当前位置:文档之家› 高考复习指数与指数函数知识梳理

高考复习指数与指数函数知识梳理

高考复习指数与指数函数知识梳理
高考复习指数与指数函数知识梳理

指数与指数函数

【考纲要求】

1.理解分数指数的概念,掌握有理指数幂的运算性质

2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;

3.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;

4.掌握指数函数图象:

5.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 【知识网络】

【考点梳理】

考点一、整数指数幂的概念及运算性质 (1)整数指数幂的概念

()

()),0(1

010*

Z*n a a a a a Z n a a a a n

n a

n n ∈≠=

≠=∈???=-43

421Λ个

(2)运算法则 ①n

m n

m

a a a +=?;

②()

mn n

m

a a =;

③()0≠>=-a n m a a

a n

m n m ,; ④()m

m m

b a ab =.

指数与指数函数

图象与性质

指数运算性质

指数函数的图像与

指数的概念

考点二、根式的概念和运算法则 (1)n 次方根的定义:

若x n =y(n ∈N *

,n>1,y ∈R),则x 称为y 的n 次方根. 要点诠释:

n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为

n

y ;零的奇次方根为零,记为00=n ;

n 为偶数时,正数y 的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为

0=.

(2)根式的意义与运算法则

y y n n =)(

??

?=)

(||)

(,为偶数为奇数n a n a a n

n 考点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N *

,且

m

n

为既约分数,分数指数幂可如下定义: 1

n

a =

m m n

a ==

-

1m n

m n

a

a

=

考点四、有理数指数幂的运算性质

()Q b a ∈>>βα,00,,

(1);a a a

α

β

αβ

+?=

(2)();a a αβαβ

= (3)();ab a b ααα

=

当a>0,p 为无理数时,a p

是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:

(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;

(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如

244

2)4()4(-≠-;

(3)幂指数不能随便约分.如2

14

2)4()4(-≠-. 考点五、指数函数 (1)定义:

函数y=a x

(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. (2)y=a x

0

a>1时图象

图象

性质 ①定义域R ,值域 (0,+∞)

②a 0

=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a

④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x

>1

x>0时,0

<1

⑤x<0时,0

<1

x>0时,a x

>1

⑥ 既不是奇函数,也不是偶函数

【典型例题】

类型一、指数运算、化简、求值 例1.已知c b

a

==53,且21

1=+b

a ,求c 的值。 【解析】

21

3log 31log 31log 3

111

log 52log 3log 52log 15215015

a a c c c c c c c c a a

b a b

c c c ==∴=∴==+=∴+=∴=∴=>∴=Q Q 由得同理可得

【总结升华】运算顺序(能否应用公式); 举一反三:

【变式】计算下列各式:

(1)1

200.2563

43

3721.5()82(23)()63

-

?-+-;

(2)63425.0031

)32(28)6

7()81(?+?+-?-; (3)

3

3

3

233

23

134)21(428a a

b b

ab a b a a ?-÷++-. 【解析】(1)原式1

1

3

1

231

334422()2223()242711033

=+?+?-=+?=;

(2)原式=6

2

16

3

141413

)

3

1

)(1()3()2(2)2(18

?+?+?--112322

2324

143=?++=+;

(3)原式3

13

13

13

12

313

13

12

313

12)

2(2)()8(a b a a

b b a a b a a ?-?

++-=

a b a b a a

=--=

++3

313

31313131)

2()()

8(.

类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.

(1)212x x

y =+;(2)y=4x -2x

+1;(3)||3()2

x y -=;

(4)y =为大于1的常数)

【解析】(1)函数的定义域为R (∵对一切x ∈R ,2x

≠-1).

∵ x

x x y 2

111211)21(+-=+-+=,又∵ 2x >0, 1+2x

>1, ∴ 12110<+<

x , ∴ 02

11

1<+-<-x

, ∴ 12

11

10<+-

, ∴值域为(0,1). (2)定义域为R ,4

3)212(12)2(22+-=+-=x

x x y ,

∵ 2x >0, ∴ 212=x

即 x=-1时,y 取最小值43,同时y 可以取一切大于4

3的实数,

∴ 值域为[+∞,4

3

).

(3)定义域为R ,∵|x|≥0, ∴ -|x|≤0, ∴ 1)2

3(0|

|≤=<-x y ,∴ 值域为(0,1].

(4)∵

01

1

112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵

11

1

011≠+-≥+-x x x x 且,∴ a a

y a y x x

x x

≠=≥=-+-+11

211

21且,

∴值域为[1,a)∪(a ,+∞).

【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中

11

2

111≠+-=+-x x x 不能遗漏. 举一反三:

【变式】求下列函数的定义域:

(1)y =

y =

0,1)y a a =>≠

【解析】(1)(]-3∞, 需满足3-x ≥0,即3x ≤ (3)[)0,+∞

为使得函数有意义,需满足2x

-1≥0,即2x

≥1,故x ≥0 (4)a>1时,(]-0∞,;0

例3.判断下列各数的大小关系:

(1)2

4

-231(),3,()331 (2)22.5,(2.5)0, 2.51()2

(3)1.080.3

与0.983.1

(4)0,1)a a >≠

【解析】 (1)2-24311()<()<333 (2) 2.50 2.5

1()<(2.5)<22

(3)1.080.3

>1>0.983.1

(4)a>1时,<

0

【总结升华】(1)注意利用单调性解题的规范书写;

(2)不是同底的尽量化为同底数幂进行比较(因为同底才能用单调性);

(3)不能化为同底的,借助一个中间量来比较大小(常用的中间量是0和1). 举一反三:

【变式1】(2015 西安模拟)已知3

a π=,3

b π=,

c e π

=,则,,a b c 的大小关系为( ) .Aa b c >> .B a c b >> .C b c a >> .C b a c >> 【答案】D

【解析】解:因为函数()y x π

=是R 上的增函数,且31e >> 所以31e ππ

>>即1b c >>

构造函数()33x f x x =-则()30f =, ()'233ln3x f x x =-Q ()'

32727ln30f

∴=-<

()'44881ln30f =-<

所以函数()f x 在()3,4上单调递减. ()()30f

f π∴<=330ππ∴-<即33ππ

又3

e

e π

ππ<>.

【变式2】求函数2

323x x y -+-=的值域及单调区间.

【解析】设u=-x 2+3x-2, y=3u

其中y=3u

为R 上的单调增函数,u=-x 2

+3x-2在3(,]2

x ∈-∞上单增,

u=-x 2

+3x-2在3[,)2

x ∈+∞上单减,

则2

32

3x

x y -+-=在3(,]2x ∈-∞上单增,在3[,)2

x ∈+∞上单减.

又u=-x 2

+3x-22311

()244

x =--+≥, 2323x x y -+-=的值域为1

4(0,3].

例4.化简:4233

-2a a a +

【解析】2

1

2

422121333

3

3

3

3

3

12

33-,1

-2---,01

a a a a a a a a a a a a a ?>???+===? ????<

类型四、判断函数的奇偶性

例5.判断下列函数的奇偶性:)()2

1

121(

)(x x f x

?+-= (()x ?为奇函数) 【解析】f(x)定义域关于原点对称(∵()x ?定义域关于原点对称, 且f(x)的定义域是()x ?定义域除掉0这个元素),

令21

121)(+-=x x g ,则211222*********)(+--=+-=+-=--x x x x x

x g )()2

1

121(21121121121)12(x g x

x x x -=+--=+---=+----= ∴ g(x)为奇函数, 又 ∵()x ?为奇函数,∴ f(x)为偶函数. 举一反三:

【变式】判断函数的奇偶性:()2

21x

x x

f x =+-. 【解析】定义域{x|x ∈R 且x ≠0},

又112121

()()()()222211221x x x

x x f x x x x --=-+=-+=---- 21111111

()(1)()()222

212121x x

x x x x x f x -+=-=+-=+=---, ∴ f(-x)=f(x),则f(x)偶函数. 类型五、指数函数的图象问题

例 6.(2015 贵阳二模)函数(0,1)x

y a a a =>≠与b

y x =的图象如图,则下列不等

式一定成立的是()

.0a Ab > .0B a b +> .1b C a > .log 2a D b >

【答案】D

【解析】由图像可知,a >1,b <0;所以log 20a b >> 故选D.

【总结升华】用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.

【巩固练习】

一、选择题:

1.若1,0a b ><,且22b

b

a a -+=,则

b b a a --的值等于( )

A.6

B.2±

C.2-

D.2

2.函数(

)

2

()1x

f x a =-在R 上是减函数,则a 的取值范围是( ) A.1>a B.2

D.12a <<

3.已知,0a b ab >≠,下列不等式(1)22a b >;

(2)22a b

>;(3)b a 11<;(4)11

33a b >;(5)1133a

b

????< ? ?????

中恒成立的有( )

A.1个

B.2个

C.3个

D.4个

4.函数21

21

x x y -=+是( )

A.奇函数

B.偶函数

C. 既是奇函数又是偶函数

D.非奇非偶函数

5.(2015 泉州模拟)函数()()()f x x a x b =--(其中a b >)的图像如图所示,则函数()x g x a b =+的大致图像是()

6.已知01,1a b <<<-,则函数x

y a b =+的图像必定不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.2()1()(0)21x F x f x x ?

?

=+

?≠ ?-??

是偶函数,且()f x 不恒等于零,则()f x ( ) A.是奇函数 B.可能是奇函数,也可能是偶函数 C.是偶函数 D.不是奇函数,也不是偶函数 8.(2015 河南二模)已知(),,x

f x e x R a b =∈<,记()()A f b f a =-,

()()()()1

2

B b a f a f b =

-+,则,A B 的大小关系是( ) .A A B > .B A B ≥ .C A B < .D A B ≤

二、填空题:

9.设函数[)

2

2,(,1)

(),,1,x x f x x x -?∈-∞?=?∈+∞??若()4f x >,则x 的取值范围是_________. 10.函数2281

1(31)3x x y x --+??=-≤≤ ?

??

的值域是_______________.

11.函数2

233x y -=的单调递减区间是_______________. 12.(2015 福建高考)若函数()2

()x a

f x a R -=∈满足()()11f x f x +=-,

且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 . 三、解答题:

13.已知[]3,2x ∈-,求11

()142x x

f x =

-+的最小值与最大值. 14.设a R ∈,22

()()21

x x a a f x x R ?+-=

∈+,试确定a 的值,使()f x 为奇函数. 15.已知函数225

13x x y ++??= ?

??

,求其单调区间及值域.

16.若函数4323x

x

y =-?+的值域为[]1,7,试确定x 的取值范围.

17.已知函数1

()(1)1

x x

a f x a a -=>+, (1)判断函数的奇偶性; (2)求该函数的值域;

(3)证明()f x 是R 上的增函数.

【参考答案与解析】

5.A 【解析】由()f x 的图像可知01a <<,1b <-,则函数()g x 为减函数,且()010g b =+<,故答案为A . 8.C

【解析】考查选项,不妨令1,0b a ==,则1A e =-,1

2

e B +=显然A B <,排除,A B 选项. 若A B =则()()1

2

b

a

a b e e b a e e -=

-+ 整理得()()22b

a

b a e b a e -+=-+

观察可得a b =,与a b <矛盾,排除D .故选C . 12.【答案】1

【解析】()()11f x f x +=-Q ,()f x ∴关于1x =对称,

Q 函数()()2x a f x a R -=∈,x a =为对称轴,1a ∴=

()f x ∴在[1,)+∞上单调递增, ()f x Q 在[,)m +∞上单调递增,

m ∴的最小值为1.

二、填空题

9.(),2(2,)-∞-+∞U ,

()4,f x >Q 当1x <时,由24x ->可知,2x <-;

当1x ≥时,由2

4x >可知,2x >, ∴ 2x >或 2x <-.

10.991,33?????? ???????

,令22

2812(2)9U x x x =--+=-++,

∵ 31,99x U -≤≤∴-≤≤,

又∵13U

y ??

= ???为减函数,

∴9

9133y ??

≤≤ ???

. 11.()0,+∞,令2

3,23U

y U x ==-,

∵3U

y =为增函数,

∴2

233x y -=的单调递减区间为()0,+∞. 12. 0,3

221

(125)(5)(5)220f f f ?-===-=

三、解答题:

13.2

21113()142122124224x x x x x x x f x -----?

?=-+=-+=-+=-+ ??

?,

∵[]3,2x ∈-, ∴1

284

x -≤≤. 则当12

2x

-=

,即1x =时,()f x 有最小值4

3;

当2

8x

-=,即3x =-时,()f x 有最大值57.

14.要使()f x 为奇函数,∵ x R ∈,∴需()()0f x f x +-=,

∴1

222(),()212121x x x x f x a f x a a +-=--=-=-+++, 由12202121x x

x a a +-+-=++,得2(21)2021

x x a +-=+,1a ∴=. 15.令13U

y ??= ???

,2

25U x x =++,则y 是关于U 的减函数,

而U 是(),1-∞-上的减函数,()1,-+∞上的增函数,

∴225

13x x y ++??= ?

??

在(),1-∞-上是增函数,而在()1,-+∞上是减函数,

又∵2

2

25(1)44U x x x =++=++≥,

∴225

13x x y ++??= ?

??

的值域为410,3??

?? ? ? ?????

.

16.243232

323x

x

x

x y =-?+=-?+,依题意有

22(2)3237(2)3231x x x x ?-?+≤??-?+≥??即1242221

x

x x

?-≤≤??≥≤??或,∴ 224021,x x

≤≤<≤或 由函数2x

y =的单调性可得(,0][1,2]x ∈-∞U .

17.(1)∵定义域为x R ∈,且11()(),()11x x

x

x a a f x f x f x a a -----===-∴++是奇函数; (2)1222()1,11,02,111

x x

x x x

a f x a a a a +-==-+>∴<<+++∵ 即()f x 的值域为()1,1-; (3)设12,x x R ∈,且12x x <,

1212

1212

121122()()011(1)(1)

x x x x x x x x a a a a f x f x a a a a ----=-=<++++(∵分母大于零,且12x x a a <) ∴()f x 是R 上的增函数.

高中数学函数相关知识点整理.doc

高中数学函数相关知识点整理 函数在高中数学中的地位不可动摇,考生必须掌握函数相关知识点,下面是我给大家带来的,希望对你有帮助。 高中数学反比例函数知识点 形如 y=k/x(k为常数且k0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质:反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为|k|。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(xm)m 为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高中数学对数函数知识点 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,

因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 高中数学指数函数知识点 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 可以得到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

指数与指数函数知识点

指数函数 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???=)(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根,()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1() 102 5 0a a a ==>()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23 a =4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函 数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

指数及指数函数知识点

(一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(* ∈N n ()0 10a a =≠ ()10,n n a a n N a -* = ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂: ()102 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>.

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

4指数函数与对数函数基础知识点及练习题

指数函数与对数函数 1、指数及其运算性质:(1)、如果一个数的n 次方根等于a (* ,1N n n ∈>),那么这个数叫a 的n 次方根; n a 叫根式,当n 为奇数时,a a n n =;当n 为偶数时,? ??<-≥==)0()0(||a a a a a a n n (2)、分数指数幂:正分数指数幂:n m n m a a =;负分数指数幂:n m n m a a 1= - 0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当Q s r b a ∈>>,,0,0时:r r r rs s r s r s r b a ab a a a a a ===?+)(,)(,, r r a a 1 =; 2、对数及其运算性质:(1)、定义:如果)1,0(≠>=a a N a b ,数b 叫以a 为底N 的对数,记作b N a =log ,其中a 叫底数,N 叫真数,以10为底叫常用对数:记为lgN ,以e=2.7182828…为底叫自然对数:记为lnN (2)、性质:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数: N M N M a a a log log log -=, 幂的对数:M n M a n a log log =, 方根的对数:M n M a n a log 1 log = ,

1 <

指数函数与对数函数练习题 1、 函数y =)1lg(2-x 的定义域是__________________. 2、已知函数f (x )=log 3(8x +7),那么f ( 2 1 )等于_______________. 3、 与函数y = x 有相同图象的一个函数是( ). A .y =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 4、在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ). A.关于原点对称 B.关于x 轴对称 C.关于直线y =1对称. D.关于y 轴对称 5、下列函数中,在区间(0,+∞)上是增函数的是( ). A.y =-x 2 B.y = x 2-x +2 C.y =(21 )x D.y =x 1log 3.0 6、函数y =)(log 2x -是( ). A. 在区间(-∞,0)上的增函数 B. 在区间(-∞,0)上的减函数 C. 在区间(0,+∞)上的增函数 D. 在区间(0,+∞)上的减函数 7、已知函数f (x )=||2x ,那么函数f (x )( ). A. 是奇函数,且在(-∞,0)上是增函数 B. 是偶函数,且在(-∞,0)上是减函数 C. 是奇函数,且在(0,+∞)上是增函数 D. 是偶函数,且在(0,+∞)上是减函数 8、函数y =||log 3x (x ∈R 且x ≠0)( ) . A. 为奇函数且在(-∞,0)上是减函数 B. 为奇函数且在(-∞,0)上是增函数 C. 是偶函数且在(0,+∞)上是减函数 D. 是偶函数且在(0,+∞)上是增函数 9、如果函数y =x a log 的图象过点(9 1 ,2),则a =___________. 10、 实数2732–3log 22·log 21 8 +lg4+2lg5的值为_____________. 11、若1log 2 1>x ,则x 的取值范围是( ). A. 21< x B.2 10<x D.0

人教A版数学必修一《指数函数、对数函数、幂函数》综合基础知识讲解

指数函数、对数函数、幂函数综合 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). 【知识框图】 【要点梳理】 要点一、指数及指数幂的运算 1.根式的概念 a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈ 当n 为奇数时,正数的n 次方根为正数,负数的n n a n 为偶数时,正数的n 次方根有两个,这两个数互为相反数可以表示为n a 负数没有偶次方根,0的任何次方根都是0. n a n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质: (1)当n n n a a =;当n ,0, ,0; n n a a a a a a ≥?==? -∈>;()10,,,1m n m n a a m n N n a - = >∈> 要点诠释: 0的正分数指数幂等于0,负分数指数幂没有意义.

4.有理数指数幂的运算性质: ()0,0,,a b r s Q >>∈ (1)r s r s a a a += (2)()r s rs a a = (3)()r r r ab a b = 要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为 R . 2.指数函数函数性质: 要点三、对数与对数运算 1.对数的定义

高一数学知识点总结:指数函数、函数奇偶性

高一数学知识点总结:指数函数、函数奇偶性这篇高一数学知识点总结:指数函数、函数奇偶性是特地为大家整理的,希望对大家有所帮助! (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y 轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数 1.定义 一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称

知识讲解_指数函数及其性质_基础

指数函数及其性质 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>? ?≤??x x 时,a 恒等于,时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)

① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1,a a a a ?-+=?>≠? 且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断; (2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x . 举一反三: 【变式1】指出下列函数哪些是指数函数? (1)4x y =;(2)4 y x =;(3)4x y =-;(4)(4)x y =-; (5)1 (21)(1)2 x y a a a =-> ≠且;(6)4x y -=.

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①????????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 2(1)对数的性质(0,1a a >≠且):①1log 0a =,②l o g 1a a =,③l o g N a a N =,④l o g N a a N =。 (2)对数的重要公式:

(完整word版)指数及指数函数知识点及习题

指数及指数函数 (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的 n 次方根用符号n a 表示. 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数. 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0). 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n . 结论:当n 是奇数时,a a n n = 当n 是偶数时,?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. (一)指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域 为R . 注意:○ 1 指数函数的定义是一个形式定义 ○ 2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.

相关主题
文本预览
相关文档 最新文档