当前位置:文档之家› 碳氮共渗(氰化)

碳氮共渗(氰化)

工艺名称工艺概述目 的特 点应用范围

气体碳氮共渗

气体碳氮共渗是在具有渗碳、渗氮

能力的混合气体(氨气、甲烷)中,将

工件加热至一定温度,使工件表面同

时渗入碳、氮两种原子的一种操作,

依据共渗温度的不同,可分为: 高

温气体碳氮共渗—通常在800~900℃

温度范围内进行,基本以渗碳为主,

渗层氮量较低,低温气体碳氮共渗—

通常在500~600℃温度范围内进行,

基本以渗氮为主,渗层碳量较低

提高工件表面

的硬度、耐磨

性、抗蚀性和疲

劳强度,兼有渗

碳和渗氮的共同

作用

(1)与渗碳相比:温度低,工件变形小,而

且降低动力消耗,延长设备使用寿命(特别是

低温碳氮共渗),此外,工件获得的硬度、耐

磨性、抗蚀性和疲劳强度均比渗碳高

(2)对于高温碳氮共渗,由于氮的渗入,增

加了渗层的淬透性和回火稳定性,从面使普通

碳钢在某些情况下可取代合金钢

(3)生产周期短,且可利用一般气体渗碳炉

气体碳氮共渗是应用最广

泛的一种碳氮共渗方法 高温

气体碳氮共渗主要用于处理

一般碳钢和台金钢制作的结

构件,适用于机床零件的大

批量生产,可用以代替渗碳

低温气体碳氮共渗主要用于

高速钢和高铬钢制作的切削

刀具及其他工模具的表面化

学热处理

液体碳氮共渗

液体碳氮共渗主要依靠液体碳氮共

渗盐(如氰化钠、氰化钾)在高温下分

解,放出碳、氮两种原子渗入金属的

表面,使其表面饱和碳、氮原子的一

种操作,依据液体碳氮共渗盐浴温度

的不同,可分为低温(500~560℃)、

中温(800~870℃)或高温(900~

950℃)液体碳氮共渗三种方法

提高工件表面

的硬度、耐磨

性、抗蚀性和疲

劳强度,兼有渗

碳和渗氮的共同

作用

(1)与渗碳相比:温度低,工件变形小,而

且降低动力消耗,延长设备使用寿命(特别是

低温碳氮共渗),此外,工件获得的硬度、耐

磨性、抗蚀性和疲劳强度均比渗碳高

(2)对于高温碳氮共渗,由于氮的渗入,增

加了渗层的淬透性和回火稳定性,从而使普通

碳钢在某些情况下可取代合金钢

(3)盐介质有剧毒,故逐渐被淘汰

高温碳氮共渗是以渗碳为

主,常被渗碳所代替,目前

很少采用,低温碳氮共渗仅

适用于高速钢工具,目前又

多被液体氮碳共渗、离子渗

氮所代替,只有中沮碳氮共

渗尚在一些中、小工厂采

用,用于处理结构钢零件

固体碳氮共渗

固体碳氮共渗主要利用固体化学介

质(黄血盐),在高温下分解而放出活

性碳、氮原于渗人工件表面。一般只

用于低温(540~560℃)碳氮共渗

提高工件表面

的硬度、耐磨

性、抗蚀性和疲

劳强度,兼有渗

碳和渗氮的共同

作用

(1)与渗碳相比:温度低,工件变形小,而

且降低动力消耗,延长设备使用寿命(特别是

低温碳氮共渗),此外,工件获得的硬度、耐

磨性、抗蚀性和疲劳强度均比渗碳高

(2)生产串不高,质量也难于保证

(3)不需要特殊设备

一般很少采用,只有设备

条件较差的中、小型工厂,

用来处理高速钢及高铬工具

钢制作的刀具

Page 1 of 1

碳氮共渗

钢的碳氮共渗(第一讲) 碳氮共渗是碳氮原子同时渗入工件表面的一种化学热处理工艺。最早,碳氮共渗是在含氰根的盐浴中进行的,故此又称氰化。渗碳与渗氮相结合的的工艺,具有如下特点: 1.氮的渗入降低了钢的临界点。氮是扩大γ相区的合金元素, 降低了渗层的相变温度A1与A3,碳氮共渗可以在比较低的温度进行,温度不易过热,便于直接淬火,淬火变形小,热处理设备的寿命长。 2.氮的渗入增加了共渗层过冷奥氏体的稳定性,降低了临界淬 火速度。采用比渗碳淬火缓和的冷却方式就足以形成马氏体,减少了变形开裂的倾向,淬透性差的钢制成的零件也能得到足够的淬火硬度。 3.碳氮同时渗入,加大了它的扩散系数。840~860℃共渗时,碳在奥氏体中的扩散速度几乎等于或大于930℃渗碳时的扩散速度。 共渗层比渗碳具有较高的耐磨性、耐腐蚀性和疲劳强度;比渗氮零件具有较高的抗压强度和较低的表面脆性。 按使用介质不同,碳氮共渗分为固体、液体、气体三种。固体碳氮共渗与固体渗碳相似,经常采用30~40%黄血盐,10%碳酸铵和 50~60%木炭为渗剂。这种方法的生产效率低,劳动条件差,目前很 少使用。液体碳氮共渗以氰盐为原料,历史悠久,质量容易控制,但氰盐有剧毒,且价格昂贵,使用受到限制。气体碳氮共渗的发展最快。 按共渗温度,碳氮共渗一般分为低温(500~560℃)、中温(780~850℃)和高温~880~950℃)三种。前者以渗氮为主,现在已定义为氮碳共渗,后两者以渗碳为主。习惯上所说的碳氮共渗,主要指中温气体氮碳共渗。 碳氮共渗零件的机械性能同渗层表面的碳氮浓度、渗层深度与浓度梯度有关。 共渗层的碳氮浓度必须严格控制,含量过低,不能获得高的强度、硬度与理想的残余应力,影响耐磨性与疲劳强度。反之,则不仅表层出现大量不均匀的块状碳氮化合物,脆性增加;而且会使淬火后残余奥氏体量剧增,影响表面硬度和疲劳强度。 一般推荐最佳的碳、氮浓度分别为0.70~0.95%C和0.25~0.40%N。对于少数在高接触应力下工作的合金钢零件,当要求表面具有较多均匀分布的碳氮化合物颗粒时,表面含碳量可达1.20~1.50%,甚至2~3%,含氮量仍在0.50%以下。 共渗层的深度应该与工件服役条件和钢材成分相适应。心部的含碳量较高或工件的承载能力较低时,如纺织机钢令圈、40Cr钢制汽车

金属材料渗碳淬火工艺综述

金属材料渗碳淬火工艺综述 摘要:渗碳与淬火在金属材料热处理中占有很重要的地位,渗碳是目前机械制造工业中应用最广泛的一种化学热处理方法,能提高材料的耐磨性和疲劳强度;淬火是热处理工艺中最重要,也用途最广泛的工序,能显著提高金属材料的强度和硬度。 关键词:渗碳,淬火,耐磨性,强度,硬度 1、渗碳工艺 1.1、渗碳原理 将低碳钢件放入渗碳介质中,在850~950℃加热保温,使活性碳原子渗入钢件表面并获得高渗碳层的工艺方法叫做渗碳。齿轮、凸轮、轴类等许多重要机械零件还有模具经过渗碳及随后的淬火并低温回火后,可以获得很高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度,而心部仍保持低碳,具有良好的塑性和韧性,因此处理后的材料既能承受磨损和较高的表面接触应力及冲击负荷的作用。 渗碳属于化学热处理,过程由分解、吸附和扩散三个基本过程组成,发生的化学反应如下: 2CO→[C]+CO2 Fe+[C]→FeC CH4→[C]+2H2 1.2、渗碳分类 根据渗碳剂的不同,渗碳方法有固体渗碳、气体渗碳和离子渗碳。常用的是前两种,尤其是气体渗碳应用最为广泛。 固体渗碳是将低碳件放入装满固体渗碳剂的渗碳箱中,密封后送入炉中加热至渗碳温度保温,以便活性碳原子渗入工件表层。固体渗碳剂由一定颗粒度的木炭加碳酸盐混合而成。渗碳温度一般为900~930℃,渗碳保温时间视层深要求确定,一般需要十几个小时。固体渗碳加热时间长,生产效率低,劳动条件差,渗碳深度及质量不易控制。 气体渗碳是把零件放入含有气体渗碳介质的密封高温炉中进行碳的渗入过程的渗碳方法。这种渗碳方法通常是将煤油或丙酮等液态碳氢化合物直接滴入高温渗碳炉中,使其热裂分解为活性碳原子并渗入零件表面。气体渗碳温度一般为920~950℃。气体渗碳工艺过程通常可划分为升温排气、渗碳(包括强渗和扩散)、降温冷却三个阶段,如图1所示:

QPQ液体氮化盐浴

【默认分类】 QPQ液体氮化盐 (2010-3-11 15:06:42) LT(无污染硫氮碳共渗及氮碳共渗)与LTC系列复合处理工艺用 基盐、再生盐、氧化盐 执行JB/T9198-2008 标准 一、概述: LT(无污染硫氮碳共渗及氮碳共渗)新工艺及LTC复合化学热处理工艺,荣获1987年度国家科技进步三等奖和“六五”国家级重点科技攻关纪念证书,被列为国家“八五”重点推广项目。LTC复合热处理(包括LTC-1、LTC-2、LTC-3三项共六种新工艺)在部级鉴定会上被评为达到或接近国际先进水平,经联机检索,LTC-2及LTC-3未发现国内外先例。LTC系列新工艺的实质将在下文介绍。上述九种达到或接近国家先进水平的新工艺都已做到工艺、工艺材料、设备和控制方法四配套,皆列为国家重点推广项目。LT与LTC系列工艺配套,能处理因粘着磨损、非重载疲劳断裂、除酸以外的各种介质中腐蚀失效的各种零件、刀具和模具,技术覆盖面为100%牌号的需经热处理的钢铁牌号。 采用上述新工艺处理的工件表层具有耐磨、减摩、抗擦伤、抗咬死、抗疲劳、耐蚀和自润滑性能。 我公司生产的基盐J—1、J—1A、J—1U;J—2、J—2A、J—2U(A型盐为补加用盐,CNO-含量为42—45%;正常使用中补加A型盐可节省3—6%的再生盐;U型为新配工作盐浴用盐,CNO-含量为36—38%开始使用 不需空载陈化),再生盐Z—1、Z—2和氧化盐Y—1盐品分别达到代表国际先进水平的法国CR 4、CR 2 、 SL—1以及西德TF—1、AB1、REG—1的水平。购买我公司上列盐品的单位已有三十二个省市的四千余家企业、大专院校与研究所。上列盐品与国外产品有如下对应关系: J—1(A、U)=CR 4;J—2(A、U)=TF—1;Z—1、Z—2=CR 2 并具有REC—1相同的功能;Y—1=AB1=SL—1。 按议价外汇的优惠价计算,我公司生产的盐的价格分别为国外同类产品的40—70%(因原材料价格而异)。 二、硫氮碳共渗新工艺的主要特点 1、能使被处理工件获得减摩、抗擦伤、抗咬死、耐磨、抗疲劳和一定的耐蚀性(仅不锈钢件的耐蚀性略有下降)。可处理95%左右牌号的钢铁材质的工件,显著提高其使用寿命。该工艺应用面很广,经济效益巨大。 2、通过定量添加再生盐可稳定熔盐成份,从而保证了处理质量的稳定性(重现性)。 3、熔盐中氰根含量低于0.8%。通常低于0.5%。经环保部门测定,作业点的空气和工作清洗水(酌加少许NACIO)中有害成分含量均低于国家规定的排放标准,实现了无污染作业,因而获得国家环保局颁发成果证书。 4、处理温度低于580℃,工件的尺寸变化小。 5、设备简单,操作方便,易于推广。即便于采用简单设备,以周期作业方式投产;也便于建立微机控制的自动化生产线。 6、节能、处理成本低(基盐在不超温情况下可无限期使用)。 三、氮碳共渗(软氮化)新工艺的特点 除以基盐J—2(A、U)取代J—1(A、U),盐浴中不含硫且CN–允许≤3%(通过Y—1浴氧化或等温

碳氮共渗层的组织与性能(4)

碳氮共渗层的组织与性能(4) 1.共渗层的组织和性能共渗层的组织决定于碳氮浓度及其分布情况。退火状态的组织与渗碳相似。直接淬火后表面金相组织为含碳氮的马氏体和残余奥氏体,有时还有少量的碳氮化合物。心部组织决定于钢的成分与淬透性,具有低碳或中碳马氏体及贝氏体等组织。 碳氮共渗中化合物的相结构与共渗温度有关,800℃以上,基本上是含氮的渗碳体Fe3(C、N);800℃以下由含氮渗碳体Fe3(C、N)、含碳ε相Fe2~3(C、N)及γ/相组成。化合物的数量与分布决定于碳氮浓度及钢材成分。 共渗淬火钢的硬度取决于共渗层组织。马氏体与碳氮化合物的硬度高,残余奥氏体的硬度低。氮增加了固溶强化的效果,共渗层的最高硬度值比渗碳高。但是,共渗层的表面硬度却稍低于次层。这是由于碳氮元素的综合作用而使Ms点显著下降,残余奥氏体增多。 碳氮共渗还可以显著提高零件的弯曲疲劳强度,提高幅度高于渗碳。这是由于当残余奥氏体量相同时,含氮马氏体的比容大于不含氮的马氏体,共渗层的压应力大于渗碳层。还有人认为,由于细小的马氏体与奥氏体均匀混合,使得硬化层的微观变形均匀化,可以有效防止疲劳裂纹的形成与扩展。 2.共渗层的组织缺陷 (1)一般缺陷共渗淬火后的汽车齿轮等零件也要检查硬度、渗层深度和显微组织(碳氮化合物等级、马氏体与残余奥氏体等级、心部组织),并按相关标准评级。碳氮共渗的组织缺陷与渗碳类似,例如残余奥氏体量过多、形成大量碳氮化合物,以致出现壳状组织等。 过量的残余奥氏体会影响表面硬度、耐磨性与疲劳强度。为此,应严格控制表面碳氮浓度,也可在淬火后继之以冷处理,在淬火之前先经高温回火。 如果共渗层中碳氮化合物过量并集中与表层壳状,则脆性过大,几乎不能承受冲击,再喷丸及碰撞时就可能剥落。产生这种缺陷的主要原因在于共渗温度偏低,氨的供应量过大,过早地形成化合物,碳氮元素难以向内层扩散。这是必须防止的缺陷。不错,碳氮共渗控制碳势的高低,也要控制氨气的通入量,有机的结合才能达到合格的组织 碳氮共渗最难解决的组织缺陷还是“三黑”问题;即“黑网、黑洞、黑带”。这也是中温碳氮共渗工艺与渗碳相比最大缺点之一。 (2)“三黑缺陷”使中温碳氮共渗工艺应用受到了很大的限制。 3 本质: 3.1 黑色组织:类似于渗碳淬火的晶界内氧化和非马问题,形成机理也基本一样。但较渗碳工艺更容出现黑网,深度也较深。 3.2 黑洞:是光学显微镜下观察到的“黑洞”,本质上是空洞,空洞内可能光滑干净也可能有少量氧化

氮碳共渗与碳氮共渗的区别

氮碳共渗:又称软氮化或低温碳氮共渗,即在铁-氮共析转变温度以下,使工件表面在主要渗入氮的同时也渗入碳。碳渗入后形成的微细碳化物能促进氮的扩散,加快高氮化合物的形成。这些高氮化合物反过来又能提高碳的溶解度。碳氮原子相互促进便加快了渗入速度。此外,碳在氮化物中还能降低脆性。氮碳共渗后得到的化合物层韧性好,硬度高,耐磨,耐蚀,抗咬合。常用的氮碳共渗方法有液体法和气体法。处理温度530~570℃,保温时间1~3小时。早期的液体盐浴用氰盐,以后又出现多种盐浴配方。常用的有两种:中性盐通氨气和以尿素加碳酸盐为主的盐,但这些反应产物仍有毒。气体介质主要有:吸热式或放热式气体(见可控气氛)加氨气;尿素热分解气;滴注含碳、氮的有机溶剂,如甲酰胺、三乙醇胺等。氮碳共渗不仅能提高工件的疲劳寿命、耐磨性、抗腐蚀和抗咬合能力,而且使用设备简单,投资少,易操作,时间短和工件畸变小,有时还能给工件以美观的外表。 碳氮共渗:以渗碳为主同时渗入氮的化学热处理工艺。它在一定程度上克服了渗氮层硬度虽高但渗层较浅,而渗碳层虽硬化深度大,但表面硬度较低的缺点。应用较广泛的只有气体法和盐浴法。气体碳氮共渗介质是渗碳剂和渗氮剂的混合气,例如滴煤油(或乙醇、丙酮)、通氨;吸热或放热型气体中酌加高碳势富化气并通氨;三乙醇胺或溶入尿素的醇连续滴注。 [C]、[N]原子的产生机制除与渗碳、渗氮相同外,还有共渗剂之间的合成和分解: CO+NH3?HCN+H2O CH4+NH3?HCN+3H2 2HCN?2[C]+2[N]+H2 碳氮共渗并淬火、回火后的组织为含氮马氏体、碳氮化合物和残余奥氏体。深0.6~1.0mm 的碳氮共渗层的强度、耐磨性与深1.0~1.5mm的渗碳层相当。为减少变形,中等载荷齿轮等可用低于870℃的碳氮共渗代替930℃进行的渗碳。

很全面,渗碳+渗氮+碳氮共渗表面处理工艺

很全面,渗碳+渗氮+碳氮共渗表面处理工艺 渗碳与渗氮一般是指钢的表面化学热处理 渗碳必须用低碳钢或低碳合金钢。可分为固体、液体、气体渗碳三种。应用较广泛的气体渗碳,加热温度900-950摄氏度。渗碳深度主要取决于保温时间,一般按每小时0.2-0.25毫米估算。表面含碳量可达0.85%-1.05%。渗碳后必须热处理,常用淬火后低温回火。得到表面高硬度心部高韧性的耐磨抗冲击零件。 渗氮应用最广泛的气体渗氮,加热温度500-600摄氏度。氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6毫米,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650摄氏度。工件变形小,可防止水、蒸气、碱性溶液的腐蚀。但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。主要用来处理重要和复杂的精密零件。 涂层、镀膜、是物理的方法。“渗”是化学变化,本质不同。 钢的渗碳——就是将低碳钢在富碳的介质中加热到高温(一般为900-950C),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。

渗碳钢的化学成分特点 (1)渗碳钢的含碳量一般都在0.15%-0.25%范围内,对于重载的渗碳体,可以提高到0.25%-0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。但含碳量不能太低,,否则就不能保证一定的强度。 (2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。 常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类 (1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56-62HRC。但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。 (2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。 (3)中合金渗碳钢如20Cr2Ni4、18Cr2N4W、15Si3MoWV等,由于具有很高的淬透性和较高的强度及韧性,主要用以制造截面较大、承

碳氮共渗缺陷

碳氮共渗质量缺陷 1 渗层不均: 产生原因:炉温不均,工件表面局部有炭黑或结焦。排气不充分,工件表面不清洁,气体炉内循环不畅。 危害:表面硬度低,性能不均匀,工件淬回火易变形和开裂。 防止办法:补渗 2 渗层过浅: 产生原因:炉温偏低,共渗时间不足。渗剂供给量不足,炉气碳势低及排气不畅。 危害:硬度、强度、抗疲劳性下降。 防止办法:补渗 3网状或堆积状碳化物: 产生原因:炉气碳势过高,或预冷温度过低。 危害:表面应力大,脆性大,易开裂。 防止办法:减少渗剂供给量,延长扩散时间和提高预冷温度。 4渗层残余奥氏体过多: 产生原因:炉气碳势过高,预冷温度高。 危害:降低表面硬度易变形和开裂。 防止办法:减少渗剂供给量,延长扩散时间和降低预冷温度。重新加热淬火或深冷处理。 5 心部铁素体过多: 产生原因:预冷温度过低,或一次淬火加热温度远低于心部的临界点。

危害:心部硬度不够,强度降低,使心部不能支持受力大的表面。防止办法:提高预冷和淬火温度。 6 黑色组织:钢中的合金元素发生内氧化,而导致淬透性下降,且氧化物质点又可作为相变的核心,使过冷奥氏体不稳定而发生分解生成黑色组织屈氏体、贝氏体等。 危害:降低表面的硬度、耐磨性和疲劳强度。 防止办法:减少炉内氧化性气氛(O2、CO2、H2O) 改善炉子的密封性,排气充分,提高淬火冷却速度,采用对内氧化敏感度小的钢(如含M o、W、Ni的钢) 喷丸处理。 7 黑色孔洞:(只在碳氮共渗和氮碳共渗中出现) 产生原因:氮介质的供给量较高,共渗温度过低。 危害:降低表面硬度和耐磨性 防止办法:控制共渗层的氮含量,使其小于0.5%. 8 畸变: 产生原因:热应力。变形随表面碳氮浓度的增加和渗层深度的增加而变严重。 危害:增加校正工序,畸变严重时,工件报废。 防止办法:装料方法要合理。所用的渗碳吊具、料盘的形状、结构等应避免工件因加热和冷却不均而引起畸变;重新加热淬火的渗碳件应降低淬火加热温度;采用热油淬火;金属锻造流线要与渗碳工件外轮廓相似,严格控制正火后的带状组织和魏氏组织;采用压床淬火(大

钢的渗碳和碳氮共渗、淬火、回火工艺剖析

钢的渗碳和碳氮共渗、淬火、回火工艺 1、主题内容和适用范围 本工艺规定了渗碳钢的气体渗碳氮共渗淬火回火处理的工序 准备、工艺规范、操作规程、质量检验和安全环保等方面要求。 2、引用标准 JB3999—85 钢的渗碳和碳氮共渗淬火回火处理 GB85839—87 齿轮材料及热处理质量检验一般规定 ZBJ17022—88 齿轮碳氮共渗工艺及质量控制 ZBT04001—88 汽车渗碳齿轮金相检验 JB/ZQ4038—88 重载齿轮渗碳质量检验 GB9450—88 钢件渗碳淬火有效硬化层深度的测定和校核 GB15735—1995 金属热处理生产过程安全卫生要求 3、工艺准备 3.1 工件准备 3.1.1 对照图纸了解被处理工件的材料牌号(或化学成份),予处理情况和质量要求,磨削留量,必要时检查齿轮(轴齿轮)的加工精度。 3.1.2工件表面不得有氧化皮、碰伤和裂纹,用清洗剂洗净油污后烘干。 3.1.3 工件表面不需要渗碳或碳氮共渗的部位,又无留余量,没安排剥碳层的加工工序,就要用防渗涂料保护,防渗涂料的厚度应大于0.3mm,涂层应致密,防渗涂料应符合ZB451—014的规定。 3.2 工装准备

3.3 开炉准备选用的工装应具有足够的热处理强度和刚度。 3.3.1检查热处理设备的机械和电气部分是否正常,炉子是否漏气。检查炉子需润滑油的部位,使其不断润滑。 3.3.2检查测温仪表,热电隅是否正常,要定期进行校验。 3.3.3定期清理气体渗碳炉炉罐中的碳黑和灰烬。 3.4工件的表卡和试样 3.4.1 根据工件的形状和要求,选用适当的吊具和夹具。 3.4.2 工件间要有5~10mm的间隙。 3.4.3 应随炉放置与装炉工件材质和予处理相同和符合GB8539—87“齿轮材料及热处理质量检验的一般规定”规定的样式,并放置在有代表性的位置,以备炉前操作抽样检查。 4、渗碳和碳氮共渗淬火回火处理的工艺规范和操作规程 4.1渗碳、碳氮共渗处理 4.1.1 装炉 4.1.1.1工件装炉前应把炉温升到渗碳或共渗温度,连续生产时可干上一炉出炉后立即装炉。 4.1.1.2 工件应装在炉子的有效加热区内,加热区的炉温不得超过±15℃。 4.1.1.3 每炉装载量不大于设备的装载量。 4.1.2 气体渗碳工艺规范和操作规程 4.1.2.1 气体渗碳工艺规范参照图1,低碳合金渗碳钢的渗碳温度取上限。

QPQ盐浴氮化处理

QPQ盐浴氮化处理_提供芜湖地区42CrMo产品QPQ盐浴氮化处理加工业务 一、工艺简介 二、QPQ技术将热处理与防腐蚀处理一次完成,处理温度低,时间短,能同时提高零件表面硬度、 耐磨性和抗蚀性,减少摩擦系数,变形小,无公害。具有优化加工工序,缩短生产周期,降低生产成本的优点。 QPQ技术在工艺上它是热处理技术与防腐蚀技术的结合,在性能上它是高耐磨性和高抗蚀性的结合,在渗层上是由多种化合物组成的复合渗层。因此国外认为这是金属表面强化技术领域内的巨大进展,把它称之为一种新的冶金方法。 QPQ盐浴复合处理技术在上世纪70年代由德国公司发明,经过几十年的不断地发展改进,应用范围越来越广,因此在国外被认为是金属表面强化技术领域内的巨大进展,把它称之为一种新的冶金方法。目前,QPQ 盐浴复合处理技术在国内也得到大量推广应用,尤其在汽车、摩托车、轴类产品、电子零件、纺机、机床、电器开关、工模具上使用效果非常突出。 二、技术特点: 1、良好的耐磨性 QPQ工艺中,金属材料在570±10℃的工作温度下与盐浴液体发生反应,可以在金属表面形成一层品质优良的致密的化合物层。该化合物完全由ε氮化铁组成,能够高效地提高金属表面的硬度、致密性、从而使金属表面拥有良好的耐磨性能。处理后金属材料表面硬度值的高低主要取决于钢中的合金元素,合金元素含量越高,则其渗层硬度越高。按渗层硬度的高低,可以把常用材料分成以下几大类: (1)碳钢、低台金钢 代表钢号:20、45、T iO、20Cr、40Cr等。渗层表面硬度:500—700HV (2)合金钢

代表钢号:3CrW8V、Crl2MoV、38CrMoA l、1Crl3—4Cr13等。渗层表面硬度:850—1000HV (3)高速钢、奥氏体不锈钢 代表钢号:淬火的Wl8C r4V、W6Mo5C r4V2及1Crl8Ni9Ti等渗层表面硬度:1000—1250HV (4)铸铁 渗层表面硬度:>500HV 下图是40Cr材料的工件经过不同处理方式后所做的滑动磨损试验数据,以QPQ的磨损值0.22mg为基准,QPQ工艺的耐磨性是镀硬铬2.1倍,离子氮化的2.8倍,高频淬火的23.7倍以及常规淬火的29.4倍。 2、良好的耐腐蚀性 下图为45#钢经过QPQ盐浴复合工艺、镀装饰铬、镀硬铬和普通发黑处理后与1Cr18Ni9Ti不锈钢以及1Cr13材料的中性盐雾试验对比。可以看出45#钢经过QPQ处理耐腐蚀性是1Cr18Ni9Ti不锈钢的5倍,是镀硬铬的70倍,更是普通发黑的280倍。其他材料经过QPQ工艺处理后,中性盐雾测试能达到100-300小时。 3、良好的耐疲劳性 经过QPQ盐浴复合工艺处理后的金属表面引入和产生了很高的残余压应力,其结果导致了大大提高各种类型的抗疲劳强度,经过试验证明可提高抗疲劳强度100%左右,减缓点蚀、锈蚀等表面缺陷的产生。 4、极小的变形 QPQ盐浴复合处理技术由于工艺温度低,在钢的相变点以下,不会发生组织转变,因此,与产生巨大组织应力的淬火、高频淬火、渗碳淬火和碳氮共渗等硬化工艺相比,处理后工件的变形要小得多。同时由于在570—580℃氮化以后,工件要在350—400℃保温15—20min,这会大大减少工件冷却时产生的热应力,因此QPQ盐浴复合工艺处理后工件几乎不变形,是变形最小的硬化技术,可以有效的解决常规热处理方法难以解决的硬化变形难题。 5、低碳环保

金属热处理中渗氮工艺常识

金属热处理中渗氮工艺常识 金属热处理中的各种渗氮工艺使氮原子渗入钢铁工件表层内的化学热处理工艺; 传统的气体渗氮是把工件放入密封容器中﹐通以流动的氨气并加热﹐保温较长时间后﹐氨气热分解產生活性氮原子﹐不断吸附到工件表面﹐并扩散渗入工件表层内﹐从而改变表层的化学成分和组织﹐获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散﹐则称为氮碳共渗。钢铁渗氮的研究始於20世纪初﹐20年代以后获得工业应用。最初的气体渗氮﹐仅限於含铬﹑铝的钢﹐后来才扩大到其他钢种。从70年{BANNED}始﹐渗氮从理论到工艺都得到迅速发展并日趋完善﹐适用的材料和工件也日益扩大﹐成为重要的化学热处理工艺之一。 渗入钢中的氮一方面由表及裡与铁形成不同含氮量的氮化铁﹐一方面与钢中的合金元素结合形成各种合金氮化物﹐特别是氮化铝﹑氮化铬。这些氮化物具有很高的硬度﹑热稳定性和很高的弥散度﹐因而可使渗氮后的钢件得到高的表面硬度﹑耐磨性﹑疲劳强度﹑抗咬合性﹑抗大气和过热蒸汽腐蚀能力﹑抗回火软化能力﹐并降低缺口敏感性。与渗碳工艺相比﹐渗氮温度比较低﹐因而畸变小﹐但由於心部硬度较低﹐渗层也较浅﹐一般只能满足承受轻﹑中等载荷的耐磨﹑耐疲劳要求﹐或有一定耐热﹑耐腐蚀要求的机器零件﹐以及各种切削刀具﹑冷作和热作模具等。渗氮有多种方法﹐常用的是气体渗氮和离子渗氮。 气体渗氮: 一般以提高金属的耐磨性为主要目的﹐因此需要获得高的表面硬度。它适用於38CrMnAc等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低﹐工件畸变小﹐可用於精度要求高﹑又有耐磨要求的零件﹐如鏜床鏜杆和主轴﹑磨床主轴﹑气缸套筒等。但由於渗氮层较薄﹐不适於承受重载的耐磨零件。 气体参氮可採用一般渗氮法(即等温渗氮)或多段(二段﹑三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间﹐氨气分解率为15~30%﹐保温时间近80小时。这种工艺适用於渗层浅﹑畸变要求严﹑硬度要求高的零件﹐但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别採用不同温度﹑不同氨分解率﹑不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时﹐能获得较深的渗层﹐但这样渗氮温度较高﹐畸变较大。 还有以抗蚀为目的的气体渗氮﹐渗氮温度在550~700℃之间﹐保温0.5~3小时﹐氨分解率为35~70%﹐工件表层可获得化学稳定性高的化合物层﹐防止工件受湿空气﹑过热蒸汽﹑气体燃烧產物等的腐蚀。 正常

氮碳共渗表面改性技术

译者的话 本文原刊于英国“Heat treatment of Metals”杂志,题目为“氮碳共渗及其对汽车零部件设计的影响” (Nitrocarburising and its Influence on Design in the Automative Sector)但文章所叙述的内容实际上是德国迪高沙(Degussa)盐浴氮碳共渗加氧化的处理基本相同,作者对该技术使用的商业名称为“Nitrotec”,但实际上和我们所开发的“氮碳(氧)共渗表面改性技术”异曲同工,在产品的应用上效果完全相当,因此本文介绍该技术在汽车上的应用及其对汽车设计的影响,对国内推广和应用“氮碳(氧)共渗表面改性技术”很有参考价值,为此特将此文翻译出来,供有关人员参考。本文只供同行参考,翻译谬误之处在所难免,敬请鉴谅。 氮碳共渗及其对汽车设计的影响

C.DAWES Nitrotec服务有限公司 (部分选择内部参考) [ 摘要 ] 作者回顾了氮碳共渗的发展,这是一种黑色金属材料的化学热处理方法,由于有富氮的化合层形成,因而具有耐磨性和抗腐蚀性,而氮扩散层则提高材料的屈服强度和疲劳强度,特别对细薄件效果显著。该工艺赋予零件以极高的抗蚀性和漂亮的外观,使氮碳共渗向镀铬提出了挑战。80年代在汽车工业得到广泛和成功的应用,产品从轮轴轴承到保险杠,使用该工艺可以获得独特的综合性能并能降低成本和减轻重量,由于采用先进的设备和工艺材料可以极大地减少对环境的污染。 一、前言 在表面热处理家族中,氮碳共渗独树一帜,这不仅由于它能提供独特的性能结合,而且有着许多的名称和专利,在过去40年里一直引人注目。 该工艺起源于法国的盐浴铁素体处理并于1947年传人英国,当时的贸易名称为“Sulfinuz”,随后经多年探索发现亚硫酸纳能活化氰化物生成氰酸盐,从而导致引入强制通气法并命名为“Tufftride”和“活性氮化”。这些仅局限于氰化物,采用空气搅拌,将氰化物氧化成氰酸盐,以产生所需要的氮势,而不象“sulfinuz”法那样有表面沉积形成,还需增加一道后处理的清洁工序,另一种易使人混淆的原因是一种被人称之为“液体氮化”的盐浴处理的存在,这种方法是用以氰化物为基盐的盐所产生低含量的氰酸根,用来处理工具钢在表面形成硬的合金氮化物,这种类型的盐浴因其氮势太低,故对非合金钢不起作用。 在50年代后期引入密封淬火炉,由于具有生产效率高的优点,从而导致气

渗碳渗氮的作用及氮碳共渗和碳氮共渗的区别

渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分. 相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗; 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 气体渗氮一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同

氮化处理的工艺

氮化包括气体氮化、辉光离子氮化和软氮化,软氮化是一种通俗的叫法,严格的讲,软氮化是一种以渗氮为主的低温氮碳共渗,主要特点是渗速快(2-4h),但渗层薄(一般在0.4以下),渗层梯度陡,硬度并不低,如果是液体氮化,硬度甚至略高于气体氮化。 气体氮化可以做到深渗层,它的硬度梯度缓,比软氮化承受的载荷高,外观漂亮,缺点是周期长,表面有脆性相,一般要有一道精加工(加工余量很小,一般1丝到2丝)。 辉光离子氮化有气体氮化的优点,在0.4㎜渗层以下,渗速比气体氮化快的多,而且表面不会有脆性相,可以局部氮化,缺点是成本略高,对形状复杂或带长孔的工件效果不好。 变形方面应该是辉光离子氮化变形最小,实际中相差很小,很多时候几乎一样 氮化包括气体氮化、辉光离子氮化和软氮化,软氮化是一种通俗的叫法,严格的讲,软氮化是一种以渗氮为主的低温氮碳共渗,主要特点是渗速快(2-4h),但渗层薄(一般在0.4以下),渗层梯度陡,硬度并不低,如果是液体氮化,硬度甚至略高于气体氮化。 气体氮化可以做到深渗层,它的硬度梯度缓,比软氮化承受的载荷高,外观漂亮,缺点是周期长,表面有脆性相,一般要有一道精加工(加工余量很小,一般1丝到2丝)。 辉光离子氮化有气体氮化的优点,在0.4㎜渗层以下,渗速比气体氮化快的多,而且表面不会有脆性相,可以局部氮化,缺点是成本略高,对形状复杂或带长孔的工件效果不好。 变形方面应该是辉光离子氮化变形最小,实际中相差很小,很多时候几乎一样。 软氮化实质上是以渗氮为主的低温氮碳共渗,钢的氮原子渗入的同时,还有少量的碳原子渗入,其处理结果与一般气体氮化相比,渗层硬度较氮化低,脆性较小,故称为软氮化。 1、软氮化方法分为:气体软氮化、液体软氮化及固体软氮化三大类。目前国内生产中应用最广泛的是气体软氮化。气体软氮化是在含有活性氮、碳原子的气氛中进行低温氮、碳共渗,常用的共渗介质有尿素、甲酰胺、氨气和三乙醇胺,它们在软氮化温度下发生热分解反应,产生活性氮、碳原子。活性氮、碳原子被工件表面吸收,通过扩散渗入工件表层,从而获得以氮为主的氮碳共渗层。 气体软氮化温度常用560-570℃,因该温度下氮化层硬度值最高。氮化时间常为2-3小时,因为超过2.5小时,随时间延长,氮化层深度增加很慢。 2、软氮化层组织和软氮化特点:钢经软氮化后,表面最外层可获得几微米至几十微米的白亮层,它是由ε相、γ`相和含氮的渗碳体Fe3(C,N)所组成,次层为的扩散层,它主要是由γ`相和ε相组成。 软氮化具有以下特点: (1)、处理温度低,时间短,工件变形小。 (2)、不受钢种限制,碳钢、低合金钢、工模具钢、不锈钢、铸铁及铁基粉未冶金材料均可进行软氮化处理。工件经软氮化后的表面硬度与氮化工艺及材料有关。 3、能显著地提高工件的疲劳强度、耐磨性和耐腐蚀性。在干摩擦条件下还具有抗擦伤和抗咬合等性能。 4、由于软氮化层不存在脆性ξ相,故氮化层硬而具有一定的韧性,不容易剥落。 因此,目前生产中软氮化巳广泛应用于模具、量具、刀具(如:高速钢刀具)等、曲轴、齿轮、气缸套、机械结构件等耐磨工件的处理。 与渗氮区别主要是: 1.在一定温度下向试件表面渗入氮、碳,以渗氮为主,但非单纯渗氮。 2.处理时间比氮化短。 3.其表面白层相比渗氮白层而言脆性要小。 4.软氮化应用的材料比较广泛。 5软氮化比普通氮化周期短,温度略低,因此变形更小,但硬度和氮化层厚度略差,且气体

常见材料盐浴碳氮共渗的硬度

常见材料盐浴碳氮共渗的硬度,渗层对照表 常见材料盐浴碳氮共渗的硬度,渗层对照表 材料牌号工艺表面硬度 (HV0.1) 相当于 (HRC) 化合物层厚 (μm) 总渗层厚 (mm) 08F 08Al A3(Q235) 10# 15# 570℃×90' 500-600 50-56 25-30μm>0.5mm 35# 40# 45# 40Cr 45Cr 570℃×90' 600-700 56-61 15-20μm0.3-0.5mm 35CrMo 42CrMo 50Mn 65Mn 570℃×90' 700-800 61-56 12-15μm0.3-0.4mm 38CrMoAL 570℃×90' 900-1000 67以上10-12μm0.15-0.2mm 1Cr13 2Cr13 3Cr13 1Cr17 1Cr18Ni9Ti W18Cr4V 6-5-4-2 570℃×90' 1000-1200 70以上8-12μm0.15-0.2mm H13 3Cr Cr12MoV 3Cr2W8V 570℃×90' 1000以上70以上8-12μm0.2-0.3mm QT50 QT70 QT120 灰口铸铁570℃×90' 600-700 56-61 12-15μm0.15-0.2mm 粉末冶金570℃×90' 500-600 50-56 15-20μm0.3-0.5mm 4Cr9si2 21-4N 4Cr10Si2Mo 570℃×20' 950以上67以上5-10μm0.02-0.05mm 各种氮化工艺的比较 盐浴硫碳氮共渗盐浴碳氮共渗气体软氮化气体硬氮化离子氮化耐磨性***** *** *** ***** *** 耐腐性***** **** ** ** ** 疲劳强度***** **** *** *** *** 处理时间很短短长很长长工件变形很小很小很大大一般环保性能***** *** * * **** 处理范围很广很广一般很小广性能价格比高较高一般一般一般

渗氮及碳氮共渗常见问题与解决的方法

渗氮及碳氮共渗常见问题与解决的方法 氮化工件表面硬度或深度不够 (1)可能是所选材料不适合作氮化处理。 (2)可能是氮化处理前的组织状态较差。 (3)可能是氮化温度选择不当。 (4)炉中之温度或流气不均匀。 (5)氨量不恰当。 (6)渗氮的时间不够。 (7)氮化前工件表面有脏物。 氮化工件弯曲变形 (1)氮化前的弛力退火处理没有做好。 (2)工件几何曲线设计不良,例如不对称、厚薄变化太大等因素。 (3)氮化中被处理的工件放置方法不对。 (4)被处理工件表面性质不均匀,例如清洗不均或表面温度不均等因素。氮化工件发生龟裂现象 (1)氨的分解率不正常。 (2)渗氮处理前工件表面存在脱碳层。 (3)工件设计有明显的锐角存在。 (4)白亮层太厚时。 氮化工件的白层过厚 (1)渗氮处理的温度不当。 (2)氨的分解率低,可能发生此现象。 氮化处理时氨分解率不稳定 (1)分解率测定器管路漏气。 (2)渗氮处理时装入炉内的工件太少。 (3)炉中压力变化导致氨气流量改变。 (4)触媒作用不当 机械加工件前处理如何防止渗碳? (1)镀铜法,镀上厚度0.20mm左右。 (2)涂敷涂剂后乾燥。 (3)涂敷防渗碳涂敷剂后乾燥,如硼砂和有机溶剂為主。 (4)氧化铁和黏土混合物涂敷法。 (5)利用套筒或套螺丝。 渗碳(碳氮共渗)后工件硬度不足 (1)冷却速度不足,可利用喷水冷却或盐水冷却。 (2)渗碳不足,可使用强力渗碳剂。 (3)淬火温度不足。 (4)淬火时加热发生脱碳,可使用盐浴炉直接淬火 渗层剥离现象 (1)含碳量的浓度坡度太大,应进行一次退火。 (2)不存在过度层,应缓和渗速。 (3)过渗现象,可考虑研磨前次之渗层 (4)反覆渗碳(碳氮共渗)亦可能產生渗层剥离的现象

渗碳 渗氮、氮碳共渗标准

渗碳渗氮、氮碳共渗标准

通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。奥氏体不锈钢在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括著名的18Cr-8Ni钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni 系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,Te等元素,则具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显著提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。 铁素体不锈钢 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。这类钢存在塑性差、焊后塑性和耐蚀性明显降低等缺点,因而限制了它的应用。炉外精炼技术(AOD或VOD)的应用可使碳、氮等间隙元素大大降低,因此使这类钢获得广泛应用。 奥氏体--铁素体双相不锈钢 是奥氏体和铁素体组织各约占一半的不锈钢。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Si、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。

碳氮共渗

专题三钢的化学热处理—-碳氮共渗 工艺设计与操作 一、实验目的 1、初步掌握碳氮共渗工艺过程及主要工艺参数的制定 2、初步掌握碳氮共渗的操作方法及化学热处理质量检测与控制方法 二、实验原理 1. 碳氮共渗工艺参数的制定 ⑴碳氮共渗温度的选择 温度的升高、渗入速度显著加快。在常用的碳氮共渗温度范围内,随着温度的升高,氮的表面层浓度越来越低,而且急剧下降,而碳的含量却逐渐提高,特别是碳原子的渗入深度大大提高,但是高温下碳原子扩散加速所以碳的浓度达到一定值后又降低。 碳氮共渗温度较低时表面易形成脆性的高氮低碳化合物ε相,温度升高时可获得含氮渗碳体。另外,由于氮的作用及氮碳的共同作用,碳氮共渗后的残余奥氏体量比渗碳时多且与共渗温度有关,温度的提高残余奥氏体在渗层中的分布加深,而其数量随温度的升高先是降低而后又随温度的升高而增加。 因此,在选择碳氮共渗温度时应该遵循的原则是: ①尽可能提高渗速; ②尽可能使渗层中保存一定的氮量; ③尽可能使渗层中减少化合物层的出现; ④尽可能使渗层在淬火后残余奥氏体量调整到一定值; ⑤尽可能减少零件的变形。 综合各种因素,通常碳氮共渗温度在820~870℃之间。 ⑵碳氮共渗时间的选择 碳氮共渗工艺时间的长短主要决定于所要求的共渗层深度、共渗温度和钢

种,此外共渗剂的成分和流量以及装炉量等也都有一定的影响。共渗层深度与共渗时间的关系可以用下式表示: X=Kτ 式中:X为共渗层深度(mm),τ为共渗时间(h), K为共渗系数。其中共渗系数与共渗温度、共渗介质和钢种有关,可通过实验测得。表2列出了常用钢种的K值。 通常在较低的温度下碳氮共渗时,表面硬度随时间的延长而迅速增加;但当共渗时间继续延长时表面硬度不再增加。而在较高的温度下碳氮共渗时,表面硬度值所对应的时间是2~3小时,如时间继续延长,表面硬度反而有下降的趋势。 表2 常用钢种的K值 ⑶碳氮共渗炉内气氛的控制 气体碳氮共渗以渗碳为主;共渗剂通常由滴入液体渗碳剂和通入氨气,液体渗碳剂通常取丙酮或煤油和稀释剂甲醇。 通常共渗气氛中,氨气含量为25~35%,对于碳氧共渗炉气的控制一般采用在稳定炉气氮气的基础上控制炉气的碳势。当采用带有稀释气介质共渗时,炉内气体介质的流量每小时应为炉膛容积的6~10倍,即保证每小时换气6~10次(称换气次数)。这样在已知炉膛尺寸、共渗介质的产气量就能计算出共渗介质的需求量,制定出炉内气氛控制的工艺参数。表3是几种常用渗剂的产气量:稀释剂除了可以控制炉内气氛成分的稳定外,还可以配合废气排出孔开启的程度控制炉内的气氛压力。

相关主题
文本预览
相关文档 最新文档