当前位置:文档之家› 乘法器原理

乘法器原理

乘法器原理
乘法器原理

计算机组成原理阵列乘法器课程设计报告

. 课程设计

. 教学院计算机学院 课程名称计算机组成原理题目4位乘法整列设计专业计算机科学与技术班级2014级计本非师班姓名唐健峰 同组人员黄亚军 指导教师 2016 年10 月 5 日

1 课程设计概述 1.1 课设目的 计算机组成原理是计算机专业的核心专业基础课。课程设计属于设计型实验,不仅锻炼学生简单计算机系统的设计能力,而且通过进行设计及实现,进一步提高分析和解决问题的能力。 同时也巩固了我们对课本知识的掌握,加深了对知识的理解。在设计中我们发现问题,分析问题,到最终的解决问题。凝聚了我们对问题的思考,充分的锻炼了我们的动手能力、团队合作能力、分析解决问题的能力。 1.2 设计任务 设计一个4位的二进制乘法器: 输入信号:4位被乘数A(A1,A2,A3,A4), 4位乘数B(B1,B2,B3,B4), 输出信号:8位乘积q(q1,q2,q3,q4,q5,q6,q7,q8). 1.3 设计要求 根据理论课程所学的至少设计出简单计算机系统的总体方案,结合各单元实验积累和课堂上所学知识,选择适当芯片,设计简单的计算机系统。 (1)制定设计方案: 我们小组做的是4位阵列乘法器,4位阵列乘法器主要由求补器和阵列全加器组成。 (2)客观要求 要掌握电子逻辑学的基本内容能在设计时运用到本课程中,其次是要思维灵活遇到问题能找到合理的解决方案。小组成员要积极配合共同达到目的。

2 实验原理与环境 2.1 1.实验原理 计算机组成原理,数字逻辑,maxplus2是现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 用乘数的每一位去乘被乘数,然后将每一位权值直接去乘被乘数得到部分积,并按位列为一行每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值,将各次部分积求和得到最终的对应数位的权值。 2.2 2.实验环境 2.2.1双击maxplu2II软件图标,启动软件 (1).新建工程,flie->new project ....,出现存储路径的选项框,指定项目保存路径并且为工程命名,第三行设置实体名,保持与工程名一致。点击OK

各种乘法器比较

各种乘法器比较 韦其敏08321050 引言:乘法器频繁地使用在数字信号处理和数字通信的各种算法中,并往往影响着整个系统的运行速度。如何实现快速高效的乘法器关系着整个系统的运算速度和资源效率。本位用如下算法实现乘法运算:并行运算、移位相加、查找表、加法树。并行运算是纯组合逻辑实现乘法器,完全由逻辑门实现;移位相加乘法器将乘法变为加法,通过逐步移位相加实现;查找表乘法器将乘积结果存储于存储器中,将操作数作为地址访问存储器,得到的输出数据就是乘法运算结果;加法树乘法器结合移位相加乘法器和查找表乘法器的优点,增加了芯片耗用,提高运算速度。 注:笔者使用综合软件为Quartus II 9.1,选用器件为EP2C70,选用ModelSim SE 6.1b进行仿真,对于其他的软硬件环境,需视具体情况做对应修改。 汇总的比较: 详细实现过程: 1.并行乘法器 源代码: module Mult1(outcome,a,b); parameter MSB=8; input [MSB:1] a,b; output [2*MSB:1] outcome; assign outcome=a*b; endmodule

资源耗用情况: ModelSim测试激励文件源代码:`timescale 10ns/1ns module Mult1_test(); reg [8:1] a,b; wire [16:1] outcome; Mult1 u1(outcome,a,b); parameter delay=2; initial begin a=1; b=0; end initial forever begin #delay a=a+1; b=b+1; if(outcome>=16'h0FFF) $stop;

计算机组成原理_阵列乘法器设计

沈阳航空航天大学 课程设计报告 课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计与实现 院(系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 完成日期:2014年1月10日

沈阳航空航天大学课程设计报告 _______________________________________________________________________________ 目录 第1章总体设计方案 (1) 1.1设计原理 (1) 1.2设计思路 (2) 1.3设计环境 (3) 第2章详细设计方案 (3) 2.1总体方案的设计与实现 (4) 2.1.1总体方案的逻辑图 (4) 2.1.2器件的选择与引脚锁定 (4) 2.1.3编译、综合、适配 (5) 2.2功能模块的设计与实现 (5) 2.2.1一位全加器的设计与实现 (6) 2.2.2 4位输入端加法器的设计与实现 (7) 2.2.3 阵列乘法器的设计与实现 (10) 第3章硬件测试 (13) 3.1编程下载 (13) 3.2 硬件测试及结果分析 (13) 参考文献 (15) 附录(电路原理图) (16)

第1章总体设计方案 1.1 设计原理 阵列乘法器采用类似人工计算的方法进行乘法运算。人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。 为了进一步提高乘法的运算速度,可采用大规模的阵列乘法器来实现,阵列乘法器的乘数与被乘数都是二进制数。可以通过乘数从最后一位起一个一个和被乘数相与,自第二位起要依次向左移一位,形成一个阵列的形式。这就可将其看成一个全加的过程,将乘数某位与被乘数某位与完的结果加上乘数某位的下一位与被乘数某位的下一位与完的结果再加上前一列的进位进而得出每一位的结果,假设被乘数与乘数的位数均为4位二进制数,即m=n=4,A×B可用如下竖式算出,如图1.1所示。 X 4 X 3 X 2 X 1 =A × Y 4 Y 3 Y 2 Y 1 =B X 4Y 1 X 3 Y 1 X 2 Y 1 X 1 Y 1 X 4Y 2 X 3 Y 2 X 2 Y 2 X 1 Y 2 X 4Y 3 X 3 Y 3 X 2 Y 3 X 1 Y 3 (进位) X4Y4 X3Y4 X2Y4 X1Y4 Z 8 Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 图1.1 A×B计算竖式 X 4 ,X 3 ,X 2 ,X 1 ,Y 4 ,Y 3 ,Y 2 ,Y 1 为阵列乘法器的输入端,Z 1 -Z 8 为阵列乘法器 的输出端,该逻辑框图所要完成的功能是实现两个四位二进制既A(X)*B(Y)的 乘法运算,其计算结果为C(Z) (其中A(X)=X 4X 3 X 2 X 1 ,B(Y)=Y 4 Y 3 Y 2 Y 1 , C(Z)=Z 8Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 而且输入和输出结果均用二进制表示 )。阵列乘法器的总原 理如图1.2所示。

模拟乘法器实验

3.12模拟乘法器 一.实验目的 1. 了解模拟乘法器的构成和工作原理。 2. 掌握模拟乘法器在运算电路中的运用。 二.实验原理 集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 1. 模拟乘法器的基本特性 模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图3-12-1所示。 u x u y o 图3-12-1 模拟乘法器的电路符号 若输入信号为x u , y u ,则输出信号o u 为: o u =k y u x u 式中: k 为乘法器的增益系数或标尺因子,单位为V 1 . 根据两个输入电压的不同极性,乘法输出的极性有四种组合,用图3-12-2所示的工作象限来说明。 图 3-12-2 模拟乘法器的工作象限 若信号x u 、y u 均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号x u 、y u 中一个能适应正、负两种极性电压,而另一个只能适应单极性电压,则为二象限乘法器;若两个输入信号能适应四种极性组合,称为四象限乘法器。

2. 集成模拟乘法器 集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍BG314集成模拟乘法器。 (1) BG314内部结构如图3-12-3所示,外部电路如图3-12-4所示: 1 8 43 7 6 5142+ 9 121110 13 7 图3-12-3 BG314内部电路

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

模拟乘法器及其应用

模拟乘法器及其应用

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated multiplier can be achieved between two unrelated analog multiplication is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

计算机组成原理阵列乘法器课程设计报告.

课程设计

教学院计算机学院 课程名称计算机组成原理题目4位乘法整列设计专业计算机科学与技术班级2014级计本非师班姓名唐健峰 同组人员黄亚军 指导教师 2016 年10 月 5 日

1 课程设计概述 1.1 课设目的 计算机组成原理是计算机专业的核心专业基础课。课程设计属于设计型实验,不仅锻炼学生简单计算机系统的设计能力,而且通过进行设计及实现,进一步提高分析和解决问题的能力。 同时也巩固了我们对课本知识的掌握,加深了对知识的理解。在设计中我们发现问题,分析问题,到最终的解决问题。凝聚了我们对问题的思考,充分的锻炼了我们的动手能力、团队合作能力、分析解决问题的能力。 1.2 设计任务 设计一个4位的二进制乘法器: 输入信号:4位被乘数A(A1,A2,A3,A4), 4位乘数B(B1,B2,B3,B4), 输出信号:8位乘积q(q1,q2,q3,q4,q5,q6,q7,q8). 1.3 设计要求 根据理论课程所学的至少设计出简单计算机系统的总体方案,结合各单元实验积累和课堂上所学知识,选择适当芯片,设计简单的计算机系统。 (1)制定设计方案: 我们小组做的是4位阵列乘法器,4位阵列乘法器主要由求补器和阵列全加器组成。 (2)客观要求 要掌握电子逻辑学的基本内容能在设计时运用到本课程中,其次是要思维灵活遇到问题能找到合理的解决方案。小组成员要积极配合共同达到目的。

2 实验原理与环境 2.1 1.实验原理 计算机组成原理,数字逻辑,maxplus2是现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 用乘数的每一位去乘被乘数,然后将每一位权值直接去乘被乘数得到部分积,并按位列为一行每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值,将各次部分积求和得到最终的对应数位的权值。 2.2 2.实验环境 2.2.1双击maxplu2II软件图标,启动软件 (1).新建工程,flie->new project ....,出现存储路径的选项框,指定项目保存路径并且为工程命名,第三行设置实体名,保持与工程名一致。点击OK

数字电子技术基础答案

数字电子技术基础答案 第1章 自测题 填空题 1. 2. 4 3. n2 4. 逻辑代数卡诺图 5.) (D C B A F ) (D C B A F+ = ' 6.) )( (C B D C B A F 7. 代数法卡诺图 8. 1 判断题 1. √ 2.√ 3. × 选择题 A F= 1⊙ B AB F 2 B A F+ = 3

C L = AB C B A BC Y 习题 1.1 当000012 A A A ,7A 到3A 有1个不为0时,就可以被十进制8整除 1.2 (a)AC BC AB L (b )B A AB L (c)C B A S ⊕⊕= AC BC AB C 0 略 (1) )(B A D C F )(1 ))((1B A D C F ++=' (2) )(B A B A F )(2 ))((2B A B A F ++=' (3) E D C B A F 3 DE C AB F ='3

(4) )()(4D A B A C E A F )( ))()((4D A C AB E A F +++=' C B A F ⊕⊕= (1) B A C B C A L (2) D B C B D C A L (3) AD L (4) E ABCD L (5) 0 L C B A BC A C AB ABC C B A L ),,( (1) ABD D A C F 1 (2) BC AB AC F 2 (3) C A B A B A F 3 (有多个答案) (4) C B A D C AB C A CD F 4 (5) C B A ABD C B A D B A F 5 (6) 16 F (1) AD D C B B A F 1 (2) B A AC F 2 (3) D A D B C B F 3 (4) B C F 4 (1) C A B F 1 (2) B C F 2 (3) D A B C F 3 (4) C B A D B D C F 4 C A B A D F (1) D B A D C A D C B F 1(多种答案) (2) C B BC D D C D B F 2

乘位阵列乘法器设计

乘位阵列乘法器设计集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

课程设计报告课程设计题目: 4乘4位阵列乘法器设计 学生姓名:杨博闻 学号 专业:计算机科学与技术 班级: 1120701 指导教师:汪宇玲 2014年 1月 4日

一、设计目的 1.掌握乘法器的原理及其设计方法。 2 .熟练应用CPLD 设计及 EDA 操作软件。 二、设计设备 1.TDN-CM+或 TDN-CM++教学实验系统一套。 2 ·PC 微机一台。 3·ispDesignEXPERT 软件 模型机数据通路结构框图 三、设计原理 本实验用 CPLD 来设计一个 4 ×4 位乘法器,相对于画电路图输入,用 ABEL 语言描述是比较方便的。其算式如下(其中括号中的数字表示在 ABEL 源程序描述中的功能块调用编号): a3 a2 a1 a0 × b3 b2 b1 b0 ---------------------------------------------------------------------------------------------------------- a3b0(10) a2b0(6) a1b0(3) a0b0(1) a3b1(13) a2b1(9) a1b1(5) a0b1(2)

a3b2(15) a2b2(12) a1b2(8) a0b2(4) + a3b3(16) a2b3(14) a1b3(11) a0b3(7) ----------------------------------------------------------- ------------------------------------------------ p7 p6 p5 p4 p3 p2 p1 p0 四、设计步骤 1.安装EDA 软件 打开计算机电源,进入 Windows 系统,安装上述 ispDesignEXPERT 软件。安装完成后,桌面和开始菜单中则建有 ispDesignEXPERT 软件图 标。 2.用ispDesignEXPERT 软件根据上述乘法的逻辑原理用ABEL 语言 编写功能描述程序。 其在 1032 芯片中对应的管脚如图: 3.编辑、编译和下载 使用 ispDesignEXPERT 软件编辑源程序并进行编译,然后打开实验 系统电源,将生成的 JEDEC 文件下载到 ispLSI1032 中去。 4 .连接实验电路 按下图连接实验电路。 5 .给定操作数,观察乘法器输出 将 SWITCH UNIT 单元中的 SW-B、AR 开关置为低电平状态。在 INPUT DEVICE 单元中的 8 个开关的高 4 位为乘数 A ,低四位为被乘

乘法器应用电路

第6章 集成模拟乘法器及其应用 6.1集成模拟乘法器 教学要求: 1.掌握集成模拟乘法器的基本工作原理; 2.理解变跨导模拟乘法器的基本原理; 3.了解单片集成模拟乘法器的外部管脚排列及外接电路特点。 一、集成模拟乘法器的工作原理 (一)模拟乘法器的基本特性 模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。其符号如下图所示,K 为乘法器的增益系数。 1.模拟乘法器的类型 理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。 实际乘法器—u x = 0 , u y = 0 时,u O 1 0,此时的输出电压称为输出输出失调电压。u x = 0,u y 1 0 (或 u y = 0,u x 1 0)时,u O 1 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。 (二)变跨导模拟乘法器的基本工作原理 变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示。

在室温下,K为常数,可见输出电压u O与输入电压u y 、u x的乘积成正比,所以差分放大电路具有乘法功 能。但u y必须为正才能正常工作,故为二象限乘法器。当u Y较小时,相乘结果误差较大,因I C3随u Y而变,其比值为电导量,称变跨导乘法器 . 二、单片集成模拟乘法器 实用变跨导模拟乘法器由两个具有压控电流源的差分电路组成,称为双差分对模拟乘法器,也称为双平衡模拟乘法器。属于这一类的单片集成模拟乘法器有MC1496、MC1595等。MC1496内部电路如下图所示。

数字电子技术基础课后答案全解

第3章 逻辑代数及逻辑门 【3—1】 填空 1、与模拟信号相比,数字信号的特点是它的 离散 性。一个数字信号只有两种取值分别表示为0 和1 。 2、布尔代数中有三种最基本运算: 与 、 或 和 非 ,在此基础上又派生出五种基本运算,分别为与非、或非、异或、同或和与或非. 3、与运算的法则可概述为:有“0”出 0 ,全“1”出 1;类似地或运算的法则为 有”1"出”1”,全”0”出”0" . 4、摩根定理表示为:A B ?=A B + ;A B +=A B ?。 5、函数表达式Y=AB C D ++,则其对偶式为Y '=()A B C D +?。 6、根据反演规则,若Y=AB C D C +++,则Y =()AB C D C ++? 。 7、指出下列各式中哪些是四变量A B C D的最小项和最大项。在最小项后的( )里填入m i ,在最大项后的( )里填入M i ,其它填×(i为最小项或最大项的序号)。 (1) A+B+D (× ); (2) ABCD (m 7 ); (3) ABC ( × ) (4)AB (C +D ) (×); (5) A B C D +++ (M 9 ) ; (6) A+B+CD (× ); 8、函数式F=AB+BC +CD 写成最小项之和的形式结果应为m ∑(3,6,7,11,12,13, 14,15),写成最大项之积的形式结果应为 M (∏ 0,1,2,4,5,8,9,10 ) 9、对逻辑运算判断下述说法是否正确,正确者在其后( )内打对号,反之打×。 (1) 若X +Y =X +Z ,则Y=Z ;( × ) (2) 若XY=X Z,则Y=Z;( × ) (3) 若X ⊕Y=X⊕Z ,则Y=Z ;(√ ) 【3—2】用代数法化简下列各式 (1) F 1 =1ABC AB += (2) F 2 =ABCD ABD ACD AD ++= (3)3F AC ABC ACD CD A CD =+++=+ (4) 4()()F A B C A B C A B C A BC =++?++?++=+ 【3-3】 用卡诺图化简下列各式 (1) 1F BC AB ABC AB C =++=+ (2)

乘法器的布斯算法原理与verilog实现

乘法器的布斯算法原理与VERILOG实现

1 乘法器基本原理 乘法器是处理器设计过程中经常要面对的运算部件。一般情况下,乘法可以直接交由综合工具处理或者调用EDA厂商现成的IP,这种方式的好处是快捷和可靠,但也有它的不足之处,比如影响同一设计在不同工具平台之间的可移植性、时序面积可采取的优化手段有限、个性化设计需求无法满足等。所以,熟悉和掌握乘法器的底层实现原理还是有必要的,技多不压身,总有用得上的时候,同时也是一名IC设计工程师扎实基本功的体现。 不采用任何优化算法的乘法过程,可以用我们小学就学过的列竖式乘法来说明。从乘数的低位开始,每次取一位与被乘数相乘,其乘积作为部分积暂存,乘数的全部有效位都乘完后,再将所有部分积根据对应乘数数位的权值错位累加,得到最后的乘积。如下图,左边为十进制乘法过程,基数为10,右图为二进制乘法过程,基数为2。PP0~PP3分别表示每次相乘后的部分积。可见,二进制乘法与十制乘法本质上是没有差别的。 1 2 3 1 2 3 × 3 6 9 2 4 6 1 2 3 + 1 5 1 2 9……3×12 3 PP0 ……2×123 PP1 ……1×123 PP2 1 1 0 1 1 0 0 1 × 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 + 1 1 1 0 1 0 1 ……1×1101 PP0 ……0×1101 PP1 ……0×1101 PP2 ……1×1101 PP3 如果表示成通用形式,则如下图所示(以4位乘法器为例,其它位宽类似) 这样原始的乘法在设计上是可以实现的,但在工程应用上几乎不会采用,在时延与面积上都需要优化。一个N位的乘法运算,需要产生N个部分积,并对它们进行全加处 理,位宽越大,部分积个数越多,需要的加法器也越多,加法器延时也越大,那么针对乘法运算的优化,主要也就集中在两个方面:一是减少部分积的个数,二是减少加法器带来的延时。

4位阵列乘法器

目录 一、设计题目 (2) 二、设计目的 (2) 三、设计过程 (2) 3.1设计原理 (2) 3.2器件选择 (3) 3.3逻辑原理 (3) 3.4阵列乘法器的逻辑原理 (4) 3.5 时序图 (4) 四、设计心得 (5) 五、参考文献 (6)

4位阵列乘法器 一、设计题目4位阵列乘法器 二、设计目的 计算机组成原理是计算机专业的核心专业基础课。课程设计属于设计型实验,不仅锻炼学生简单计算机系统的设计能力,而且通过进行设计及实现,进一步提高分析和解决问题的能力。 同时也巩固了我们对课本知识的掌握,加深了对知识的理解。在设计中我们发现问题,分析问题,到最终的解决问题。凝聚了我们对问题的思考,充分的锻炼了我们的动手能力、团队合作能力、分析解决问题的能力。 三、设计过程 3.1设计原理 阵列乘法器是类似于人工计算(如图1.1所示)的方法,乘数与被乘数都是二进制数。所以可以通过乘数从最后一位起一个一个和被乘数相与,自第二位起要依次向左移一位,形成一个阵列的形式。这就可将其看成一个全加的过程,将乘数某位与被乘数某位与完的结果加上乘数某位的下一位与被乘数某位的下一位与完的结果再加上前一列的进位进而得出每一位的结果。 一个阵列乘法器要完成X.Y乘法运算(X=X4X3X2X1,Y=Y4Y3Y2Y1)。阵列的每一行送入乘数Y的每一位数位,而各行错开形成的每一斜列则送入被乘数的每一数位。阵列乘法器是由十六个模块组成,每一个模块构包括一个与门和一位全加器。 1 0 1 1 × 1 1 0 1 ________________ 10 1 1 00 0 0 1 0 1 1 1 0 1 1 ___________________________ 1 0 0 0 1 1 1 1 图1人工计算乘法示例

高频,模拟乘法器汇总

实验课程名称:高频电子线路

MC1496 是目前常用的平衡调制/解调器。它的典型应用 包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、 鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图 如图1(a)(b)所示 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。 各引脚功能如下: 1:SIG+ 信号输入正端 2: GADJ 增益调节端 3:GADJ 增益调节端 4: SIG- 信号输入负端 5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端 13: NC 空脚 14: V- 负电源 (2)Multisim建立MC1496电路模块 MC1496内部结构multisim电路图和电路模块如图2所示。

图2 MC1496的内部电路及电路模块引脚图 2、AM与DSB电路的设计与仿真 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。 利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号,则经乘法器相乘,可得输出抑制载波的双边带调幅信号的表达为: 若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。输出信号表达式为: 普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图3所示 图3 ① AM与DSB电路的设计 查集成模拟乘法器MC1496 应用资料(附录1),得典型应用电路如图4所示。

计算机组成原理 阵列乘法器的设计

沈阳***** 课程设计报告 课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计 院(系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 完成日期:2007年1月7日

目录 第1章总体设计方案 (1) 1.1 设计原理 (1) 1.2 设计思路 (1) 1.3 设计环境 (1) 第二章详细设计方案 (2) 2.1顶层方案图的设计与实现 (2) 2.1.1创建顶层图形设计文件 (2) 2.1.2器件的选择与引脚锁定 (3) 2.1.3编译、综合、适配........................................................................ . (4) 2.2底层的设计与实现........................................................................ (4) 2.2.1阵列乘法器的设计与实现..................................... ................. .......... ................. (4) 2.3功能模块的设计与实现 (6) 2.4 仿真调试.................................................................................. (7) 第3章编程下载与硬件测试 (10) 3.1 编程下载 (10) 3.2 硬件测试及结果分析 (10) 参考文献 (12) 课程设计总结 (13)

模拟乘法器的应用

随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。用集成模拟乘法器可以构成性能优良的调幅和检波电路,其电路元件参数通常采用器件典型应用参数值。作调幅时,高频信号加到输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 作调幅时,高频信号加到输入端,低频信号加到Y输入端;作检波时,同步信号加到X输入端,已调信号加到Y输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。还需注意:(1)Y端 有关,否则输出波输入信号幅度不应超过允许的线性范围,其大小与反馈电阻R Y 形会产生严重失真;(2)X端输入信号可采用小信号(小于26mV)或者大信号(大于260mV),采用大信号可获得较大的调幅或解凋信号输出。信息传输系统中,检波是用以实现电信号远距离传输及信道复用的重要手段。由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。 关键词:模拟乘法器,调幅器,检波器,MC1496

第一章、集成模拟乘法器的工作原理 (2) 第一节、模拟乘法器的基本特性 (2) 一、模拟乘法器的类型 (2) 第二节、变跨导模拟乘法器的基本工作原理 (2) 第三节、单片集成模拟乘法器 (3) 第二章、集成模拟乘法器的应用 (4) 第一节、基本运算电路 (4) 一、平方运算 (4) 二、除法运算器 (5) 三、平方根运算 (5) 四、压控增益 (5) 第二节、倍频、混频与鉴相 (6) 一、倍频电路 (6) 二、混频电路 (6) 三、鉴相电路 (6) 第三节、调幅与解调 (7) 一、信息传输的基本概念 (7) 二、调幅原理 (8) 三、采用乘法器实现解调(检波) (10) 第三章、MC1496模拟乘法器构成的振幅器 (10) 第一节、振幅调制的基本概念 (10) 第二节、抑制载波振幅调制 (13) 第三节、有载波振幅调制 (14) 第四章、MC1496模拟乘法器构成的同步检波器 (14) 总结 (18) 参考文献 (18) 附录 (19)

组成原理课设阵列乘法器分解

沈阳航空工业学院 课程设计报告 课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计 院(系):计算机学院 专业:计算机科学与技术 班级:4401102 学号:200403011062 姓名:余舟华 指导教师:李平 完成日期:2006年12月31日

沈阳航空工业学院课程设计报告 目录 、 .................................................................................................... 错误!未定义书签。第1章总体设计方案.. (1) 1.1设计原理 (1) 1.3设计环境 (3) 第2章详细设计方案 (4) 2.1顶层方案图的设计与实现 (4) 2.1.1创建顶层图形设计文件 (4) 2.1.2器件的选择与引脚锁定 (4) 2.2功能模块的设计与实现 (5) 2.3仿真调试 (9) 第3章编程下载与硬件测试 (10) 3.1 编程下载 (10) 3.2硬件测试及结果分析 (10) 参考文献 (12) 附录:电路图 (13)

第1章总体设计方案 1.1 设计原理 串行方法毕竟太慢,执行一次乘法的时间至少是执行一次加法时间的n倍,不能满足科学技术对高速乘法所提出的要求。自从大规模集成电路问世以来,高速的单元阵列乘法器应运而生,出现了各种形式的硬件乘法器的常规设计是适用“串行移位”和“并行加法”相结合的方法,这种方法并不需要很多器件。然而流水线阵列乘法器,它们属于并行乘法器,提供了极快的速度。 如图所示的一个阵列乘法器完成X*Y乘法运算(X=X1X2X3X4,Y=Y1Y2Y3Y4)。阵列的每一行送入乘数Y的每一位数位,而各行错开形成的每一斜列则送入被乘数的每一数位。图中每一个方框包括一个与门和一个两位全加器。 阵列乘法器的原理框图如图1.1所示,X[4:1],Y[4:1]分别是乘数和被乘数输入端,MULT[8:1]为乘积输出端。

模拟乘法器

模拟乘法器及其应用 学院:信息工程 专业班级:电信1206 姓名:李嘉辛 学号: 0121209310603

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated circuits.Analog multiplier can be achieved between two unrelated analog multiplication function.It is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and processing.In the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication process.The function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

4乘4位阵列乘法器设计

课程设计报告课程设计题目:4乘4位阵列乘法器设计 学生姓名:杨博闻 学号:201120070115 专业:计算机科学与技术 班级:1120701 指导教师:汪宇玲 2014年1月4日

一、设计目的 1.掌握乘法器的原理及其设计方法。 2 .熟练应用CPLD 设计及EDA 操作软件。 二、设计设备 1.TDN-CM+或TDN-CM++教学实验系统一套。 2 ·PC 微机一台。 3·ispDesignEXPERT 软件 模型机数据通路结构框图 三、设计原理 本实验用CPLD 来设计一个4 ×4 位乘法器,相对于画电路图输入,用ABEL 语言描述是比较方便的。其算式如下(其中括号中的数字表示在ABEL 源程序描述中的功能块调用编号):

a3 a2 a1 a0 ×b3 b2 b1 b0 ---------------------------------------------------------------------------------------------------------- a3b0(10) a2b0(6) a1b0(3) a0b0(1) a3b1(13) a2b1(9) a1b1(5) a0b1(2) a3b2(15) a2b2(12) a1b2(8) a0b2(4) +a3b3(16) a2b3(14) a1b3(11) a0b3(7) ----------------------------------------------------------------------------------------------------------- p7 p6 p5 p4 p3 p2 p1 p0 四、设计步骤 1.安装EDA 软件 打开计算机电源,进入Windows 系统,安装上述ispDesignEXPERT 软件。安装完成后,桌面和开始菜单中则建有ispDesignEXPERT 软件图标。 2.用ispDesignEXPERT 软件根据上述乘法的逻辑原理用ABEL 语言编写功能描述程序。 其在1032 芯片中对应的管脚如图: 3.编辑、编译和下载 使用ispDesignEXPERT 软件编辑源程序并进行编译,然后打开实验系统电源,将生成的JEDEC 文件下载到ispLSI1032 中去。 4 .连接实验电路 按下图连接实验电路。 5 .给定操作数,观察乘法器输出 将SWITCH UNIT 单元中的SW-B、AR 开关置为低电平状态。在INPUT

相关主题
文本预览
相关文档 最新文档