幂的运算知识点总结及练习复习课程
- 格式:wps
- 大小:94.68 KB
- 文档页数:4
1、幕的乘方
2、积的乘方底数不变,指数相乘。
逆运算:a
mn
n
(a m)
即(a m
)n a mn(m, n是正
把每一个因式分别乘方,再把所得的幕相乘。
即(abj a n b n(n是正整数)逆运算;
n
(ab)
同底数幕的除法同底数幕相除,底数不
零指数幕的意义:规定
负整指数幕的意义:规
变,指数相减。
即a m a n a m-n(a 0,m, n是正整数,m a01(a 0)。
即
任何不等于0的数的零次幕都等于1
定a"—n(a 0,a是正整数)
a
n) 第八章幂的运算知识点总结
知识点一:同底数幕相乘
法则:底数不变,指数相加。
即a m a n a m n(m,n是正整数)
逆运算:a m n a m a n
同底数幕的乘法
a a a
正数的任何次幕都是正数;负数的奇次幕是负数,负数的偶次幕是正数知识点二:幕的乘方与积的乘方
知识点三:同底数幕的除法
5 、,
696000 6.96 (10的几次方原数字个数-1)
科学记数法0.0000502 5.02 1。
-5(10的负几次方第一个非0数字前0的个数)
9
1nm m
(1) a m a n a m n(m,n是正整数)
(2) (a m)n a mn(m,n是正整数)
⑶(ab)n a n b n(n是正整数)
(4)a^ a a^ "(a 0, m, n是正整数,m n)。
幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n aa a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】 解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()pp p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()pp p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=. 【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m ma a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【答案与解析】解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n ma a a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nmn.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n na n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-g ;(3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=. 【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n 变成323288(8)(8)mn m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mmab==,则()()()36322mm m m ab a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算. 【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m ma a -= ③()36933a a = ④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【答案】A ;提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >) 要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nn aa-=(a ≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是na 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy-=(0xy ≠),()()551a b a b -+=+(0a b +≠).要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷- 【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算. 3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】解: ∵ 331133273m-===,∴ 3m =-. ∵ 122nn -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数: (1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067 【答案与解析】 解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯; (3)-0.000135=41.3510--⨯; (4)0.00067=46.710-⨯. 【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】 一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15c D.8c2.2nn a a+⋅的值是( ).A. 3n a + B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).A.224x x x += B.347x x x x ⋅⋅= C. 4416a a a ⋅= D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25mn==,则2m n+=____________.8. 若()319x aa a ⋅=,则x =_______.9. 已知35na=,那么6n a =______. 10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na =,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x xx +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.【答案与解析】 一.选择题1. 【答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=.2. 【答案】C ; 【解析】2222n n n n n a a a a ++++⋅==.3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=. 4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510. 5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439x x -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a b a b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】30;【解析】2226530m n m n+==⨯=g . 8. 【答案】6;【解析】3119,3119,6x aa x x +=+==. 9. 【答案】25;【解析】()2632525n n aa===.10.【答案】5;1; 【解析】338,38,5mma a aa m m +⋅==+==;3143813,314,1x x x +==+==.11.【答案】64;9n -;103-; 12.【答案】200; 【解析】()()32322222()8()81000800200n nn n a a aa--=-=-=.三.解答题 13.【解析】 解:(1)×;(2)×;(3)×;(4)× 14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+;(3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--;(5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-.15.【解析】 解:(1)∵3335nn x x x +⋅= ∴ 4335n xx +=∴4n +3=35 ∴n =8(2)m =4,n =3解:∵()3915n ma b ba b ⋅⋅=∴ 333333915nmnm a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15 ∴n =3且m =4。
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【幂的运算 知识要点】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质 1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 【答案与解析】解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体.举一反三:【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n ⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-. (2)原式22122151()p p p p p p p x xx x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22n n n +++=⋅⋅-=-=-. 2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】解:由2220x +=得22220x ⋅=.∴ 25x =.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-.【答案与解析】解:(1)2()m a 2m a =. (2)34[()]m -1212()m m =-=. (3)32()m a -2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、(2016春•湘潭期末)已知a x =3,a y =2,求a x +2y 的值.【思路点拨】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【答案与解析】 解:∵a x =3,a y =2,∴a x +2y =a x ×a 2y =3×22=12.【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:【变式1】已知2a x =,3b x =.求32a b x+的值. 【答案】解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=.【396573 幂的运算 例3】【变式2】已知84=m ,85=n ,求328+m n 的值.【答案】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.举一反三:【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555.【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.。
七年级下册数学《幂的运算》知识点整理幂的运算
一、本节学习指导
本节知识是数学中的基础部分,在以后的学习中经常会和其他知识结合起来,单独命题频率也相当高,但基本都很容易,一般是选择题、填空题,同学们要牢牢掌握本节涉及的公式。
本节有学习视频。
二、知识要点
nn 1、幂(power):指乘方运算的结果。
a指将a自乘n次(n个a相乘)。
把a
看作乘方的结果,叫做a的n次幂。
2、对于任意底数a,b,当,,,为正整数时,有:
不等于0 的数的-n次幂等于这个数的n次幂的倒数
n 3、科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10的形式(其中1?|a|,10),这种记数法叫做科学记数法.
注:在科学计数法法中如果a的绝对值一定要小于10并且大于1.
例:用科学计数法法表示:25000000;40000000;
76 分析:第一个数字表示为:2.5×10,注意,这里我们没有表示为25×10,后面这种
7表示方法是错误的。
第二个数字很简单,科学计数法表示为:4×10。
三、经验之谈:
同底数幂的乘法、幂的乘方、积的乘方这三个运算法则是整式乘法的基础,也是整式乘法的主要依据(所以要求每个学生都要掌握三个运算法则的数学表达
式(“m、n都为正整数)”和语言表述“同底数幂相乘,底数不变,指数相加,幂的乘方,底数不变,指数相乘,积的乘方,等于把积的每一个因式分别乘方”。
在运用时要灵活一些。
(完整版)幂的运算总结及方法归纳.docx幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用 a m ? a n a m n( m 、 n 为正整数), a m a n a m n (a 0, m 、 n 为正整数且 m > n ), (a m ) n a mn( m 、 n 为正整数), (ab) n a n b n( n 为正整数), a 01(a 0) ,a n1( a 0 ,n为正整数)时,要特别注意各式子成a n立的条件。
◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。
换句话说,将底数看作是一个“整体”即可。
◆注意上述各式的逆向应用。
如计算0.252004 4 2005,可先逆用同底数幂的乘法法则将42005 写成42004 4 ,再逆用积的乘方法则计算0.25 200442004(0.25 4) 2004120041,由此不难得到结果为1。
◆通过对式子的变形,进一步领会转化的数学思想方法。
如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。
◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律” 这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。
一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:a m a n a m n m、n为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m a n a p a m m p (m、 n、 p为正整数 )注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数 .(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算 .例题:例 1:计算列下列各题(1)a3 a4;( 2) b b2b324;( 3)cc c简单练习:一、选择题1.下列计算正确的是 ( )A.a2+a3=a5B.a2·a3=a5C.3m+2m=5mD.a2+a2=2a42.下列计算错误的是 ( )A.5 x2- x2=4x2B.am+am=2amC.3m+2m=5mD. x·x2m-1=x 2m3.下列四个算式中①a333②x336325·a=2a+x =x③b·b·b=b④p2+p2+p2=3p2正确的有 ( )A.1个B.2个C.3个D.4个4.下列各题中,计算结果写成底数为10 的幂的形式,其中正确的是 ()A.100 × 102=103B.1000× 1010=103C.100 × 103=105D.100×1000=104二、填空题1.a4·a4=_______;a4+a4=_______。
第8章《幂的运算》复习课练习【培优题】(满分100分 时间:40分钟) 班级 姓名 得分【知识点回顾】1、同底数幂相乘,底数不变,指数相加;即:n m a a a n m n m ,(+=⋅是正整数)2、幂的乘方,底数不变,指数相乘;即:n m a a mn n m ,()(=是正整数)3、积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘;即:n m b a ab nn n ,()(=是正整数) 4、同底数幂相除,底数不变,指数相减;即:n m n m a a a a n m n m ,;,0(>≠=÷-是正整数) 5、任何不等于0的数的0次幂等于1;即:)0(10≠=a a6、任何不等于0的数的n -(n 是正整数)次幂,等于这个数的n 次幂的倒数;即:n a aa n n ,0(1≠=-是正整数) 7、科学计数法:把一个正数写成n a 10⨯的形式,其中,101<≤n n 是整数;类似的:一个负数也可以用科学计数法表示; 【课时练习】一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1. 下面是一名学生所做的4道练习题:①−22=4②a 3+a 3=a 6③4m −4=14m4④(xy 2)3=x 3y 6,他做对的个数( )A. 1B. 2C. 3D. 4【答案】A 【解析】 【分析】本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,幂的乘方与积的乘方,是基础题,熟记各性质是解题的关键.根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,幂的乘方与积的乘方的性质对各小题分析判断即可得解.【解答】解:①−22=−4,故本小题错误;②a3+a3=2a3,故本小题错误;③4m−4=4,故本小题错误;m4④(xy2)3=x3y6,故本小题正确;综上所述,做对的个数是1.故选:A.2.已知a、b、c是自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】本题考查了同底数幂乘法以及分解质因数,熟练掌握同底数幂乘法以及分解质因数是解题关键,把2a×3b×4c变形,再把192分解成26×3,最后分类讨论即可.【解答】解:2a×3b×4c=2a×3b×22c=2a+2c×3b,192=26×3,∵a、b、c是自然数,∴b=1,a+2c=6,当a=0时,a+2c=6,c=3,则a+b+c=0+1+3=4,当a=1时,a+2c=6,c=2.5(舍去),当a=2时,a+2c=6,c=2,则a+b+c=2+1+2=5,当a=3时,a+2c=6,c=1.5(舍去),当a=4时,a+2c=6,c=1,则a+b+c=4+1+1=6,当a=5时,a+2c=6,c=0.5(舍去),当a=6时,a+2c=6,c=0,则a+b+c=6+1+0=7,∴a+b+c的取值不可能是8.故选D.3.比较355,444,533的大小正确是()A. 355<444<533B. 444<355<533C. 444<533<355D. 5533<355<444【答案】D【解析】【分析】本题主要考查了幂的乘方和积的乘方的应用.先根据幂的乘方法则把四个式子转化为指数相同的式子,再根据底数的大小比较即可.【解答】解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∵125<243<256.∴533<355<444.故选D.4.已知x2n=3,求(x3n)2−3(x2)2n的结果()A. 1B. −1C. 0D. 2【答案】C【解析】【分析】本题考查幂的乘方与积的乘方,整体代入法求代数式的值,解题的关键是根据幂的运算法则对原式进行变形.把原式变形后进行整体代入即可求值.【解答】解:(x3n)2−3(x2)2n=(x2n)3−3(x2n)2=33−3⋅32=27−27=0.故选C.5.若a=999999,b=119990,则下列结论正确是()A. a<bB. a=bC. a>bD. ab=1【答案】B【解析】【分析】此题考查积的乘方和同底数幂的乘法及除法的运算,灵活运用法则是解题的关键.根据积的乘方法则首先把999变形为119×99,999变形为990×99,然后根据同底数幂的除法法则计算即可得到结论.【解答】解:∵a=999999=(11×9)9990+9=119×99990×99=119990,∴a=b.故选B.6.定义一种新运算∫ab n⋅x n−1dx=a n−b n,例如∫kn2xdx=k2−n2.若∫m5m−x−2dx=−2,则m=()A. −2B. −25C. 2 D. 25【答案】B 【解析】 【分析】本题考查了新定义问题,根据题意,进行求解即可. 【解答】 解:由题意得: m −1−(5m)−1=−2,1m−15m=−2,5−1=−10m , m =−25. 故选:B .二、填空题:(本题共4小题,每小题5分,共20分) 7. −22017×(−0.5)2018= .【答案】−12 【解析】 【分析】此题主要考查了积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n =a n b n (n 是正整数).首先把(−0.5)2018=(−12)2017×(−12),然后再利用积的乘方进行计算即可. 【解答】解:原式=−22017×(−0.5)2018, =−22017×(−12)2017×(−12), =[−2×(−12)]2017×(−12), =1×(−12), =−12. 故答案为−12.8.已知4x=10,25y=10,则(x−2)(y−2)+3(xy−1)的值为______________.【答案】1【解析】【分析】本题考查了幂的乘方和积的乘方的逆运算,掌握幂的乘方和积的乘方的法则是解决问题的关键.【解答】解:∵4x=10,25y=10,∴4xy=10y,25xy=10x,4xy×25xy=10y×10x,(4×25)xy=10x+y,∴102xy=10x+y,∴2xy=x+y,(x−2)(y−2)+3(xy−1)=4xy−2×2xy+1=1.故答案为1.9.阅读材料:①1的任何次幂都等于1;②−1的奇数次幂都等于−1;③−1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.根据以上材料探索可得,使等式(2x+3)x+2018=1成立的x的值为______________.【答案】−1,−2,−2018【解析】【分析】本题主要考查零指数幂,有理数的乘方.根据1的乘方,−1的乘方,非零的零次幂,可得答案.【解答】解:①当2x+3=1时,解得:x=−1,此时x+2018=2017,则(2x+3)x+2018=12017=1,所以x=1;②当2x+3=−1时,解得:x=−2,此时x+2018=2016,则(2x+3)x+2018=(−1)2016=1,所以x=−2;③当x+2018=0时,x=−2018,此时2x+3=−4039,则(2x+3)x+2018=(−4039)0=1,所以x=−2018.综上所述,当x=−1,或x=−2,或x=−2018时,代数式(2x+3)2018的值为1.故答案为:−1或−2或−2018.)2÷273=2a×3b,则a+b=.10.若(−6)4×8−1×(19【答案】−8【解析】【分析】此题考查了幂的乘方与积的乘方,同底数幂的乘除,可先将已知化简,对照后得到a与b的值,代入a+b可求得代数式的值.【解答】)2÷273=24×34×2−3×3−4÷39解:∵(−6)4×8−1×(19=2×3−9=2a×3b即a=1,b=−9,∴a+b=1−9=−8.故答案为−8.三、解答题:(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.已知:x=3m−2,y=5+9m,用含x的代数式表示y.【答案】解:∵x=3m−2,∴x+2=3m,∴y=5+9m=5+(3m)2=5+(x+2)2=5+x2+4x+4=x2+4x+9.【解析】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.幂的乘方运算法则将原式变形进而得出答案.12.设x为正整数,且满足3x+1⋅2x−3x⋅2x+1=36,求(x x−1)2的值.【答案】解:∵3x+1⋅2x−3x⋅2x+1=36,∴3×3x·2x−3x·2x×2=36,即3×6x−2×6x=36,∴6x=36,解得x=2,∴(x x−1)2=(22−1)2=22=4.【解析】本题主要考查同底数幂的乘法法则与积的乘方法则,逆用同底数幂的乘法法则、积的乘方进行计算是解题的关键.逆用同底数幂的乘法法则将指数相加转化为同底数幂乘法,然后逆用积的乘方法则得到3×6x−2×6x=36,进而得到6x=36,根据乘方的意义求出x的值,即可作答.13.阅读:为了求1+2+22+23+⋯+21000的值,令S=1+2+22+23+⋯+21000,则2S=2+22+23+24+⋯+21001,因此2S−S=________,所以1+2+22+23+⋯+21000=________.应用:仿照以上推理计算出1+6+62+63+⋯+62019的值.【答案】解:21001−1;21001−1;应用:令S=1+6+62+63+⋯+62019,则6S=6+62+63+64+⋯+62020,因此6S−S=62020−1,,所以S=62020−15∴1+6+62+63+⋯+62019=62020−1.5【解析】【分析】此题考查了同底数幂的乘法,弄清题中的推理,利用错位相减法,消掉相关值,是解题的关键.学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.依照题目中类似推理,找出其中规律,利用错位相减法求解本题.6S与S之间的差就是s 的值,即可得到结果.【解答】解:阅读:2S−S=21001−1,所以1+2+22+23+⋯+21000=21001−1,故答案为21001−1;21001−1;应用:见答案.14.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=______;log216=______;log264=______.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=______(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m⋅a n=a m+n以及对数的定义证明(3)中的结论.【答案】(1)2;4;6;(2)由题意可得,4×16=64,log24、log216、log264之间满足的关系式是log24+log216=log264;(3)log a MN;(4)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m+n,∴log a MN=m+n,∴log a M+log a N=log a MN.【解析】【分析】本题考查同底数幂的乘法、新定义,解题的关键是明确题意,找出所求问题需要的条件.(1)根据题意可以得到题目中所求式子的值;(2)根据题目中的式子可以求得它们之间的关系;(3)根据题意可以猜想出相应的结论;(4)根据同底数幂的乘法和对数的性质可以解答本题.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6,故答案为:2;4;6;(2)见答案;(3)猜想的结论是:log a M+log a N=log a MN,故答案为:log a MN;(4)见答案.。
初中幂运算知识点总结一、幂的概念在数学中,若a是任何一个不等于0的实数,那么a的n次方就是a自身连乘n次,表示为a^n。
其中,a是底数,n是指数。
1.1 底数和指数在a^n中,a是底数,n是指数,其中a和n是对运算数的一切限定。
a称为幂的底数,n称为指数。
底数和指数是幂运算的两个基本概念,我们需要通过练习来熟悉底数和指数的概念。
示例1:计算2的3次方。
解:2的3次方表示为2^3,其中2是底数,3是指数。
2^3=2*2*2=8。
示例2:计算(-3)的4次方。
解:(-3)的4次方表示为(-3)^4,其中-3是底数,4是指数。
(-3)^4=(-3)*(-3)*(-3)*(-3)=81。
1.2 幂的相等当两幂相等时,它们的底数和指数都相等。
这是我们进行乘方运算时需要注意的一点,也是我们常用的一条幂的基本定理。
示例3:如果a^m = a^n (其中a≠0, a≠1),那么m和n必相等。
解:若a^m = a^n,即a自身连乘m次等于a自身连乘n次,那么m和n必相等。
例如,2^3=2^3,那么3和3相等。
1.3 幂的零指数对于任何不等于0的实数a,a的零次幂等于1,即a^0=1。
示例4:计算5的零次幂。
解:5的零次幂表示为5^0,5^0=1。
1.4 幂的负指数对于任何不等于0的实数a和任意整数n,a的-n次方等于1除以a的n次方,即a^(-n)=1/(a^n)。
示例5:计算2的负三次方。
解:2的负三次方表示为2^(-3),2^(-3)=1/2^3=1/8。
二、幂的运算法则在幂运算中,有一些基本的运算法则,需要我们掌握和使用,下面我们来总结一些常用的运算法则。
2.1 幂数相乘当底数相同,指数相加时,可以将幂数相加得到表示该幂的底数相同的一次幂。
示例6:计算2的3次方乘以2的4次方。
解:2的3次方乘以2的4次方表示为2^3 * 2^4,根据幂数相乘的法则,底数相同,指数相加,所以2^3 * 2^4=2^(3+4)=2^7=128。