相变诱发塑形的应用 (7)

一.超塑性的定义

是指材料在一定的内部条件(如晶粒形状尺寸、相变等)和外部条件(如温度、应变速率等)下,呈现出异常低的流变抗力、异常高的流变性能(如大的延伸率等)。

1920年Rsenhain发现Zn-4Cu-7Al合金在低速弯曲时,可以弯曲近180°

1934年英国Pearson发现Pb-Sn共晶合金在室温低速拉深时可以得到200%的延伸率

1945年前苏联Bochvar发现Zn-Al共析合金具有异常高的延伸率

1964年美国Backofen对Zn-Al合金进行了系统的研究,并提出了应变速率敏感性指数—m

二.超塑性的发展

近年来的发展:

①先进材料超塑性的研究,主要指金属基复合材料,金属

间化合物,陶瓷材料等超塑性的开发。一般加工性能较差,所以有必要对其进行深入研究。

②高速超塑性研究,主要是提高超塑变形的速率,目的在于提高超塑成形的生产率。

③研究非理想超塑性材料的超塑性变形规律,以实现降低对超塑性变形材料的苛刻要求,从而提高成形件质量,扩大超塑性使用范围。

三.超塑性的分类

早期由于超塑性现象仅限于Bi-Sn和Ai-Cu共晶合金、Zn-Al共析合金等少数低熔点的有色金属,也曾有人认为超塑性现象只是一种特殊现象。随着更多的金属及合金实现了超塑性,以及与金相组织及结构联系起来研究以后,发现超塑性金属有着本身的一些特殊规律,这些规律带有普遍的性质。而并不局限于少数金属中。因此按实现超塑性的条件(组织、温度、应力状态等)一般分为以下几种

①恒温超塑性。一般所说超塑性变形多数属于这类,其特点是材料具有微细的等轴晶粒组织。在一定的温度区间和一定变形速率下呈现超塑性。这里指的微细晶粒尺寸,大都在微米级,其范围在0.5~5μ之间。一般来说,晶粒越细越有利于塑性的发

展,但对有些材料来说(例如Ti合金)晶粒尺寸达几十微米时仍有很好的超塑性能。还应当指出,由于超塑性变形是在一定的温度区间进行的,因此即使初始组织具有微细晶粒尺寸,如果热稳定性差,在变形过程中晶粒迅速长大的话,仍不能获得良好的超塑性。

②相变超塑性。这类超塑性并不要求材料有超细晶粒,而是在一定的温度和负荷条件下经过多次的循环相变或同素异形转变获得较大的延伸率。

如碳素钢和低合金钢,加以一定的负荷,同时于A1,3温度上下施以反复的一定范围的加热和冷却,每一次循环发生(αγ)的两次转变,可以得到二次条约式的均匀延伸。

③其他超塑性。在消除应力退火过程中,在应力作用下可以得到超塑性。Al-5%Si及Al-4%Cu合金在溶解度曲线上下施以循环加热可以得到超塑性,根据Johnson试验,在具有异向性热膨胀的材料如U,Zr等,加热时可有超塑性,称为异向超塑性。有人把a-U在有负荷及照射下的变形也称为超塑性。球墨铸铁及灰铸铁经特殊处理也可以得到超塑性。

四.典型的超塑性材料

目前已知的超塑性金属及合金已有数百种,按基体区分,

有Zn基、Al基、Ti基、Mg基、Ni基、Pb基、Sn基、Fe基等合金。其中包括共析合金、共晶合金多元合金、高级合金等类型。部分典型的超塑性合金见下表。

五.超塑性的应用

由于金属在超塑状态具有异常高的塑性,极小的流动应力,

极大的活性及扩散能力,可以在很多领域中应用,包括压力加工、热处理、焊接、铸造、甚至切削加工等方面。

⑴超塑性在压力加工方面的应用

超塑性压力加工属于黏性和不完全黏性加工。对于形状复杂或变形量很大的零件,都可以一次直接成型。成型的方式有气压成形、吹塑成形、挤压成形、锻造成形、拉延成形、无模成形等多种方式。

优点:流动性好;

填充性好;

需要的设备功率吨位小;

材料利用率高;

成形件表面精度质量高。

相应的困难是需要一定的成形温度和持续时间,对设备、模具润滑、材料保护等都有一定的特殊要求。

⑵相变超塑性在热处理方面的应用

相变超塑性在热处理领域可以得到多方面的应用。例如,钢材的形变热处理、渗氮、渗碳、渗金属等方面都可以应用相变超塑性的原理来增强处理效果。相变超塑性还可以有效地细化晶粒,改善材料品质。

⑶相变超塑性在焊接方面的应用

将两块金属材料接触,利用相变超塑性原理,施加很小的负荷和加热、冷却循环即可使接触面完全粘合,得到牢固的焊接,我们称之为相变超塑性焊接。

优点:这种焊接由于加热温度低(在固相加热),没有一般融化焊接的热影响区,也没有高压焊接的大变形区,焊后不经过热处理或其他辅助加工即可应用。

相变超塑性焊接所用的材料,可以是钢材、铸铁、Al合金、Ti合金等。

⑷相变诱发塑形的应用

在热挤压方面的应用

不论是微晶超塑形还是相变超塑性,均已用于热挤压方面。相变超塑性热挤压就是在相变区域附近给予周期性的温度循环,在负荷较小的情况下进行压接,相变温度即是压接温度。

在切削和切断方面的应用

利用相变超塑性加热切削,在相变点附近切削可使切削力降低。

利用相变超塑性进行切断。例如对8mm厚的普通中碳热轧板材,在切断部位稍稍开一个小槽,然后通电加热,在超塑性相

变时用手便可折断。

金属塑性成形原理复习题

一、名词解释 1. 主应力:只有正应力没有切应力的平面为主平面,其面上的应力为主应力。 2. 主切应力:切应力最大的平面为主切平面,其上的切应力为主主切应力。 3. 对数应变 答:变形后的尺寸与变形前尺寸之比取对数 4. 滑移线 答:最大切应力的方向轨迹。 5. 八面体应力:与主平面成等倾面上的应力 6. 金属的塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 7. 等效应力:又称应力强度,表示一点应力状态中应力偏张量的综合大小。 8. 何谓冷变形、热变形和温变形:答度以下,通常是指室温的变形。热变形:在再结晶温度以上的变形。 温变形,高于室温的变形。 9. 何谓最小阻力定律:答,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。 10.金属的再结晶 答:冷变形金属加热到一定的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 11. π平面 答:是指通过坐标原点并垂于等倾线的平面。 12.塑性失稳 答:在塑性加工中,当材料所受的载荷达到某一临界后,即使载荷下降,塑性变形还会继续,这种想象称为塑性失稳。 13.理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。P139 14.应力偏张量:应力偏张量就是应力张量减去静水压力,即:σij ′ =σ-δij σm 二、填空题 1. 冷塑性变形的主要机理:滑移和孪生 2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性。 3. 由于塑性变形而使晶粒具有择优取向的组织称为:变形织构 。 4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化。 5. 超塑性的特点:大延伸率、低流动应力、无缩颈、易成形、无加工硬化 。 6. 细晶超塑性变形力学特征方程式中的m 为:应变速率敏感性指数。 7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 。 8. 塑性指标是常用的两个塑性指标是:伸长率和断面收缩率。 9. 影响金属塑性的因素主要有:化学成分、组织状态、变形温度、应变速率、应力状态(变形力学条)。 10. 晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好。 11. 应力状态对于塑性的影响可描述为:(静水压力越大)主应力状态下压应力个数越多,数值越大时,金属的塑性越好。 12. 通过试验方法绘制的塑性——温度曲线,称为:塑性图 。 13. 用对数应变表示的体积不变条件为: 0x y z εεε++=。 14. 平面变形时,没有变形方向(设为z 向)的正应力为: 21311=()=()=22 z x y m σσσσσσσ=++。 15. 纯切应力状态下,两个主应力数值上相等,符号相反 。

重庆理工大学材料成型原理试卷及答案

重庆理工大学考试试卷 材料成型原理(金属塑性成形部分) A 卷 共 7 页 一、填空题(每空1分,共 16 分) 1. 塑性成形中的三种摩擦状态分别是: 、 、 。 2. 物体的变形分为两部分:1) , 2) 。其中,引起 变化与球应力张量有关,引起 变化与偏应力张量有关。 3. 就大多数金属而言,其总的趋势是,随着温度的升高,塑性 。 4. 钢冷挤压前,需要对坯料表面进行 润滑处理。 5. 在 平面的正应力称主应力。该平面特点 ,主应力的方向与主剪应力方向的夹角为 或 。剪应力在 平面为极值,该剪应力称为: 。 6. 根据变形体的连续性,变形体的速度间断线两侧的法向速度分量必须 。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共13分) 一般而言,接触面越光滑,摩擦阻力会越小,可是当两个接触表面非常光滑时,摩擦阻力反而提高,这一现象可以用哪个摩擦机理解释 。 A、表面凹凸学说; B、粘着理论; C、分子吸附学说 计算塑性成形中的摩擦力时,常用以下三种摩擦条件,在热塑性变形时,常采用哪个 。 A、库伦摩擦条件; B、摩擦力不变条件; C、最大摩擦条件 下列哪个不是塑性变形时应力—应变关系的特点 。 A、应力与应变之间没有一般的单值关系; B、全量应变与应力的主轴重合 C 、应力与应变成非线性关系 4. 下面关于粗糙平砧间圆柱体镦粗变形说法正确的是 。 A、I 区为难变形区; B 、II 区为小变形区; C 、III 区为大变形区 5. 下列哪个不是动可容速度场必须满足的条件 。 A、体积不变条件; B、变形体连续性条件; C、速度边界条件; D 、力边界条件 6. 韧性金属材料屈服时, 准则较符合实际的。 A、密席斯; B、屈雷斯加; C密席斯与屈雷斯加; 7. 塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做 。 A、理想弹性材料; B、理想刚塑性材料; C、塑性材料; 8. 硫元素的存在使得碳钢易于产生 。 A、热脆性; B、冷脆性; C、兰脆性; 9. 应力状态中的 应力,能充分发挥材料的塑性。 A、拉应力; B、压应力; C、拉应力与压应力; 10. 根据下面的应力应变张量,判断出单元体的变形状态。 ??????????=80001000010ij σ ??????????--=4-0001-2027-ij σ ????? ?????=10000000020-ij σ ( ) ( ) ( ) A 、平面应力状态; B 、平面应变状态; C 、单向应力状态; D 、体应力状态 11. 已知一滑移线场如图所示,下列说法正确的是: 。 A 、C 点和B 点的ω角相等,均为45°; B 、如果已知B 、 C 、 D 、 E 四点中任意点的平均应力,可以求解其他三点的平均应力; C 、D 点和E 点ω角相等,均为-25°

大块非晶合金的超塑性成形技术及发展现状

本科生课程论文 (2013-2014学年第二学期) 大块非晶合金超塑性成形技术及研究现状 曾昭源 提交日期:2014、6、2 学生签名:曾昭源

大块非晶合金超塑性成形技术及研究现状 曾昭源 摘要:与晶态合金相比,大块非晶合金成形出来的零件在表面光洁度、强度、硬度、冲击断裂性能以及耐腐蚀性等方面具有十分明显的优势。但是大块非晶合金的高强度、高硬度的特点使得其在室温下机加工困难、可塑性差、延伸率几乎为零,这大大制约了非晶合金的广泛应用。超塑性成形方法是利用大块非晶合金在过冷液相区下呈现牛顿粘性流动状态或近似的牛顿粘性流动状态而表现出优良的塑性的特点,实现对大块非晶合金的塑性加工。本文从大块非晶合金的超塑成形原理、影响非晶合金超塑性的因素以及该技术在精细零部件中的应用等方面对大块非晶合金超塑性成形技术进行综述,介绍大块非晶合金在上述三方面的研究现状,指出目前研究主要考虑了温度和应变速率对大块非晶合金超塑性的影响,而对应力应变状态、加热速率等研究却很少涉及。同时说明了理论体系建立落后于实验研究是目前大块非晶合金超塑成形技术的主要问题。 关键词:大块非晶合金;过冷液相区;超塑性成形;温度;应变速率;精细零部件 1 大块非晶合金超塑性成形机理及其特点 大块非晶合金是指在结构上具有长程无序、短程有序和各向同性的特点,其原子在空间排列上不具有周期性和平移性,不存在晶态合金所特有的各种晶体缺陷的一类合金。[1]大块非晶合金在热力学上属于亚稳态材料,当温度升高时,会发生玻璃化转变,进而发生晶化反应。在玻璃转化温度与晶化开始温度之间存在一个50 ~150C 的温度区间,这个区间被称为过冷液相区。正是这一特殊区域的存在,使大块非晶合金可以在保持类似于液体结构的同时表现出具有一定粘度的与氧化物玻璃极为相似的性质,呈现牛顿粘性流动状态或近似的牛顿粘性流动状态,表现出优良的超塑性能。[2]因此,对于大块非晶合金,所谓的超塑性成形是指把合金的温度控制在过冷液相区的塑性成形。与传统的成形工艺相比,大块非晶合金超塑性成形机理成形出来的零件具有高强度、高精度、高表面光洁度的特点,适合应用于国防装备、航空航天器件、精密机械等领域精密零部件的制造。 2 影响大块非晶合金超塑性的因素 2.1 温度对大块非晶合金超塑变形的影响 以Zr41.25Ti13.75Cu12.5Ni10Be22.5大块非晶合金为例[3],由其图1所示为采用NETzsCH DSC204热分析仪测得的该非晶合金的示差扫描量热分析(DSC)曲线可看出该大块非晶合金的过冷温度域为635.6K——710.4K。如图2为实验测得的zr基非晶合金在不同温度下的应力一应变曲线。

金属塑性成型原理-知识点

名师整理精华知识点 名词解释 塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法 加工硬化:略 动态回复:在热塑性变形过程中发生的回复 动态再结晶:在热塑性变形过程中发生的结晶 超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态 塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。 屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。 塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。 晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。填空 1、塑性成形的特点(或大题?) 1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产 失稳——压缩失稳和拉伸失稳 按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形 超塑性的种类——细晶超塑性、相变超塑性 冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变 固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带) 金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。 摩擦分类——干摩擦、边界摩擦、流体摩擦 摩擦机理——表面凹凸学说、分子吸附学说、粘着理论 库伦摩擦条件T=up 常摩擦力条件 t=mK 塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属 常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余 影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物 常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂) 问答题 1、提高金属塑性的基本途径 1、提高材料成分和组织的均匀性 2、合理选择变形温度和应变速率 3、选择三向压缩性较强的变形方式 4、减小变形的不均匀性 2、塑性成形中的摩擦特点 1、伴随有变形金属的塑性流动 2、接触面上压强高 3、实际接触面积大 4、不断有新的摩擦面产生 5、常在高温下产生摩擦 3、塑性成形中对润滑剂的要求 1、应有良好的耐压性能 2、应有良好的耐热性能 3、应有冷却模具的作用 4、应无腐蚀作用 5、应无毒 6、应使用方便、清理方便 4、防止产生裂纹的原则措施 1、增加静水压力 2、选择和控制适合的变形温度和变形速度 3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。 4、提高原材料的质量 5、细化晶粒的主要途径 1、在原材料冶炼时加入一些合金元素及最终采用铝、钛等作为脱氧剂 2、采用适当的变形程度和变形温度 3、采用锻后正火或退火等相变重结晶的方法 6、真实应力-应变的简化形式及其近似数学表达式1、幂指数硬化曲线Y=B?n 2、有初始屈服应力的刚塑性硬化曲线Y=σs+B1?m 3、有初始屈服应力的刚塑性硬化直线Y=σs+B2?4、无加工硬化的水平直线Y=σs 7、为什么晶粒越细小,强度和塑性韧性都增加?晶粒细化时,晶内空位数目与位错数目都减少,位错与空位、位错间的交互作用几率减小,位错易于运动,即塑性好。位错数目少,塞积位错数目少,使应力集中降低。晶粒细化使晶界总面积增加,致使裂纹扩展的阻力增加,推迟了裂纹的萌生,增加了断裂应变。晶粒细小,裂纹穿过晶界进入相邻晶粒并改变方向的频率增加,消耗的能量增加,韧性增加。另外晶界总面积增加可以降低晶界上的杂质浓度,减轻沿晶脆性断裂倾向。 8、变形温度对金属塑性的影响 总趋势:随着温度的升高,塑性增加,但是这种增加并非简单的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的、和高温的脆性区。 9、动态回复、为什么说是热塑性变形的主要软化机制? 动态回复是指在热塑性变形过程中发生的回复,2,动态回复,主要是通过位错的攀移,交滑移等,来实现的,对于铝镁合金、铁素体钢等,由于它们层错能高,变形时扩展位错宽度窄,集束容易,位错的攀移和交滑移容易进行,位错容易在滑移面间转动,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平。因此这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于再结晶温度,也只会发生动态回复,而不发生动态再结晶。 10、什么是动态再结晶,其主要影响因素?(自己总结吧,课本太乱) 动态再结晶:在热塑性变形过程中发生的结晶。与金属的位错能高地有关,与晶界迁移的难易有关 ,金属越纯,发生动态再结晶的能力越强。

金属塑性成形原理试卷及答案

《金属塑性成形原理》试卷及答案 一、填空题 1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 3. 金属单晶体变形的两种主要方式有:滑移和孪生。 4. 等效应力表达式:。 5.一点的代数值最大的 __ 主应力 __ 的指向称为第一主方向,由第一主方向顺时针转所得滑移线即为线。 6. 平面变形问题中与变形平面垂直方向的应力σ z = 。 7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。 8.对数应变的特点是具有真实性、可靠性和可加性。 9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。 10.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。 11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。 12.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。 13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。 14.硫元素的存在使得碳钢易于产生热脆。 15.塑性变形时不产生硬化的材料叫做理想塑性材料。 16.应力状态中的压应力,能充分发挥材料的塑性。 17.平面应变时,其平均正应力m等于中间主应力2。 18.钢材中磷使钢的强度、硬度提高,塑性、韧性降低。 19.材料经过连续两次拉伸变形,第一次的真实应变为1=0.1,第二次的真实应变为2=0.25,则总的真实应变=。 20.塑性指标的常用测量方法拉伸试验法与压缩试验法。

21.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响。 A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做A。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,A准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。 A、能量;B、力;C、应变; 6.硫元素的存在使得碳钢易于产生A。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的B应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力mB中间主应力2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 10.多晶体经过塑性变形后各晶粒沿变形方向显着伸长的现象称为A。 A、纤维组织;B、变形织构;C、流线; 三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=。(×) 2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。(×) 3.静水压力的增加,对提高材料的塑性没有影响。(×) 4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。(×) 5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。(√) 6.塑性是材料所具有的一种本质属性。(√) 7.塑性就是柔软性。(×)

材料成型原理试卷一B试题及答案

. 重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

. A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 m中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。()

超塑性成形的发展状况

超塑性成形的发展状况 摘要:金属材料的超塑性是指金属在特定条件下,具有更大的塑性。本文主要介绍了超塑性成形的主要发展历程,超塑性成形的主要应用,非金属材料的超塑性研究和国内外的发展现状。 关键词:超塑性金属材料成形 一、绪论 近年来,高温合金和钦合金的使用不断增加,尤其是在宇航飞行器及其发动机生产中。这些合金的特点是:流变杭力高,可塑性低,具有不均匀变形所引起机械性能各向异性的敏感性,难于机械加工及成木高昂。如采用普通热变形锻造时,机械加工的金属损耗达80%左右,如采用超塑性成形方法,就能改变锻件肥头大耳的落后状况。 金属材料的超塑性是指金属在特定条件(晶粒细化.极低的变形速度及等温变形)下,具有更大的塑性。如低碳钢拉伸时延伸率只有30~40%,塑性好的有色金属也只有60~70%,但超塑性状态。一般认为塑性差的金属延伸率在100~200%范围内,塑性好的金属延伸率在500~2000%范围内。 要使超塑性出现,必须满足某些必要条件。首先必须使金属具有0.25-2.5μm的极细晶粒,即必须小于一般晶粒大小的十分之一。其次,当温度达金属熔点一半以上时,具有一般晶粒金属的晶粒便开始长大,而这时细晶粒金属的晶粒保持稳定。因此,超塑性除要求有极细的晶粒度外,还必须具有高的延伸率和低的屈服应力,并以低的变形速率在高于熔点一半的温度下进行加工。 二、超塑性成形的发展 早在1920年,德国W.Rosenhain等人将冷轧后的Zn-Al-Cu三元共晶合金的铝板慢速弯曲的时候,发现这种脆性材料被弯成180°而未出现裂纹,它和普通晶体材料大不相同。他们推断这种负荷速度有密切依赖关系的异常现象,可能是由于加工产生了非晶质。1934年,英国C.E.pearson初次对共晶合金的异常弯曲进行了详细研究。这种合金的挤压材料很脆,容易破裂,可是 C.E.pearson 将其缓慢拉伸,得到了伸长率为2000%的试样。很奇怪的是这种慢速大延伸的金

材料超塑性及应用

材料超塑性及应用 课程编号: 课程名称:材料超塑性及应用 英文名称:Superplasticty and its Application for Materials 学分:2 先修课程基础:《晶体结构与缺陷》,《工程力学》与《材料力学》二者之一。教材:自编 一、课程简介 本课程的目的在于使学生对于材料超塑性的力学、微观机理、应用等方面具有比较深入的理解,初步掌握超塑性的研究路线及方法。对超塑性力学行为与显微组织及其变化的关系的物理本质具有比较清晰的认识,对超塑性的发展及其应用领域具有比较明确的分析,对超塑性的试验研究手段具有一定的了解,对于超塑性的应用及超塑性成形工艺具有一定的初步知识。通过本课程的学习,使研究生对超塑性实验、理论、应用,及其与常规塑性变形的关系具有比较明确的认识,为其在今后研究和工作中的应用打下基础。 二、基本要求 基础知识:超塑性力学特征,材料超塑性宏观行为与微观结构的关系,几种典型超塑性材料及其成形应用。

实验及技能:超塑性力学性能实验应力、应变、应变速率、m植等的热力模拟试验,数据分析、实验报告;超塑性材料显微组织及其在超塑性变形 中的变化。 三、内容概要 第一章材料超塑性概述(2学时) 1.1、超塑性研究及应用的历史 1.2、超塑性的分类 1.3、对超塑性变形机理的认识和争论 1.4、几位对超塑性学术发展具有重要影响人物研究工作介绍 第二章超塑性力学特征(4学时) 2.1、超塑性本构关系 2.2、超塑性应力—应变关系、应力—应变速率关系 2.2、超塑性力学实验方法 第三章超塑性变形微观机理(6学时) 3.1、常规塑性变形、蠕变、绝热剪切等变形的微观机理 3.2、对超塑性变形微观机理的认识及争论 第四章几种材料超塑性(5学时)

《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1.衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2.所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3.金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4.请将以下应力张量分解为应力球张量和应力偏张量 =+ 5.对应变张量,请写出其八面体线变与八面体切应变的表达式。 =; =。 6.1864年法国工程师屈雷斯加(H.Tresca)根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为 。

7.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力 不同,而各点处的最大切应力为材料常数。 9.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特 点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和 三类。 13、金属的超塑性分为和两大类。 14、晶内变形的主要方式和单晶体一样分为和。其中变形是主要的,而变形是次要的,一般仅起调节作用。

【材料课件】金属塑性成形原理试题集

1. 冷塑性变形的主要机理:滑移和孪生 2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性. 3. 由于塑性变形而使晶粒具有择优取向的组织,称为:变形织构 4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化 5. 超塑性的特点:大延伸率 低流动应力 无缩颈 易成形 无加工硬化 6. 细晶超塑性变形力学特征方程式 中的m 为:应变速率敏感性指数 7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 8. 塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标 为:伸长率和断面收缩率 9. 影响金属塑性的因素主要有:化学成分和组织 变形温度 应变速率 应力状态(变形力学 条件) 10. 晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好 11. 应力状态对于塑性的影响可描述为(静水压力越大)主应力状态下压应力个数越多 数值 越大时,金属的塑性越好 12. 通过试验方法绘制的塑性 — 温度曲线,成为塑性图 13. 用对数应变表示的体积不变条件为: 14. 平面变形时,没有变形方向(设为z 向)的正应力为:12132()z m σσσσσ==+= 15. 纯切应力状态下,两个主应力数值上相等,符号相反 16. 屈雷斯加屈服准则和米塞斯屈服准则的统一表达式为:13s σσβσ-=,表达式中的系数 β的取值范围为:1 1.155β= 17. 塑性变形时,当主应力顺序123σσσ>>不变,且应变主轴方向不变时,则主应变的顺序 为:123εεε>> 18. 拉伸真实应力应变曲线上,过失稳点(b 点)所作的切线的斜率等于该点的:真实应力Y b 19. 摩擦机理有:表面凸凹学说、分子吸附学说、粘着理论 20. 根据塑性条件可确定库伦摩擦条件表达式中的μ的极限值为(0.5---0.577) 21. 速度间断线两侧的法向速度分量:相等 22. 不考虑速度间断时的虚功(率)方程的表达式为:

金属塑性成型原理

塑性变形:当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形。 塑性:外力作用下使金属材料发生塑性形变而不破坏其完整性的能力。 塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。 软取向:μ=0.5或接近0.5 硬取向:μ=0或或接近0 金属塑性成形的特点:1组织性能好,金属材料在塑性成形过程中,其内部发生显著的变化2材料利用率高金属塑性成形主要是靠金属在塑性状态下的体积转移来实现的,不产生切屑,因此只有少量的工艺废料,并且流线分布合理3尺寸精度高不少成型方法已达到少或无切削的要求。4生产效率高,适于大批量生产随着塑性加工工具和设备的改进及机械化,自动化程度的提高,生产率也相应得到提高。 金属塑性成形分为板料成形和块料成形。 块料成形是在塑性成形过程中靠体积转移和分配来实现的。1一次加工:轧制,挤压,拉拔2二次加工:自由锻,模锻。 板料成形一般称为冲压,是对厚度较小的板料,利用专门的模具,使金属板料通过一定模孔而产生塑性变形。这类塑性加工方法可分为分离工序和成形工序两类。 金属塑性成形原理是研究和探讨金属在各种塑性加工过程中可遵循的基础和规律的一门学科。目的在于科学地、系统地阐明这些基础和规律,为学习后续的工艺课程作理论准备,也为合理制订塑性成形工艺规范及选择设备、设计模具奠定理论基础。 金属塑性成形工艺应要求:1使金属具有良好的塑性2使变形抗力小3保证塑性成形件质量4能了解变形力。为达到以上要求需从塑性变形的力学基础、物理基础、塑性成形问题的工程解法、塑性成形件的质量分析等发面进行论述。 晶内变形的主要方式和单晶体一样为滑移和孪生。 滑移是指晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。 晶体的滑移过程实际上就是位错的移动和增殖过程。加工硬化的原因是位错增殖。 滑移系多的金属要比滑移系少的金属变形协调性好、塑性高,如面心立方金属比密排六方金属的塑性好。 临界切应力的大小取决于金属的类型、纯度、晶体结构的完整性、变形温度、应变速率和预先变形程度等因素。 孪生是晶体在切应力作用下,晶体的一部分沿着一定的晶面和一定的晶向发生均匀切变。 晶向变形的主要方式是晶粒之间相互滑动和转动。特别的,在冷态变形条件下,由于晶界强度较高,晶间变形的较小。 多晶体塑性变形的特点:1各晶粒变形的不同时性2各晶粒变形的相互协调性3晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 晶粒的大小与应力场的关系:晶粒越细,金属屈服强度越大,金属塑性越好。 冷塑性变形对金属组织和性能的影响:一、组织的变化1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变。二、性能的变化强度、硬度增加越多,而塑性指标降低越甚,也即加工硬化越严重。纤维组织:(冷变形)轧制变形时,原来等轴的晶粒延伸长变形方向伸长,若变形程度很大则晶粒呈现为一片如纤维状的条纹。 变形织构:由于塑性变形的结果而使晶粒具有择优取向的组织。 冷、热、温变形的区别是再结晶温度不同。 冷变形后,对金属加热和保温会发生顺次的三个过程:回复,再结晶,晶粒长大。热塑性变形时的软化过程按性质可分为以下几种:动态回复、动态 再结晶、静态回复、静态再结晶、亚动态再结晶等。 动态再结晶:在热塑性变形过程中发生的再结晶。 热塑性变形对金属组织和性能的影响:1改善晶粒组织2锻合内部 缺陷3破碎并改善碳化物和非金属夹杂物在钢中的分布4形成纤维 组织5改善偏析。 超塑性变形状态:处于特定的条件下,如一定的化学成分、特定的 显微组织及转变能力、特定的变形温度和应变速率等,则金属会表 现出异乎寻常的高塑性状态。 超塑性:金属和合金具有超长的均匀变形能力,其伸长率达到百分 之几百,甚至百分之几千。(分为细晶超塑性和相变超塑性) 塑性指标:为了衡量金属材料塑性的好坏,需要有一种数量上的指 标。用伸长率和断面收缩率表示。 影响塑性的因素:金属的化学成分和组织,变形温度,应变速率, 变形力学条件。 冷脆:磷是钢中的有害物质,在铁中有相当大的溶解度,使钢的强 度、硬度提高,而塑性、韧性降低,在冷变形时影响更为严重。 热脆:(与O、S有关)钢未加热到变形温度,硫化物及其共晶体熔 化,形成裂纹的现象。 氢脆:氢溶入钢中使钢的塑性、韧性下降。白点:氢原子聚集产生 局部高压,在钢中组织应力或温度应力共同作用下产生的微裂纹。 变形温度对金属塑性的影响:随着温度上升,塑性增加,但非简单 的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边 界状态的变化而出现脆性区,使金属的塑性降低。 热效应:塑性变形时金属所吸收的能量,绝大部分转化为热能。温 度效应:塑性变形中的产生的热量使变形体温度升高的现象。 加工硬化:随着变形程度的增加,金属的强度、硬度增加,而塑性 韧性降低的现象。 热塑性变形:在再结晶温度以上进行的塑性变形,又称热塑性加工 从工艺性能的角度看,提高应变速度会以下有利作用:1降低摩擦 系数,从而降低金属的流动阻力,改善金属的充填性及变形的不均 匀性2减少热成形时的热量损失,从而减少毛坯温度下降和温度分 布的不均匀性3出现所谓“惯性流动效应”从而改善金属的充填性 塑性图:为了具体掌握不同变形条件下,金属的塑性随温度变化的 情形,需要试验方法绘制其塑性--温度曲线,简称塑性图。 温度效应与下列因素有关:1变形温度2应变速率3变形程度。 温度升高使金属塑性增加的原因:1发生回复或再结晶2原子动能 增加3金属的组织、结构发生变化4扩散蠕变机理起作用5晶间滑 移作用增强。 1、怎样解释静水压力越大金属的塑形越高?①拉伸应力会促 进晶间变形、加速晶界的破坏;而压缩应力能阻止或减少晶 间变形,随着静水压力的增大,晶间变形越加困难,因而提 高了金属的塑形。②三向压缩应力有利于愈合塑形变形过程 中产生的各种损伤;而拉应力则相反,它促使损伤的发展。 ③当变形体内原先存在着少量对塑形不利的杂质、液态相或 组织缺陷时,三向压缩作用能抑制这些缺陷,全部或部分地 消除其危害;反之,在拉应力作用下,将在这些地方产生应 力集中,促使金属的破坏。4增大静水压力能抵消由于不均 匀变形引起的附加拉应力,从而减轻了附加拉应力所造成的 拉裂作用。 2、主应力图:受力物体内一点的应力状态,可用作用在应力单 元体上的主应力来描述,只用主应力的个数及符号来描述一 点应力状态的简图称为主应力图。 3、等效应力的特点:①等效应力是一个不变量。②等效应力在数 值上等于单向均匀拉伸(或压缩)时的拉伸(或压缩)应力?, ?=?;③等效应力并不代表着某一平面上的应力,因而不能在 某一特定的平面上表示出来;4等效应力可以理解为代表一点 应力状态中应力偏张量的综合作用。 主应变简图:用主应变的个数和符号来表示应变状态的简图称 为主应变状态图,简称主应变简图或主应变图。 4、特征应变:三个主应变中绝对值最大的主应变,反映了该工序 变形的特征,称为特征应变。 5、三种变形类型:压缩类变形、剪切类变形、伸长类变形。 6、全量变形:反应单元体在某一变形过程中的某个阶段结束时 的应变,称为全量变量。 7、应力状态:当旋转体承受的外力对称于旋转轴分布时,则旋 转体内质点所处的应力状态称为轴对称应力状态。 8、屈雷斯加屈服准则适用于脆性材料,米赛斯屈服准则适用于 韧性材料。 9、塑形成型时应力应变关系的特点:①应力与应变之间的关系 是非线性的,因此,全量应变主轴与应力主轴不一定重合。 ②塑性变形时可以认为体积不变,即应变球张量为零,泊松 比v=0.5③对于应变硬化材料,卸载后再重新加载时的屈服 应力就是卸载时的屈服应力,比初始屈服应力要高。④塑形 变形是不可逆的,与应变历史有关,即应力应变关系不再保 持单值关系。 10、金属塑形成型中摩擦的特点:①伴随有变形金属的塑形流动 ②接触面上压强高③实际接触面积大④不断有新的接触面 产生⑤常在高温下产生摩擦 11、摩擦对塑形成型的危害主要表现在:①改变变形体内应力状 态,增大变形抗力②引起不均匀变形,产生附加应力和残余 应力③降低模具寿命 12、折叠的特征:①折叠与其周围金属流线方向一致②折叠尾端 一般呈小圆角或枝杈形③折叠两侧有较重的脱碳、氧化现 象。 13、界限法包括:1上限法2下限法 14、主应力法:实质是将应力平衡微分方程和屈服方程联立求 解。 15、塑性区的应力边界条件:1.不受力的自由表面2.无摩擦的接 触表面3.摩擦切应力达到最大值K的接触表面。4.摩擦切应 力为某一中间值的接触表面。 16、常见的滑移线场有以下几种类型:1.直线滑移线场。2简单 滑移线场.3.直线滑移线场与简单滑移线场的组合。4.由两族 相互正交的光滑曲线所构成的滑移线场 17、最大散逸功原理又称第二塑形变分原理。最大散逸功原理可 表述为:对钢塑性体一定的应变增量场而言,在所有满足屈 服准则的应力场中,与该应变增量场符合应力应变关系的应 力场所做的塑性功增量为最大。 亨盖方程 σm-2kω= ξ(β)沿α线 σm+2kω= η(α)沿β线 当沿α族(或β族)中的同一条滑移线移动时,ξ(或η)为常 数,只有当一条滑移线移动到同族的另一条滑移线是ξ(或η) 值才有改变 静可容应力场σij*:用下限法计算极限载荷时,只假设塑变区内的 应力状态。 动可容速度场ui*(或位移场ui*):用上限法计算极限载荷时,只 假设塑变区的位移状态 下限法:应力场所求得的极限载荷点是小于(最多等于)真实载荷。 上限法:速度场所求得的极限载荷总是大于(最小等于)真实载荷。

材料成形原理试题

填空题: 1、铸件的宏观凝固组织主要是指 ,其通常包括 、 和 三个典型晶区。 2、金属塑性变形的基本规律有 和 。 3、铸件凝固组织中的微观偏析可分为 、 和 等,其均可通过 方法消除。 4、在塑性加工中润滑的目的是 , 模具寿命和产品质量, 变形抗力,提高金属的充满模腔的能力等。 5、材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 。 6、钢冷挤压前,需要对坯料表面进行 润滑处理。 7、铸造应力有 、 和? 三种。 8、铸件的宏观凝固组织主要是指 ,其通常包 括 、 和 三个典型晶区。 9、铸件凝固组织中的微观偏析可分为 、 和 等,其均可通 过 方法消除。 10、在塑性加工中润滑的目的是 , 模具寿命和产品质量, 变形 抗力,提高金属的充满模腔的能力等。 11、材料的加工过程可以用相关的材料流程、 流程和 流程来描述。材料流程中,用来产生材料的形状、尺寸和(或) 变化的过程称为基本过程。材料流程中的基本过 程又分为机械过程、 过程和化学过程过程。 12、通常所说弹塑性力学三大基础方程指的是 方程、 方程和 方 程 。其中表达变形与应变之间关系的是 方程。 13、液态金属成形过程中在 附近产生的裂纹称为热裂纹,而在 附近产生的裂纹称为冷裂纹。 14、润湿角是衡量界面张力的标志。界面张力达到平衡时,杨氏方程可写为 =θcos 。当 时,液体能润湿固体;=θcos 时,为绝对润湿; 当 时,液体绝对不能润湿固体。 15、在塑性加工中润滑的目的是 ,提高模具寿命和产品质量, 变形 抗力,提高金属的充满模腔的能力等。 16、材料中一点的两种应力状态相等的充要条件是两应力状态的 分别相等。 17、采用主应力法分析宽度为B 的细长薄板在平锤下压缩变形。已知平衡方程为: 02=+h dx d k x τσ,接触表面摩擦条件y k f στ=,利用近似屈服条件为k y x 2=-σσ,方程的通解为: ,其中的积分常数,可根据边界条件: 确定,C = 。 18.液态金属或合金中一般存在 起伏、 起伏和 起伏。 19、铸件的宏观凝固组织主要是指 ,其通常包 括 、 和 三个典型晶区。

材料成型工艺

问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别?

材料成型原理试卷一B试题及答案

重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力σm中间主应力σ2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。()

对超塑性成型的认识

对超塑性成型的认识 一. 超塑性的简介及发展历史 超塑性是指材料在一定的内部(组织)条件啊(如晶粒尺寸及形状、相变等)和外部(环境)条件下(如温度、应变速率等),呈现出异常低的流变抗力、异常高的流变性能(如大的延伸率)的现象。超塑性的特点有大延伸率,无缩颈(小缩颈),小应力,易成形。 超塑性合金是指那些具有超塑性的金属材料。超塑性是一种奇特的现象。具有超塑性的合金能像饴糖一样伸长10倍、20倍甚至上百倍,既不出现缩颈,也不会断裂。金属的超塑性现象,是英国物理学家森金斯在1982年发现的,他给这种现象做如下定义:凡金属在适当的温度下(大约相当于金属熔点温度的一半)变得像软糖一样柔软,而应变速度10毫米秒时产生本身长度三倍以上的延伸率,均属于超塑性。 最初发展的超塑性合金是一种简单的合金,如锡铅、铋锡等。一根铋锡棒可以拉伸到原长的19.5倍,然而这些材料的强度太低,不能制造机器零件,所以并没有引起人们的重视。 60年代以后,研究者发现许多有实用价值的锌、铝、铜合金中也具有超塑性,于是前苏联、美国和西欧一些国家对超塑性理论和加工发生了兴趣。特别在航空航天上,面对极难变形的钛合金和高温合金,普通的锻造和轧制等工艺很难成形,而利用超塑性加工却获得了

成功。到了70年代,各种材料的超塑性成型已发展成流行的新工艺。 现在超塑性合金已有一个长长的清单,最常用的铝、镍、铜、铁、合金均有10~15个牌号,它们的延伸率在200~2000%之间。如铝锌共晶合金为1000%,铝铜共晶合金为1150%,纯铝高达6000%,碳和不锈钢在150~800%之间,钛合金在450~1000%之间。 实现超塑性的主要条件是一定的变形温度和低的应变速率,这时合金本身还要具有极为细小的等轴晶粒(直径五微米以下),这种超塑性称为超细晶粒超塑性。还有一些钢,在一定的温度下组织中的相发生转变,在相变点附近加工也能完成超塑性,称为相变超塑性。 超塑加工具有很大的实用价值,只要很小的压力就能获得形状非常复杂的制作。试想一下,金属变成了饴糖状,从而具有了可吹塑和可挤压的柔软性能,因此过去只能用于玻璃和塑料的真空成型、吹塑成型等工艺被沿用过来,用以对付难变形的合金。而这时所需的压力很小,只相当于正常压力加工时的几分之一到几十分之一,从而节省了能源和设备。使用超塑性加工制造零件的另一优点是可以一次成型,省掉了机械加工、铆焊等工序,达到节约原材料和降低成本的目的。在模压超塑性合金薄板时,只需要具备一种阴模或阳模即可,节省一半模具费用。超塑性加工的缺点是加工时间较长,由普通热模锻的几秒增至几分钟。 超塑性的铝合金已经商品化,如英国的Supral 100 (Al—6Cu—0.4Zr)和加拿大的Alcan 08050(Al—5Ca—5Zn)。铝板可在300~600℃时利用超塑性成型为复杂形状,所用模具费用降

相关主题
文本预览
相关文档 最新文档