当前位置:文档之家› 很详细的快速幂算法

很详细的快速幂算法

很详细的快速幂算法
很详细的快速幂算法

快速幂取模算法

在网站上一直没有找到有关于快速幂算法的一个详细的描述和解释,这里,我给出快速幂算法的完整解释,用的是C 语言,不同语言的读者只好换个位啦,毕竟读C 的人较多~ 所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。[有读者反映在讲快速幂部分时有点含糊,所以在这里对本文进行了修改,作了更详细的补充,争取让更多的读者一目了然]

我们先从简单的例子入手:求c a b mod = 几。

算法1.首先直接地来设计这个算法:

int ans = 1;

for (int i = 1;i<=b;i++)

{

ans = ans * a;

}

ans = ans % c;

这个算法的时间复杂度体现在for 循环中,为O (b ).这个算法存在着明显的问题,如果a 和b 过大,很容易就会溢出。

那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式: c c a c a b b mod )mod (mod =.这个公式大家在离散数学或者数论当中应该学过,不过这里为了方便大家的阅读,还是给出证明:

引理1:

c

c b c a c de c

de c dk te tkc c

e kc d tc c ab e

kc b e c b d

tc a d c a c

c b c a c ab mo

d )]mod ()mod [(mod mod ))((mod ))((mod mod mod mod )]mod ()mod [(mod )(:2?==+++=++=+=?=+=?=?=证明:

公式

上面公式为下面公式的引理,即积的取余等于取余的积的取余。 c

a c c a c c c a c

c a c

c a c a b b b b b b mo

d mod ])mod [()

(mod ])mod )mod [((mod ])mod [(mod )mod (mod ===由上面公式的迭代证明:公式:

证明了以上的公式以后,我们可以先让a 关于c 取余,这样可以大大减少a 的大小, 于是不用思考的进行了改进:

算法2:

int ans = 1;

a = a % c; //加上这一句

for (int i = 1;i<=b;i++)

{

ans = ans * a;

}

ans = ans % c;

聪明的读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans 也可以进行取余,所以得到比较良好的改进版本。

算法3:

int ans = 1;

a = a % c; //加上这一句

for (int i = 1;i<=b;i++)

{

ans = (ans * a) % c;//这里再取了一次余

}

ans = ans % c;

这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c 过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。

快速幂算法依赖于以下明显的公式,我就不证明了。

是奇数是偶数

b c a a c a b c a c a b b b b ,mod ))((mod ,mod ))((mod 2/22/2?==

有了上述两个公式后,我们可以得出以下的结论:

1.如果b 是偶数,我们可以记k = a 2 mod c ,那么求(k)b/2 mod c 就可以了。

2.如果b 是奇数,我们也可以记k = a 2 mod c ,那么求

((k)b/2 mod c × a ) mod c =((k)b/2 mod c * a) mod c 就可以了。

那么我们可以得到以下算法:

算法4:

int ans = 1;

a = a % c;

if (b%2==1)

ans = (ans * a) mod c; //如果是奇数,要多求一步,可以提前算到ans 中

k = (a*a) % c; //我们取a 2而不是a

for (int i = 1;i<=b/2;i++)

{

ans = (ans * k) % c;

}

ans = ans % c;

我们可以看到,我们把时间复杂度变成了O(b/2).当然,这样子治标不治本。但我们可以看到,当我们令k = (a * a) mod c 时,状态已经发生了变化,我们所要求的最终结果即为(k)b/2 mod c 而不是原来的a b mod c ,所以我们发现这个过程是可以迭代下去的。当然,对于奇数的情形会多出一项a mod c ,所以为了完成迭代,当b 是奇数时,我们通过

ans = (ans * a) % c;来弥补多出来的这一项,此时剩余的部分就可以进行迭代了。

形如上式的迭代下去后,当b=0时,所有的因子都已经相乘,算法结束。于是便可以在O (log b )的时间内完成了。于是,有了最终的算法:快速幂算法。

算法5:快速幂算法

int ans = 1;

a = a % c;

while (b>0)

{

if (b % 2 == 1)

ans = (ans * a) % c;

b = b/2;

a = (a * a) % c;

}

将上述的代码结构化,也就是写成函数:

int PowerMod(int a, int b, int c)

{

int ans = 1;

a = a % c;

while (b>0)

{

if (b % 2 = = 1)

ans = (ans * a) % c;

b = b/2;

a = (a * a) % c;

}

return ans;

}

本算法的时间复杂度为O (logb ),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。

以下内容仅供参考:

扩展:有关于快速幂的算法的推导,还可以从另一个角度来想。

c a b mo

d =? 求解这个问题,我们也可以从进制转换来考虑:

将10进制的b 转化成2进制的表达式:)2(011)10(...a a a a b n n -=

那么,实际上,011112...22a a a a b n n n n +?+?+?=--.

0111011112222...22...a a a a a a a a b a a a a a

a n n n n n n n n ???==???+?+?+?----

所以

c c a c a c a c a a a a

c a a a a a a a a b n n n n n n n n mo

d )]mod ...()mod ()mod [(mod )...(mod 011011122222??=???=----?????

注意此处的k a 要么为0,要么为1,如果某一项0=k a ,那么这一项就是1,这个对应了上面算法过程中b 是偶数的情况,为1对应了b 是奇数的情况[不要搞反了,读者自己好好分

析,可以联系10进制转2进制的方法],我们从)mod (0c a a 依次乘到)mod (2c a n

n a ?。对于每一项的计算,计算后一项的结果时用前一项的结果的平方取余。对于要求的结果而言,为0=k a 时ans 不用把它乘起来,[因为这一项值为1],为1项时要乘以此项再取余。这个算法和上面的算法在本质上是一样的,读者可以自行分析,这里我说不多说了,希望本文有助于读者掌握快速幂算法的知识点,当然,要真正的掌握,不多练习是不行的。

By 夜せ︱深

幂的运算方法总结

幂的运算方法总结 姓名:__________ 指导:__________ 日期:__________

作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练,现在对此做一探索。

幂的运算的基本知识就四条性质,写作四个公式: ①am×an=am+n ②(am)n=amn ③(ab)m=ambm ④am÷an=am-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1 已知a7am=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2 已知xn=2,yn=3,求(x2y)3n的值。 思路探索: (x2y)3n中没有xn和yn,但运用公式3就可将(x2y)3n化成含有xn和yn的运算。 因此可简解为,(x2y)3n=x6ny3n=(xn)6(yn)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢?

问题3 已知a3=2,am=3,an=5,求am+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:am+2n+6=ama2na6=am(an)2(a3)2=3×25×4=300 方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4 已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解: 22x+3-22x+1 =22x×23-22x×21 =8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5

幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析 【要点概论】 要点一、同底数幂的乘法特点 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一特点, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其 是遇到底数互为倒数时,算法更简便.如:1010 101122 1.22???? ?=?= ? ????? 重点四、注意事项

幂的运算法则

幂的运算法则 1、同底数幂的乘法a a a n m n +=m ,即同底数幂相乘,底数不变,指数 相加。在考试过程中通常需要用其逆运算a a a n n m =+m ,即当在运算 中出现指数相加时,我们往往将其拆分成同底数幂相乘的形式。 2、同底数幂的除法a a a n m n -m =÷,即同底数幂相除,底数不变,指数 相减。在考试过程中通常需要用其逆运算a a a n n m ÷=-m ,即当在运算中出现指数相减时,我们往往将其拆分成同底数幂相除的形式。 3、幂的乘方a a mn m =)(n ,即当出现内、外指数(m 是内指数,n 是外指数)时,底数不变,指数相乘。在考试过程中通常需要用其逆运算)()(n m n a a a m mn ==,这时注意:具体用何种拆法要根据题目给出的是a m 还是a m 的形式。常在比较两个幂的大小等题目中出现。而在比较幂的大小类题目中,常用方法是转化为同底数幂或者同指数幂的形式。 如:(1)、化同指数比较。比较3275100与的大小,观察可以发现,底数2与3之间不存在乘方关系,因此,我们将其转化为同指数的幂进行比较,()1622225254251004===?,()2733325 25325753===?,因为27>16,所以16272525>,即2310075> (2)化同底数比较。比较934589与观察可以发现,底数9与3之间存 在着乘方关系即392=,因此,对于这样的题,我们将其转化为同底数幂进行比较,()33399045224545===?,而90>89,∴338990>即3989 45>。 规律小结:在幂的大小比较中,底数之间存在乘方关系时,化为同底数幂,比较指数大小;底数之间不存在乘方关系时,化为同指数

快速幂算法C语言版(超详细)

快速幂取模算法 在网站上一直没有找到有关于快速幂算法的一个详细的描述和解释,这里,我给出快速幂算法的完整解释,用的是C 语言,不同语言的读者只好换个位啦,毕竟读C 的人较多~ 所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。我们先从简单的例子入手:求c a b mod = 几。 算法1.首先直接地来设计这个算法: int ans = 1; for (int i = 1;i<=b;i++) { ans = ans * a; } ans = ans % c; 这个算法的时间复杂度体现在for 循环中,为O (b ).这个算法存在着明显的问题,如果a 和b 过大,很容易就会溢出。 那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式: c c a c a b b mod )mod (mod =.这个公式大家在离散数学或者数论当中应该学过,不过这里为了方便大家的阅读,还是给出证明: 引理1: c c b c a c de c de c dk te tkc c e kc d tc c ab e kc b e c b d tc a d c a c c b c a c ab mo d )]mod ()mod [(mod mod ))((mod ))((mod mod mod mod )]mod ()mod [(mod )(:2?==+++=++=+=?=+=?=?=证明: 公式 上面公式为下面公式的引理,即积的取余等于取余的积的取余。 c a c c a c c c a c c a c c a c a b b b b b b mo d mod ])mod [() (mod ])mod )mod [((mod ])mod [(mod )mod (mod ===由上面公式的迭代证明:公式: 证明了以上的公式以后,我们可以先让a 关于c 取余,这样可以大大减少a 的大小, 于是不用思考的进行了改进: 算法2: int ans = 1; a = a % c; //加上这一句 for (int i = 1;i<=b;i++) {

(完整版)幂的运算(知识总结)

幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为: n m n m a a a +=?(m 、n 是正整数) 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且m 、n 是正整数,m>n 。) 补充: 零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数) 次幂,等于这个数的p 次幂的倒数。用式子表示为:)0(10≠=a a ,p p a a 1=-(0≠a ,p 是正整数)。 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正整数) 注:把幂的乘方转化为同底数幂的乘法 练习: 1、计算: ①()()()()2452232222 x x x x -?-? ②()()()32 212m n m a a a a -?-? 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为:()n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷? ()np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 = (5) (-10)2 ×(-10)0 ×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( ) A. x -10 B. - x -10 C. x -12 D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题

取模运算

取模运算 取模运算即模运算模运算即求余运算。“模”是“Mod”的音译,模运算多应用于程序编写中。Mod的含义为求余。模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。例如11 Mod 2,值为1 上述模运算多用于程序编写,举一例来说明模运算的原理: Turbo Pascal对mod的解释是这样的: A Mod B=A-(A div B) * B (div含义为整除) 运算及其应用 本文以c++语言为载体,对基本的模运算应用进行了分析和程序设计,以理论和实际相结合的方法向大家介绍模运算的基本应用。。 一基本理论: 基本概念: 给定一个正整数p,任意一个整数n,一定存在等式n = kp + r ; 其中k、r是整数,且0 ≤ r < p,称呼k为n除以p的商,r为n除以p的余数。 对于正整数p和整数a,b,定义如下运算: 取模运算:a % p(或a mod p),表示a除以p的余数。 模p加法:(a + b) % p ,其结果是a+b算术和除以p的余数,也就是说,(a+b) = kp +r,则(a + b) % p = r。 模p减法:(a-b) % p ,其结果是a-b算术差除以p的余数。 模p乘法:(a * b) % p,其结果是a * b算术乘法除以p的余数。 说明: 1. 同余式: 正整数a,b对p取模,它们的余数相同,记做a ≡ b % p或者a ≡ b (mod p)。 2. n % p得到结果的正负由被除数n决定,与p无关。 例如:7%4 = 3,-7%4 = -3,7%-4 = 3,-7%-4 = -3。 基本性质:(1)若p|(a-b),则a≡b (% p)。例如11 ≡ 4 (% 7),18 ≡ 4(% 7) (2)(a % p)=(b % p)意味a≡b (% p) (3)对称性:a≡b (% p)等价于b≡a (% p) (4)传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p) 运算规则: 模运算与基本四则运算有些相似,但是除法例外。其规则如下:

幂模运算快速算法

幂模运算快速算法——滑动窗口算法 设e 的二进制表达式为:∑-== 10)2(k i i i e e ,其中}1,0{∈i e 。那么,n X e mod 的幂模运算二进制算法如下: 输入:X ,e ,n 输出:n X C e mod = Step 1: 1=C Step 2: for 1-=k i downto 0 Step 2.1: n C C C mod )*(= Step 2.2: if 1=i e then n X C C mod )*(= Step 3: return C 由二进制法的计算过程可知:当指数e 的二进制位为0时,会减少乘模的次数。二进制法的直接推广是m 进制法,其基本思想是把指数分成r bits(即m 2log bits)的数据块,每次取指数e 的r bits 进行运算,从而使整个幂模运算的效率提高。假定e 的每个比特是0或1的概率相同,则m 进制法一个数据块是全0的可能性为r -2,当r 增加时,数据块为全0的可能性会减少,因此在Step 2.2需做乘模的可能性增加;而当r 减小时,算法总的乘模次数也会增加。滑动窗口技术提供了一种折衷,允许零数据块和非零数据块是变长的,目的是增加全0数据块的数量,从而使总的乘模次数减少。 具体方法是:把k bits 指数分解成z 个零窗口或非零窗口i F ,i F 长度为)(i F L 。规定最大窗口长度为d ,即))(max(i F L d =,显然总窗口数z 可能不等于d k 。d 的取值与模数的位长有关。 对单一窗口的幂模运算进行预处理,即预计算n X w mod ,其中 12,,7,5,3-=d w ,因为指数分解的原则使非零窗口的最低有效位必定为1,故w 为为奇数,从而使预处理次数减少了一半。 滑动窗口算法处理幂模运算的过程如下: 输入:X ,e ,n 输出:n X C e mod = Step 1: 预计算。 Step 2: 将k bits 的指数e 分解成长度为)(i F L 的零窗口或非零窗口i F ,1,,2,1,0-=z i 。 Step 3: 1=C Step 4: for 1-=z i downto 0 Step 4.1: n C C i F L mod )(2= Step 4.2: if 0≠i F then n X C C i F mod )*(= Step 5: return C 窗口的划分采用了从左至右扫描的变长滑动窗口技术,因为计算是从高位至低位进行的。如果采用从

单云服务器下的安全外包模幂运算

第45卷 第11期2018年11月 计算机科学COM PU T ER SCIENCE Vol .45No .11Nov .2018 到稿日期:2017-10-17 返修日期:2018-01-02 王健一(1991-),男,硕士生,主要研究领域为云环境下的隐私保护,E -mail :j ianyiw ang @nuaa .edu .cn ;王 箭(1968-),男,教授,主要研究领域为信息安全,E -mail :w angjian @nuaa .edu .cn (通信作者)。 单云服务器下的安全外包模幂运算 王健一 王 箭 (南京航空航天大学计算机科学与技术学院 南京210016) 摘 要 模幂运算是加密和签名系统中最基础的运算。由于模幂运算需要耗费很大的计算成本,因此很多方案提出将模幂运算安全外包给云服务器。但是,现存的大多方案都需要两个不共谋的服务器来实现安全的模幂运算,一旦服务器共谋,就会导致外包隐私数据泄露。此外,很多现有方案都假设底数和指数都是保密的,但这并不适合于大多数现实应用场景。通常来说,为了减轻计算负担,只有敏感消息才需要被保密。为了解决上述问题,分别提出了固定底数(底数公开、指数保密)和固定指数(指数公开、底数保密)的安全外包方案。在该方案中客户端只需要使用一个云服务器,从而避免了两个服务器的共谋攻击。理论分析及实验结果证明了该方案的安全性和高效性。关键词 云计算,安全外包算法,模幂运算,单服务器 中图法分类号 T P 309 文献标识码 A DOI 10.11896/j .issn .1002-137X .2018.11.023 SecureOutsourcingModularExponentiationswithSingleUntrustedCloudServer WANG Jian -y i WANG Jian (College of Computer Science and T echnology ,Nanjing U niversity of Aeronautics and Astronautics ,Nanjing 210016,China ) Abstract Modular exponentiation is one of the most fundamental operations in many encryption and signature systems .Due to the heavy computation cost of modular exponentiation ,many schemes have been put forward to securely out -source modular exponentiation to cloud .However ,most of the existing approaches need two non -colluded cloud servers to implement the secure modular exponentiation ,resulting in private data leakage once the cloud servers collude .Be -sides ,most existing schemes assume both base and exponent in modular exponentiation are private ,which does not con - form to many real -world applications .Usually ,in order to reduce the overhead of computation ,only the sensitive messa -g es should be privately protected . To solve the above problems ,this paper proposed two secure outsourcing schemes based on fixedbase (p ublic base and private exponent )or fixed exponent (p rivate base and public exponent ),respective -ly .In the proposed schemes ,the client only needs one cloud server ,thus avoiding collusion attack of two servers .Theo -retical analysis and experimental results reveal the security and efficiency of the proposed schemes . Keywords Cloud computing ,Outsourcing -secure algorithm ,Modular exponentiations ,Single server 1 引言 云计算因能经济且高效地为用户提供动态存储和计算服务等而受到广泛的关注。利用云服务器的计算资源,一个资源受限的设备可以完成超出其计算能力的计算任务。 用户外包计算任务给云服务器时,不可避免地会出现很多新型的安全问题[9-10]。云服务器不能被完全信任,用户需要保护外包计算任务中的敏感信息;云服务器可能不返回正确的结果,用户需要具备验证云服务器返回结果真实性的能力[4]。 在大多数的加密和签名系统中,如RSA 和Paillier 加密[8],模幂运算是最基础、最昂贵的运算之一,很多计算受限的用户都通过云服务器来高效地完成计算任务。由于云服务器不可信,用户需要借助安全外包算法将计算任务外包给云服务器。 然而,现存的大多数安全外包模幂运算方案[1,3,11] 都需要 两个云服务器,它们都不能抵抗云服务器的共谋攻击,在效率和可验证率上都存在缺陷[12-13];并且很多运算方案的前提是 底数和指数都是保密的[3,5-6] ,这并不符合现实中的很多具体 情况。例如,在使用模幂运算的公钥加密中,底数和指数中有一个是公钥,另一个是明文,但只有明文需要保密。 针对上述问题,本文分别提出了单云服务器下固定底数(底数公开、指数保密)和固定指数(指数公开、底数保密)的安全外包模幂方案,并通过理论分析及实验结果证明了所提方案的安全性和高效性。 本文第2节阐述了系统模型和安全性定义;第3节阐述了固定底数和固定指数算法的具体执行过程;第4节阐述了本文算法的理论分析;第5节通过模拟实验证明了算法的高效性。 万方数据

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

幂的运算(知识总结)

学习必备 精品知识点 幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为: n m n m a a a +=?(m 、n 是正整数) 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且m 、n 是正整数,m>n 。) 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正整数) 注:把幂的 乘方转化为同底数幂的乘法 练习: 1、计算: ①()()()()2 4 5 2 2 32222x x x x -?-? ②()()() 3 2 212m n m a a a a -?-? 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为: () n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷? () np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 = (5) (-10)2 ×(-10)0 ×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( ) A. x -10 B. - x -10 C. x -12 D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题 (1) (-1/2 ) 2 ÷(-2) 3 ÷(-2) –2 ÷(∏-2005) 0 = = (2) (-2 a ) 3 ÷a -2 =

幂模运算

2. 大数幂模与乘模运算?Montgomery 幂模算法 在实现了vlong 类型后,大数的存储和四则运算的功能都完成了。考虑到RSA 算法需要进行幂模运算,需要准备实现这些运算的方法。所以写一个vlong 的友元,完成幂模运算功能。幂模运算是RSA 算法中比重最大的计算,最直接地决定了RSA 算法的性能,针对快速幂模运算这一课题,西方现代数学家提出了很多的解决方案。经查阅相关数学著作,发现通常都是依据乘模的性质 n n b n a n b a mod ))mod ()mod ((mod )(?=?,先将幂模运算化简为乘模运算。 通常的分解习惯是指数不断的对半分,如果指数是奇数,就先减去一变成偶数,然后再对半分,例如求D=n C E mod ,E=15,可分解为如下6个乘模运算。 n C n C C C m od m od 21=?= n C n C C C m od m od 312=?= n C n C C C mod mod 6223=?= n C n C C C mod mod 734=?= n C n C C C mod mod 14445=?= n C n C C C mod mod 1556=?= 归纳分析以上方法,对于任意指数E ,可采用如图2-4的算法流程计算 。

图2-4 幂模运算分解为乘模运算的一种流程 按照上述流程,列举两个简单的幂模运算实例来形象的说明这种方法。 ①求17 mod 215的值 开始 D = 1 P = 2 mod 17 = 2 E = 15

E奇数 D = DP mod n = 2 P = PP mod n = 4 E = (E-1)/2 =7 E奇数 D = DP mod n = 8 P = PP mod n = 16 E = (E-1)/2 =3 E奇数 D = DP mod n = 9 P = PP mod n = 1 E = (E-1)/2 =1 E奇数 D = DP mod n = 9 P = PP mod n = 1 E = (E-1)/2 =0 最终D = 9 即为所求。 ②求13 mod 28的值 开始 D = 1 P = 2 mod 17 = 2 E = 8 E偶数 D = 1 P = PP mod n = 4 E = E/2 =4 E偶数 D = 1 P = PP mod n = 3 E = E/2 =2 E偶数 D = 1 P = PP mod n = 9 E = E/2 =1 E奇数 D = DP mod n = 9 P = 不需要计算 E = (E-1)/2 =0 最终D = 9 即为所求。 观察上述算法,发现E根据奇偶除以二或减一除以二实际就是二进制的移位操作,所以要知道需要如何乘模变量,并不需要反复对 E 进行除以二或减一除以二的操作,只需要验证E 的二进制各位是0 还是1 就可以了。同样是计算 ,下面给出从右到左扫描二进制位进行的幂模算法描述,设中间变D E mod C n 量D,P,E的二进制各位下标从左到右为u,u-1,u-2, 0 Powmod(C,E,n) { D=1; P=C mod n; for i=0 to u do { if(Ei=1)D=D*P(mod n); P=P*P(mod n); }

(完整版)幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:()m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2 4 c c c -?-?- 简单练习: 一、选择题 1. 下列计算正确的是( ) A.a2+a3=a5 B.a2·a3=a5 C.3m +2m =5m D.a2+a2=2a4 2. 下列计算错误的是( ) A.5x2-x2=4x2 B.am +am =2am C.3m +2m =5m D.x·x2m-1= x2m 3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b 5 ④ p 2+p 2+p 2=3p 2 正确的有( ) A.1个 B.2个 C.3个 D.4个 4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) A.100×102=103 B.1000×1010=103 C.100×103=105 D.100×1000=104 二、填空题 1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7 =________。 3、103·_______=1010 4、(-a)2·(-a)3·a5 =__________。 5、a5·a( )=a2·( ) 4=a18 6、(a+1)2·(1+a)·(a+1)5 =__________。 中等练习: 1、 (-10)3·10+100·(-102 )的运算结果是( ) A.108 B.-2×104 C.0 D.-104

RSA模幂运算的实现

#include int binary(int a,int*p) { int i; for(i=0;i<10;i++) { if(a>0) { *(p+i)=a%2; a=a/2; } else return i; } } int main() { int a,m,n,b[10],i,j,k,l,c; //l,k为计算中用的过程量和结果量 printf("请输入数字(a, m, n):"); scanf("%d%d%d",&a,&m,&n); j=binary(m,b); // j为m转换为二进制的长度; printf("m的二进制为: "); for(i=j-1;i>=0;i--) printf("%d",b[i]); printf("用平方乘算法的计算过程为:\n"); for(i=0,l=j-1,k=1;l>=0;i++,l--) { k=(k*k)%n; if(b[l]==1) { k=(k*a)%n; } printf("i=%d, %d\n",i,k); } printf("计算结果为:%d\n",k); printf("\n*******************华丽分界线**********************\n\n"); printf("用模重复平方法的计算过程为:\n"); for(l=a,i=0,k=1;i

if(b[i]==1) k=k*l%n; printf("i=%d, b[i]=%d, %d\n",i,b[i],k); l=(l*l)%n; } printf("计算结果为:%d\n",k); return 0; }

(完整版)幂的运算(知识总结)

幕的四则运算(知识总结) 一、 同底数幕的乘法 运算法则:同底数幕相乘,底数不变,指数相加。用式子表示为: a m a n a m n (m n 是正整数) 二、 同底数幕的除法 运算法则:同底数幕相除,底数不变,指数相减。用式子表示为:a m a n a m n °(a 0且m 、n 是正整数,m>n 。) 补充: 零次幕及负整数次幕的运算: 任何一个不等于零的数的 0次幕都等于1;任何不等于零的数的 p (p 是正整数) 次幕,等于这个数的 p 次幕的倒数。用式子表示为: 1 a 0 1(a 0),a p -( a 0,p 是正整数)。 a p 、幕的乘方 mn 1、计算: 补充: 同底数幕的乘法与幕的乘方性质比较: 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为: 扩展 m n p mnp mn p mp. np a a a a a b a b 提高训练 1. 填空 (1) (1/10)5 x (1/10)3 = ______________ (2) (-2 x 2 y 3) 2 = ______________ ⑶(-2 x 2) 3 = ___________ (4) 0.5 -2 = _________ (5) (- 10)2 X (- 10)0 X 10"2 = __________ 2. 选择题 (1)下列说法错误的是. A. (a - 1)0 = 1 a 工1 B. (— a )n = - a n n 是奇数 C. n 是偶数,(一a n ) 3 = a 3n D. 若a 丸,-为正整数,则a p =1/ a -p (2) [(-x ) 3 ]2 ?-x ) 2 ] 3的结果是( ) A. x -10 B .-x -10 C. x -12 D. - x -12 (3) a m = 3 , a n =2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题 (1) (-1/2 ) 2 十(-2) 3 十(-2) - -(口-2005) 0 ⑵(-2 a ) 3 F -2 = 同底数幂乘法 幂的乘方 幂的运算 乘法 乘方 指数运算种类 加法 乘法 运算法则:幕的乘方,底数不变,指数相乘 乘方转化为同底数幕的乘法 练习: .用式子表示为: n 都是正整数) 注:把幕的 ①2 2 x 32 X 2 4 X 2 5 X 2 2 2 m n 3 m 1 2 2 ② a a a a a b “ a n b n (n 是正整数) (m n 、p 是正整数)

(完整版)幂的知识点

幂的运算(基础) 【要点梳理】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们 的指数之和等于原来的幂的指数。即m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从 而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计 算更简便.如:1010 101122 1.22???? ?=?= ? ????? 要点四、注意事项 (1)底数可以是任意实数,也可以是单项式、多项式. (2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加. (4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】 类型一、同底数幂的乘法性质 1、计算: (1)2 3 4 444??;(2)3 4 5 2 6 22a a a a a a ?+?-?; (3)1 1211()()()()()n n m n m x y x y x y x y x y +-+-+?+?+++?+. 【答案与解析】 解:(1)原式23494 4++==. (2)原式3452617777 2222a a a a a a a +++=+-=+-=. (3)原式11 211222() ()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别 同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算: (1)5 3 2 3(3)(3)?-?-; (2)221() ()p p p x x x +?-?-(p 为正整数); (3)232(2)(2)n ?-?-(n 为正整数). 【答案】 解:(1)原式5 3 2 5 3 2 532 103(3)333333++=?-?=-??=-=-. (2)原式22122151()p p p p p p p x x x x x +++++=??-=-=-. (3)原式525216222 (2)22n n n +++=??-=-=-.

苏教版七年级下册数学[幂的运算(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 幂的运算(基础) 【学习目标】 1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方); 2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】 【396573 幂的运算 知识要点】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其

相关主题
文本预览
相关文档 最新文档