【精品试卷】人教版高中物理必修二高一试题复习专用试卷
- 格式:docx
- 大小:510.53 KB
- 文档页数:6
高中物理学习材料(精心收集**整理制作)人教版高中物理必修一必修二基础练习1.一质量为4kg的小球从空中做自由落体运动,求物体:(1)前2s内重力的平均功率(2)第2s末重力的瞬时功率2.一个小球从离地面高80m的位置自由下落,取g=10m/s2。
求:(1)小球经过多长时间落到地面;(2)小球落下一半位移所用时间;(3)从开始下落时刻起,小球在第1s内的位移大小和最后1s内的位移大小。
3.一小球从斜面顶端由静止开始滚下,经4 s匀加速运动到达斜面底端,加速度的大小为a=6m/s2求:(1)到达斜面底端时的速度;(2)斜面长度;(3)整个过程中的平均速度;(4)运动到斜面中点时的速度。
4.如图所示,用细线通过轻网兜把质量为m=0.5kg的足球挂在光滑墙壁上(细线延长线通过足球球心)。
已知悬点到足球球心的距离为L=0.5m,足球的半径为R=0.3m,重力加速度为g=10m/s2,,求:(1)细线的拉力T的大小;(2)足球对墙壁弹力N的大小和方向。
5.如图是某质点做直线运动的v—t图象。
求:v/m·s-1110164 t/s(1)质点前1 s时间内的加速度大小;(2)质点从1 s到4 s时间内的位移大小;(3)质点在整个4 s时间内的平均速度大小。
6.某战斗机静止在地面上,若该战斗机起飞时速度为80m/s,发动机能够提供的加速度是16 m/s2,则(1)该战斗机从静止到起飞的时间是多少?(2)飞机跑道长度至少要多长?7.(10分)如图所示,质量为0.78 kg的金属块放在水平桌面上,在方向与水平方向成37°角斜向上、大小为3.0N的拉力F作用下,以4.0 m/s的速度向右做匀速直线运动。
已知sin 37°=0.6,cos 37°=0.8。
(g取10m/s2.)(1)求金属块与桌面间的动摩擦因数。
(2)如果从某时刻起撤去拉力,从撤去拉力时算起金属块在2s内通过的位移是多大?8.低空跳伞属于极限运动中的滑翔项目,一般在高楼、悬崖、高塔、桥梁等固定物上起跳。
解答:解:A、对小球受力分析,受重力和支持力,如图根据牛顿第二定律,有F=mgtanθ=m解得v=由于A球的转动半径较大,故线速度较大,ω==,由于A球的转动半径较大,故角速度较小,故A错误,B正确;C、T=,A的角速度小,所以周期大,故C错误;D、由A选项的分析可知,压力等于,与转动半径无关,故D错误;故选B.点评:本题关键是对小球受力分析,然后根据牛顿第二定律和向心力公式列式求解分析.2.(20xx•宁夏)图示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是()A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为n D.从动轮的转速为n专题:压轴题;匀速圆周运动专题.分析:因为主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,由于通过皮带传动,皮带与轮边缘接触处的线速度相等,根据角速度与线速度的关系即可求解.解答:解:因为主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A错误,B正确;由于通过皮带传动,皮带与轮边缘接触处的线速度相等,根据v=nr得:n2r2=nr1所以n2=nr1/r2故C正确,D错误.故选BC.点评:本题考查了圆周运动角速度与线速度的关系,要知道同一根带子转动,线速度相等,同轴转动,角速度相等.3.(20xx•上海)秋千的吊绳有些磨损.在摆动过程中,吊绳最容易断裂的时候是秋千()A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时专题:牛顿第二定律在圆周运动中的应用.专题:计算题.分析:分析小球的受力:受到重力、绳的拉力,二者的合力提供向心力,向心力是效果力,不能分析物体受到向心力.然后用力的合成求出向心力:mgtanθ,用牛顿第二定律列出向心力的表达式,求出线速度v和周期T的表达式,分析θ变化,由表达式判断V、T的变化.解答:解:A、B:小球只受重力和绳的拉力作用,二者合力提供向心力,∴A、B选项错误.C:向心力大小为:Fn=mgtanθ,小球做圆周运动的半径为:R=Lsinθ,则由牛顿第二定律得:,得到线速度:=,θ越大,sinθ、tanθ越大,∴小球运动的速度越大,∴C选项正确.D:小球运动周期:,因此,θ越大,小球运动的周期越小,∴D选项错误.故选:C.点评:理解向心力:是效果力,它由某一个力充当,或几个力的合力提供,它不是性质的力,分析物体受力时不能分析向心力.同时,还要清楚向心力的不同的表达式.11.(20xx•××区二模)如图所示,质量为m的小球被细绳经过光滑小孔牵引在光滑水平面上做圆周运动,当细绳拉力的大小为F1时,小球做半径为R1的匀速圆周运动;当细绳拉力的大小变为F2 (F2>F1)时,小球做半径为R2的匀速圆周运动,则此过程中细绳拉力所做的功为()A.0 B.(F2 R2﹣F1 R1)C.(F1+F2)( R1﹣R2)D.( F2﹣F1)( R1﹣R2)专题:牛顿第二定律在圆周运动中的应用.分析:球做匀速圆周运动,拉力提供向心力,可求出初速度与末速度;运用动能定理,可解出拉力的功.解答:解:当拉力为F1时,有F1=m ①当拉力为F2时,有F2=m ②当拉动过程中,只有拉力做功,由动能定理,得W=mv22﹣mv12 ③由①②③解得:W=(F2R2﹣F1R1),故B正确;ACD错误;故选B.点评:本题关键找出向心力来源列式求解,同时要注意拉力为变力,求解变力的功可用动能定理!12.(20xx•揭阳模拟)做圆周运动的物体,某时刻发现物体沿切线方向飞出,是因为()A.提供给物体的向心力变大B.提供给物体的向心力变小C.提供给物体的向心力消失D.提供给物体的向心力方向与原向心力方向相反分析:做圆周运动的物体,在受到指向圆心的合外力突然消失,或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动.解答:解:物体由于惯性,要保持原来的速度不变,做圆周运动的物体的速度方向是切线方向,某时刻发现物体沿切线方向飞出,正是物体惯性的体现,说明物体受到向心力消失了;故ABD错误,C正确;故选C.点评:物体做离心运动的条件:合外力突然消失或者不足以提供圆周运动所需的向心力.注意所有远离圆心的运动都是离心运动,但不一定沿切线方向飞出.13.(20xx•日照模拟)有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动,如图所示.图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是()A.h越大,摩托车对侧壁的压力将越大B.h越大,摩托车做圆周运动的向心力将越大C.h越大,摩托车做圆周运动的周期将越大D.h越大,摩托车做圆周运动的线速度将越大专题:匀速圆周运动专题.分析:摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图,得出向心力大小不变.h越高,圆周运动的半径越大,由向心力公式分析周期、线速度大小.解答:解:A、摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图.设圆台侧壁与竖直方向的夹角为α,侧壁对摩托车的支持力F=不变,则摩托车对侧壁的压力不变.故A错误.B、如图向心力Fn=mgcotα,m,α不变,向心力大小不变.故B错误.C、根据牛顿第二定律得Fn=m,h越高,r越大,Fn不变,则T越大.故C正确.D、根据牛顿第二定律得Fn=m,h越高,r越大,Fn不变,则v越大.故D正确.故选CDB通过最高点C时,对其受力分析,受重力mg,竖直向上的支持力0.75mg,二力的合力提供向心力,设此时的速度为vAB,有:mg﹣0.75mg=m解得:vA=离开C点后做平抛运动的水平位移为:sB=•2=R则A、B两球落地点间的距离为s=sA﹣sB=4R﹣R=3R(2)A球在半圆管道内运动的过程中,机械能守恒,设在刚进入时的速度为v,则有:=mg•2R+解得:v==2答:(1)A、B两球落地点间的距离为4R.(2)A球刚进入半圆管的速度为2点评:解答该题的关键是对两球在C点的受力分析,找出此时的向心力,向心力是沿半径方向上的所有力的合力.从而求出此时的瞬时速度,该题还考察了平抛运动和机械能守恒的相关知识.平抛运动是把运动分解成水平方向上的匀速直线运动和竖直方向上的自由落体运动.对于第二问的解答,还可以用动能定理来解答.20.(20xx•潍坊模拟)如图所示,光滑半圆轨道AB竖直固定,半径R=0.4m,与水平光滑轨道相切于A.水平轨道上平铺一半径r=0.1m的圆形桌布,桌布中心有一质量m=1kg的小铁块保持静止.现以恒定的加速度将桌布从铁块下水平向右抽出后,铁块沿水平轨道经A点进入半圆轨道,到达半圆轨道最高点B时对轨道刚好无压力,已知铁块与桌布间动摩擦因数μ=0.5,取g=10m/s2,求:(1)铁块离开B点后在地面上的落点到A的距离;(2)铁块到A点时对圆轨道的压力;(3)抽桌布过程中桌布的加速度.专题:匀速圆周运动专题.分析:(1)铁块离开B点后作平抛运动,根据平抛运动的特点即可求解;(2)从A到B的过程中,根据动能定理求出A点的速度,在A点,根据向心力公式即可解得对轨道的压力;(3)铁块脱离桌布时的速度等于A点速度,根据牛顿第二定律求出铁块的加速度,根据匀加速直线运动基本公式联立方程即可求解.解答:解:(1)设铁块在B点的速度为v,根据向心力公式得:mg=解得:v=,。
最新⼈教版⾼中物理必修⼆测试题及答案全套最新⼈教版⾼中物理必修⼆测试题及答案全套章末检测试卷(⼀)(时间:90分钟满分:100分)⼀、选择题(1~8为单项选择题,9~12为多项选择题.每⼩题4分,共48分)1.关于平抛运动和圆周运动,下列说法正确的是()A.平抛运动是匀变速曲线运动B.匀速圆周运动是速度不变的运动C.圆周运动是匀变速曲线运动D.做平抛运动的物体落地时的速度⼀定是竖直向下的答案A解析平抛运动的加速度恒定,所以平抛运动是匀变速曲线运动,A正确;平抛运动⽔平⽅向做匀速直线运动,所以落地时速度⼀定有⽔平分量,不可能竖直向下,D错误;匀速圆周运动的速度⽅向时刻变化,B错误;匀速圆周运动的加速度始终指向圆⼼,也就是⽅向时刻变化,所以不是匀变速运动,C错误.【考点】平抛运动和圆周运动的理解【题点】平抛运动和圆周运动的性质2.如图1所⽰为某中国运动员在短道速滑⽐赛中勇夺⾦牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑⾏,则她()图1A.所受的合⼒为零,做匀速运动B.所受的合⼒恒定,做匀加速运动C.所受的合⼒恒定,做变加速运动D.所受的合⼒变化,做变加速运动答案D解析运动员做匀速圆周运动,由于合⼒时刻指向圆⼼,其⽅向变化,所以是变加速运动,D正确.【考点】对匀速圆周运动的理解【题点】对匀速圆周运动的理解3.各种⼤型的货运站中少不了旋臂式起重机,如图2所⽰,该起重机的旋臂保持不动,可沿旋臂“⾏⾛”的天车有两个功能,⼀是吊着货物沿竖直⽅向运动,⼆是吊着货物沿旋臂⽔平⽅向运动.现天车吊着货物正在沿⽔平⽅向向右匀速⾏驶,同时⼜使货物沿竖直⽅向向上做匀减速运动.此时,我们站在地⾯上观察到货物运动的轨迹可能是下图中的()图2答案D解析由于货物在⽔平⽅向做匀速运动,在竖直⽅向做匀减速运动,故货物所受的合外⼒竖直向下,由曲线运动的特点(所受的合外⼒要指向轨迹凹侧)可知,对应的运动轨迹可能为D.【考点】运动的合成和分解【题点】速度的合成和分解4.⼀物体在光滑的⽔平桌⾯上运动,在相互垂直的x⽅向和y⽅向上的分运动速度随时间变化的规律如图3所⽰.关于物体的运动,下列说法正确的是()图3A.物体做速度逐渐增⼤的曲线运动B.物体运动的加速度先减⼩后增⼤C.物体运动的初速度⼤⼩是50 m/sD.物体运动的初速度⼤⼩是10 m/s答案C解析由题图知,x⽅向的初速度沿x轴正⽅向,y⽅向的初速度沿y轴负⽅向,则合运动的初速度⽅向不在y轴⽅向上;x轴⽅向的分运动是匀速直线运动,加速度为零,y轴⽅向的分运动是匀变速直线运动,加速度沿y轴⽅向,所以合运动的加速度沿y轴⽅向,与合初速度⽅向不在同⼀直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减⼩后增⼤,故A错误.物体运动的加速度等于y⽅向的加速度,保持不变,故B错误;根据题图可知物体的初速度⼤⼩为:v0=v x02+v y02=302+402 m/s=50 m/s,故C正确,D错误.【考点】运动的合成和分解【题点】速度的合成和分解5.⼀圆盘可以绕其竖直轴在⽔平⾯内转动,圆盘半径为R,甲、⼄物体质量分别为M和m(M>m),它们与圆盘之间的最⼤静摩擦⼒均为正压⼒的µ倍,两物体⽤⼀根长为L(L图4A.µ(M-m)gmL B.µgLC.µ(M+m)gML D.µ(M+m)gmL答案D解析以最⼤⾓速度转动时,以M为研究对象,F=µMg,以m为研究对象F+µmg=mLω2,可得ω=µ(M+m)gmL,选项D正确.【考点】向⼼⼒公式的简单应⽤【题点】⽔平⾯内圆周运动的动⼒学问题6.如图5所⽰,斜⾯上a、b、c三点等距,⼩球从a点正上⽅O点抛出,做初速度为v0的平抛运动,恰落在b点.若⼩球初速度变为v,其落点位于c,则()图5A.v0B.v=2v0C.2v0D.v>3v0答案A解析如图所⽰,M点和b点在同⼀⽔平线上,M点在c点的正上⽅.根据平抛运动的规律,若v=2v0,则⼩球经过M 点.可知以初速度v 0【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤7.如图6所⽰,两个相同材料制成的靠摩擦传动的轮A 和轮B ⽔平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的⼩⽊块恰能相对静⽌,若将⼩⽊块放在B 轮上,欲使⽊块相对B 轮能静⽌,则⽊块距B 轮转轴的最⼤距离为( )图6A.r B 4B.r B3 C.r B 2 D.r B答案 C解析当主动轮匀速转动时,A 、B 两轮边缘上的线速度⼤⼩相等,由ω=v R 得ωA ωB =vr A v r B =r B r A =12.因A 、B材料相同,故⽊块与A 、B 间的动摩擦因数相同,由于⼩⽊块恰能在A 边缘上相对静⽌,则由静摩擦⼒提供的向⼼⼒达到最⼤值F fm ,得F fm =mωA 2r A ①设⽊块放在B 轮上恰能相对静⽌时距B 轮转轴的最⼤距离为r ,则向⼼⼒由最⼤静摩擦⼒提供,故F fm =mωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】⽔平⾯内的匀速圆周运动分析【题点】⽔平⾯内的匀速圆周运动分析8.质量分别为M 和m 的两个⼩球,分别⽤长2l 和l 的轻绳拴在同⼀转轴上,当转轴稳定转动时,拴质量为M 和m 的⼩球悬线与竖直⽅向夹⾓分别为α和β,如图7所⽰,则( )图7A.cos α=cos β2B.cos α=2cos βC.tan α=tan β2D.tan α=tan β答案 A解析对于球M ,受重⼒和绳⼦拉⼒作⽤,这两个⼒的合⼒提供向⼼⼒,如图所⽰.设它们转动的⾓速度是ω,由Mg tan α=M ·2l sin α·ω2,可得:cos α=g 2lω2.同理可得cos β=g lω2,则cos α=cos β2,所以选项A 正确.【考点】圆锥摆类模型【题点】类圆锥摆的动⼒学问题分析9.西班⽛某⼩镇举⾏了西红柿狂欢节,其间若⼀名⼉童站在⾃家的平房顶上,向距离他L 处的对⾯的竖直⾼墙上投掷西红柿,第⼀次⽔平抛出的速度是v 0,第⼆次⽔平抛出的速度是2v 0,则⽐较前后两次被抛出的西红柿在碰到墙时,有(不计空⽓阻⼒)( ) A.运动时间之⽐是2∶1 B.下落的⾼度之⽐是2∶1 C.下落的⾼度之⽐是4∶1 D.运动的加速度之⽐是1∶1 答案 ACD解析由平抛运动的规律得t 1∶t 2=L v 0∶L 2v 0=2∶1,故选项A 正确.h 1∶h 2=(12gt 12)∶(12gt 22)=4∶1,选项B 错误,C 正确.由平抛运动的性质知,选项D 正确. 【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤10.m 为在⽔平传送带上被传送的⼩物体(可视为质点),A 为终端动⼒轮,如图8所⽰,已知动⼒轮半径为r ,传送带与轮间不会打滑,当m 可被⽔平抛出时( )图8A.传送带的最⼩速度为grB.传送带的最⼩速度为g rC.A 轮每秒的转数最少是12πg rD.A 轮每秒的转数最少是12πgr答案 AC解析物体恰好被⽔平抛出时,在动⼒轮最⾼点满⾜mg =m v 2r ,即速度最⼩为gr ,选项A 正确,B 错误;⼜因为v =2πrn ,可得n =12πgr,选项C 正确,D 错误. 【考点】向⼼⼒公式的简单应⽤【题点】竖直⾯内圆周运动的动⼒学问题11.有⼀种杂技表演叫“飞车⾛壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁⾼速⾏驶,做匀速圆周运动.如图9所⽰,图中虚线表⽰摩托车的⾏驶轨迹,轨迹离地⾯的⾼度为h ,下列说法中正确的是( )图9A.h 越⾼,摩托车对侧壁的压⼒将越⼤B.h 越⾼,摩托车做圆周运动的线速度将越⼤C.h 越⾼,摩托车做圆周运动的周期将越⼤D.h 越⾼,摩托车做圆周运动的向⼼⼒将越⼤答案 BC解析摩托车受⼒分析如图所⽰.由于F N =mgcos θ所以摩托车受到侧壁的⽀持⼒与⾼度⽆关,保持不变,摩托车对侧壁的压⼒也不变,A 错误;由F n =mg tan θ=m v 2r =mω2r =m 4π2T 2r 知h 变化时,向⼼⼒F n 不变,但⾼度升⾼,r 变⼤,所以线速度变⼤,⾓速度变⼩,周期变⼤,选项B 、C 正确,D 错误. 【考点】圆锥摆类模型【题点】类圆锥摆的动⼒学问题分析12.如图10所⽰,两个质量均为m的⼩⽊块a和b(均可视为质点)放在⽔平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,⽊块与圆盘的最⼤静摩擦⼒为⽊块所受重⼒的k倍,重⼒加速度⼤⼩为g.若圆盘从静⽌开始绕转轴缓慢地加速转动,⽤ω表⽰圆盘转动的⾓速度,下列说法正确的是(假设最⼤静摩擦⼒等于滑动摩擦⼒)()图10A.b⼀定⽐a先开始滑动B.a、b所受的摩擦⼒始终相等C.ω=kg2l是b开始滑动的临界⾓速度D.当ω=2kg3l时,a所受摩擦⼒的⼤⼩为kmg答案AC解析⼩⽊块a、b做圆周运动时,由静摩擦⼒提供向⼼⼒,即F f=mω2R.当⾓速度增加时,静摩擦⼒增⼤,当增⼤到最⼤静摩擦⼒时,发⽣相对滑动,对⽊块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对⽊块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb=kg2l,所以b先达到最⼤静摩擦⼒,选项A正确;两⽊块滑动前转动的⾓速度相同,则F f a=mω2l,F f b=mω2·2l,F f aB错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则F f a=mω2l=23kmg,选项D错误.【考点】⽔平⾯内的匀速圆周运动的动⼒学分析【题点】⽔平⾯内的匀速圆周运动的动⼒学分析⼆、实验题(本题共2⼩题,共12分)13.(4分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对⽀持⾯⼏乎没有压⼒,所以在这种环境中已经⽆法⽤天平称量物体的质量.假设某同学在这种环境中设计了如图11所⽰的装置(图中O为光滑⼩孔)来间接测量物体的质量:给待测物体⼀个初速度,使它在⽔平桌⾯上做匀速圆周运动.设航天器中具有基本测量⼯具.图11(1)实验时需要测量的物理量是__________________.(2)待测物体质量的表达式为m =________________.答案 (1)弹簧测⼒计⽰数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测⼒计的⽰数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R .【考点】对向⼼⼒的理解【题点】向⼼⼒实验探究14.(8分)未来在⼀个未知星球上⽤如图12甲所⽰装置研究平抛运动的规律.悬点O 正下⽅P 点处有⽔平放置的炽热电热丝,当悬线摆⾄电热丝处时能轻易被烧断,⼩球由于惯性向前飞出做平抛运动.现对⼩球采⽤频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了⼩球在做平抛运动过程中的多张照⽚,经合成后,照⽚如图⼄所⽰.a 、b 、c 、d 为连续四次拍下的⼩球位置,已知照相机连续拍照的时间间隔是0.10 s ,照⽚⼤⼩如图中坐标所⽰,⼜知该照⽚的长度与实际背景屏的长度之⽐为1∶4,则:图12(1)由以上信息,可知a 点________(选填“是”或“不是”)⼩球的抛出点. (2)由以上及图信息,可以推算出该星球表⾯的重⼒加速度为________m/s 2. (3)由以上及图信息可以算出⼩球平抛的初速度是________m/s. (4)由以上及图信息可以算出⼩球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)由初速度为零的匀加速直线运动连续相等时间内通过的位移之⽐为1∶3∶5可知,a 点为抛出点.(2)由ab 、bc 、cd ⽔平距离相同可知,a 到b 、b 到c 运动时间相同,设为T ,在竖直⽅向有Δh =gT 2,T =0.10 s ,可求出g =8 m/s 2.(3)由两位置间的时间间隔为0.10 s ,⽔平距离为8 cm ,x =v x t ,得⽔平速度v x =0.8 m/s. (4)b 点竖直分速度为a 、c 间的竖直平均速度,则v yb =4×4×10-22×0.10 m/s =0.8 m/s ,所以v b =v x 2+v yb 2=425m/s.【考点】研究平抛运动的创新性实验【题点】研究平抛运动的创新性实验三、计算题(本题共4⼩题,共40分.要有必要的⽂字说明和解题步骤,有数值计算的要注明单位) 15.(8分)如图13所⽰,马戏团正在上演飞车节⽬.在竖直平⾯内有半径为R 的圆轨道,表演者骑着摩托车在圆轨道内做圆周运动.已知⼈和摩托车的总质量为m ,⼈以v 1=2gR 的速度过轨道最⾼点B ,并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压⼒⼤⼩相差多少?图13答案 6mg解析在B 点,F B +mg =m v 12R ,解得F B =mg ,根据⽜顿第三定律,摩托车对轨道的压⼒⼤⼩F B ′=F B =mg在A 点,F A -mg =m v 22R解得F A =7mg ,根据⽜顿第三定律,摩托车对轨道的压⼒⼤⼩F A ′=F A =7mg 所以在A 、B 两点车对轨道的压⼒⼤⼩相差F A ′-F B ′=6mg . 【考点】向⼼⼒公式的简单应⽤【题点】竖直⾯内圆周运动的动⼒学问题16.(10分)如图14所⽰,⼩球在外⼒作⽤下,由静⽌开始从A 点出发做匀加速直线运动,到B 点时撤去外⼒.然后,⼩球冲上竖直平⾯内半径为R 的光滑半圆环,恰能维持在圆环上做圆周运动通过最⾼点C ,到达最⾼点C 后抛出,最后落回到原来的出发点A 处.不计空⽓阻⼒,试求:(重⼒加速度为g )图14(1)⼩球运动到C 点时的速度⼤⼩; (2)A 、B 之间的距离. 答案 (1)gR (2)2R解析 (1)⼩球恰能通过最⾼点C ,说明此时半圆环对球⽆作⽤⼒,设此时⼩球的速度为v ,则mg =m v 2R所以v =gR(2)⼩球离开C 点后做平抛运动,设从C 点落到A 点⽤时为t ,则2R =12gt 2⼜因A 、B 之间的距离s =v t 所以s =gR ·4Rg=2R . 【考点】竖直⾯内的圆周运动分析【题点】竖直⾯内的“绳”模型17.(10分)如图15所⽰,在⽔平地⾯上固定⼀倾⾓θ=37°、表⾯光滑的斜⾯体,物体A 以v 1=6 m/s 的初速度沿斜⾯上滑,同时在物体A 的正上⽅,有⼀物体B 以某⼀初速度⽔平抛出.物体A 恰好可以上滑到最⾼点,此时物体A 恰好被物体B 击中.A 、B 均可看成质点(不计空⽓阻⼒,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求:图15(1)物体A 上滑到最⾼点所⽤的时间t ; (2)物体B 抛出时的初速度v 2的⼤⼩; (3)物体A 、B 间初始位置的⾼度差h . 答案 (1)1 s(2)2.4 m/s (3)6.8 m解析 (1)物体A 上滑过程中,由⽜顿第⼆定律得 mg sin θ=ma 代⼊数据得a =6 m/s 2设物体A 滑到最⾼点所⽤时间为t ,由运动学公式知0=v 1-at 解得t =1 s(2)物体B 平抛的⽔平位移x =12v 1t cos 37°=2.4 m物体B 平抛的初速度v 2=xt =2.4 m/s(3)物体A 、B 间初始位置的⾼度差 h =12v 1t sin 37°+12gt 2=6.8 m. 【考点】平抛运动中的两物体相遇问题【题点】平抛运动和竖直(或⽔平)运动的相遇问题18.(12分)如图16所⽰,⽔平放置的正⽅形光滑玻璃板abcd ,边长为L ,距地⾯的⾼度为H ,玻璃板正中间有⼀个光滑的⼩孔O ,⼀根细线穿过⼩孔,两端分别系着⼩球A 和⼩物块B ,当⼩球A 以速度v 在玻璃板上绕O 点做匀速圆周运动时,AO 间的距离为l .已知A 的质量为m A ,重⼒加速度为g ,不计空⽓阻⼒.图16(1)求⼩物块B 的质量m B ;(2)当⼩球速度⽅向平⾏于玻璃板ad 边时,剪断细线,则⼩球落地前瞬间的速度多⼤? (3)在(2)的情况下,若⼩球和⼩物块落地后均不再运动,则两者落地点间的距离为多少?答案 (1)m A v 2gl(2)v 2+2gH (3)L 24+l 2+2H v 2g+v L 2Hg解析 (1)以B 为研究对象,根据平衡条件有 F T =m B g以A 为研究对象,根据⽜顿第⼆定律有 F T =m A v 2l联⽴解得m B =m A v 2gl(2)剪断细线,A 沿轨迹切线⽅向飞出,脱离玻璃板后做平抛运动,竖直⽅向,有v y 2=2gH ,解得v y =2gH ,由平抛运动规律得落地前瞬间的速度v ′=v 2+v y 2=v 2+2gH(3)A 脱离玻璃板后做平抛运动,竖直⽅向:H =12gt 2⽔平⽅向:x =L2+v t两者落地的距离s =x 2+l 2= L 24+l 2+2H v 2g+v L 2Hg. 【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤章末检测试卷(⼆)(时间:90分钟满分:100分)⼀、选择题(1~8为单项选择题,9~12为多项选择题.每⼩题5分,共60分)1.在物理学理论建⽴的过程中,有许多伟⼤的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是()A.卡⽂迪许通过实验⽐较准确地测出了引⼒常量的数值B.第⾕通过对天体运动的长期观察,发现了⾏星运动三定律C.开普勒发现了万有引⼒定律D.⽜顿提出了“⽇⼼说”答案A【考点】物理学史的理解【题点】物理学史的理解2.如图1所⽰,⽕星和地球都在围绕着太阳旋转,其运⾏轨道是椭圆.根据开普勒⾏星运动定律可知()图1A.⽕星绕太阳运⾏过程中,速率不变B.地球靠近太阳的过程中,运⾏速率减⼩C.⽕星远离太阳过程中,它与太阳的连线在相等时间内扫过的⾯积逐渐增⼤D.⽕星绕太阳运⾏⼀周的时间⽐地球的长答案D解析根据开普勒第⼆定律:对任意⼀个⾏星⽽⾔,它与太阳的连线在相同时间内扫过的⾯积相等,可知⾏星在此椭圆轨道上运动的速度⼤⼩不断变化,地球靠近太阳过程中运⾏速率将增⼤,选项A、B、C错误.根据开普勒第三定律,可知所有⾏星的轨道的半长轴的三次⽅跟公转周期的⼆次⽅的⽐值都相等.由于⽕星轨道的半长轴⽐较⼤,所以⽕星绕太阳运⾏⼀周的时间⽐地球的长,选项D正确.【考点】开普勒定律的理解【题点】开普勒定律的理解3.2015年12⽉29⽇,“⾼分四号”对地观测卫星升空.这是中国“⾼分”专项⾸颗⾼轨道⾼分辨率、设计使⽤寿命最长的光学遥感卫星,也是当时世界上空间分辨率最⾼、幅宽最⼤的地球同步轨道遥感卫星.下列关于“⾼分四号”地球同步卫星的说法中正确的是()A.该卫星定点在北京上空B.该卫星定点在⾚道上空C.它的⾼度和速度是⼀定的,但周期可以是地球⾃转周期的整数倍D.它的周期和地球⾃转周期相同,但⾼度和速度可以选择,⾼度增⼤,速度减⼩答案 B解析地球同步卫星若在除⾚道所在平⾯外的任意点,假设实现了“同步”,那它的运动轨道所在平⾯与受到的地球的引⼒就不在⼀个平⾯上,且稳定做圆周运动,这是不可能的,因此地球同步卫星相对地⾯静⽌不动,必须定点在⾚道的正上⽅,选项A 错误,B 正确;因为同步卫星要和地球⾃转同步,即它们的T 和ω都相同,根据G Mmr 2=m v 2r =mω2r ,因为ω⼀定,所以r 必须固定,且v 也固定,选项C 、D 错误.【考点】同步卫星规律的理解和应⽤【题点】同步卫星规律的理解和应⽤4.2017年11⽉15⽇,我国⼜⼀颗第⼆代极轨⽓象卫星“风云三号D ”成功发射,顺利进⼊预定轨道.极轨⽓象卫星围绕地球南北两极运⾏,其轨道在地球上空650~1 500 km 之间,低于地球静⽌轨道卫星(⾼度约为36 000 km),可以实现全球观测.有关“风云三号D ”,下列说法中正确的是( ) A.“风云三号D ”轨道平⾯为⾚道平⾯ B.“风云三号D ”的发射速度可能⼩于7.9 km/s C.“风云三号D ”的周期⼩于地球静⽌轨道卫星的周期 D.“风云三号D ”的加速度⼩于地球静⽌轨道卫星的加速度答案 C【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系5.如图2所⽰为北⽃导航系统的部分卫星,每颗卫星的运动可视为匀速圆周运动.下列说法错误的是( )图2A.在轨道运⾏的两颗卫星a 、b 的周期相等B.在轨道运⾏的两颗卫星a 、c 的线速度⼤⼩v aC.在轨道运⾏的两颗卫星b 、c 的⾓速度⼤⼩ωb <ωcD.在轨道运⾏的两颗卫星a 、b 的向⼼加速度⼤⼩a a解析根据万有引⼒提供向⼼⼒,得T =2πr 3GM,因为a 、b 的轨道半径相等,故a 、b 的周期相等,选项A 正确;因v =GMr,c 的轨道半径⼩于a 的轨道半径,故线速度⼤⼩v aGM r 3,c 的轨道半径⼩于b 的轨道半径,故⾓速度⼤⼩ωb <ωc ,选项C 正确.因a n =GMr2,a 的轨道半径等于b 的轨道半径,故向⼼加速度⼤⼩a a =a b ,选项D 错误. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系6.国务院批复,⾃2016年起将4⽉24⽇设⽴为“中国航天⽇”.1970年4⽉24⽇我国⾸次成功发射的⼈造卫星东⽅红⼀号,⽬前仍然在椭圆轨道上运⾏,如图3所⽰,其轨道近地点⾼度约为440 km ,远地点⾼度约为2 060 km ;1984年4⽉8⽇成功发射的东⽅红⼆号卫星运⾏在⾚道上空35 786 km 的地球同步轨道上.设东⽅红⼀号在远地点的加速度为a 1,东⽅红⼆号的加速度为a 2,固定在地球⾚道上的物体随地球⾃转的加速度为a 3,则a 1、a 2、a 3的⼤⼩关系为( )图3A.a 2>a 1>a 3B.a 3>a 2>a 1C.a 3>a 1>a 2D.a 1>a 2>a 3答案 D解析卫星围绕地球运⾏时,万有引⼒提供向⼼⼒,对于东⽅红⼀号,在远地点时有G Mm 1(R +h 1)2=m 1a 1,即a 1=GM (R +h 1)2,对于东⽅红⼆号,有G Mm 2(R +h 2)2=m 2a 2,即a 2=GM(R +h 2)2,由于h 2>h 1,故a 1>a 2,东⽅红⼆号卫星与地球⾃转的⾓速度相等,由于东⽅红⼆号做圆周运动的轨道半径⼤于地球⾚道上物体做圆周运动的半径,根据a n =ω2r ,故a 2>a 3,所以a 1>a 2>a 3,选项D 正确,选项A 、B 、C 错误. 【考点】⾚道物体、同步卫星以及近地卫星运动规律对⽐【题点】⾚道物体、同步卫星以及近地卫星运动规律对⽐7.地球上站着两位相距⾮常远的观察者,都发现⾃⼰的正上⽅有⼀颗⼈造地球卫星相对⾃⼰静⽌不动,则这两位观察者的位置及两颗卫星到地球中⼼的距离是( ) A.⼀⼈在南极,⼀⼈在北极,两颗卫星到地球中⼼的距离⼀定相等 B.⼀⼈在南极,⼀⼈在北极,两颗卫星到地球中⼼的距离可以不等 C.两⼈都在⾚道上,两颗卫星到地球中⼼的距离可以不等 D.两⼈都在⾚道上,两颗卫星到地球中⼼的距离⼀定相等答案 D解析两位相距⾮常远的观察者,都发现⾃⼰正上⽅有⼀颗⼈造地球卫星相对⾃⼰静⽌不动,说明此卫星为地球同步卫星,运⾏轨道为位于地球⾚道平⾯内的圆形轨道,距离地球的⾼度约为36 000 km ,所以两个⼈都在⾚道上,两卫星到地球中⼼的距离⼀定相等,故D 正确.8.2015年9⽉14⽇,美国的LIGO 探测设施接收到⼀个来⾃GW150914的引⼒波信号,此信号是由两个⿊洞的合并过程产⽣的.如果将某个双⿊洞系统简化为如图4所⽰的圆周运动模型,两⿊洞绕O 点做匀速圆周运动.在相互强⼤的引⼒作⽤下,两⿊洞间的距离逐渐减⼩,在此过程中,两⿊洞做圆周运动的( )图4A.周期均逐渐增⼤B.线速度均逐渐减⼩C.⾓速度均逐渐增⼤D.向⼼加速度均逐渐减⼩答案 C解析根据G M 1M 2L 2=M 14π2R 1T 2,解得M 22,同理可得M 1=4π2L 2GT 2R 2,所以M 1+M 2=4π2L 2GT 2(R 1+R 2)=4π2L 3GT 2,当(M 1+M 2)不变时,L 减⼩,则T 减⼩,即双星系统运⾏周期会随间距减⼩⽽减⼩,故A错误;根据G M 1M 2L 2=M 1v 12R 1,解得v 1=GM 2R 1L 2,由于L 平⽅的减⼩⽐R 1和R 2的减⼩量⼤,则线速度增⼤,故B 错误;⾓速度ω=2πT ,结合A 可知,⾓速度增⼤,故C 正确;根据G M 1M 2L 2=M 1a 1=M 2a 2知,L 变⼩,则两星的向⼼加速度增⼤,故D 错误.9.⼀些星球由于某种原因⽽发⽣收缩,假设该星球的直径缩⼩到原来的四分之⼀,若收缩时质量不变,则与收缩前相⽐( )A.同⼀物体在星球表⾯受到的重⼒增⼤到原来的4倍B.同⼀物体在星球表⾯受到的重⼒增⼤到原来的16倍C.星球的第⼀宇宙速度增⼤到原来的4倍D.星球的第⼀宇宙速度增⼤到原来的2倍答案 BD解析在星球表⾯由重⼒等于万有引⼒mg =G MmR 2可知,同⼀物体在星球表⾯受到的重⼒增⼤为原来的16倍,选项A 错误,B 正确.由第⼀宇宙速度计算式v =GMR可知,星球的第⼀宇宙速度增⼤为原来的2倍,选项C 错误,D 正确. 【考点】三个宇宙速度的理解【题点】第⼀宇宙速度的理解10.设地⾯附近重⼒加速度为g 0,地球半径为R 0,⼈造地球卫星的圆形轨道半径为R ,那么以下说法中正确的是( )A.卫星运⾏的向⼼加速度⼤⼩为g 0R 02R 2B.卫星运⾏的速度⼤⼩为R 02g 0R C.卫星运⾏的⾓速度⼤⼩为R 3R 02g 0D.卫星运⾏的周期为2πR 3R 02g 0答案 ABD解析由G Mm R 2=ma 向,得a 向=G M R 2,⼜g 0=GM R 02,故a 向=g 0R 02R 2,A 对.⼜a 向=v 2R ,v =a 向R =g 0R 02R,B 对.ω=a 向R=g 0R 02R 3,C 错.T =2πω=2πR 3g 0R 02,D 对. 【考点】天体运动规律分析【题点】应⽤万有引⼒提供向⼼⼒分析天体运动规律11.⼀宇宙飞船绕地⼼做半径为r 的匀速圆周运动,飞船舱内有⼀质量为m 的⼈站在可称体重的台秤上.⽤R 表⽰地球的半径,g 表⽰地球表⾯处的重⼒加速度,g ′表⽰宇宙飞船所在处的重⼒加速度,F N 表⽰⼈对台秤的压⼒,则下列关系正确的是( ) A.g ′=0 B.g ′=gR 2r 2C.F N =0D.F N =m Rrg答案 BC解析处在地球表⾯处的物体所受重⼒近似等于万有引⼒,所以有mg =G MmR 2,即GM =gR 2,对处在轨道半径为r 的宇宙飞船中的物体,有mg ′=G Mm r 2,即GM =g ′r 2,所以有g ′r 2=gR 2,即g ′=gR 2r 2,B 正确,A 错误;当宇宙飞船绕地⼼做半径为r 的匀速圆周运动时,万有引⼒提供向⼼⼒,飞船及飞船内物体处于完全失重状态,所以对台秤的压⼒为零,C 正确,D 错误. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系12.为了探测X 星球,载着登陆舱的探测飞船在以该星球中⼼为圆⼼、半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2的圆轨道上运动,此时登陆舱的质量为m 2,则( ) A.X 星球的质量为M =4π2r 13GT 12B.X 星球表⾯的重⼒加速度为g =4π2r 1T 12C.登陆舱在r 1与r 2轨道上运动时的速度⼤⼩之⽐为v 1v 2=m 1r 2m 2r 1 D.登陆舱在半径为r 2轨道上做圆周运动的周期为T 2=T 1r 23r 13答案 AD解析探测飞船做圆周运动时有G Mm 1r 12=m 1(2πT 1)2r 1,解得M =4π2r 13GT 12,选项A 正确;因为星球半径未知,所以选项B 错误;根据G Mmr 2=m v 2r ,得v =GMr ,所以v 1v 2=r 2r 1,选项C 错误;根据开普勒第三定律r 13T 12=r 23T 22,得T 2=T 1r 23r 13,选项D 正确. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系⼆、计算题(本题共4⼩题,共40分.要有必要的⽂字说明和解题步骤,有数值计算的要注明单位) 13.(8分)宇航员在某星球表⾯以初速度v 0竖直向上抛出⼀个物体,物体上升的最⼤⾼度为h .已知该星球的半径为R ,且物体只受该星球的引⼒作⽤.求: (1)该星球表⾯的重⼒加速度;(2)从这个星球上发射卫星的第⼀宇宙速度. 答案 (1)v 022h(2)v 0R 2h解析 (1)设该星球表⾯的重⼒加速度为g ′,物体做竖直上抛运动,由题意知v 02=2g ′h ,得g ′=v 022h.(2)卫星贴近星球表⾯运⾏,则有mg ′=m v 2R ,得v =g ′R =v 0R 2h. 【考点】万有引⼒定律和其他⼒学问题的综合应⽤【题点】万有引⼒与其他⼒学的综合问题14.(10分)⼈们在太阳系外发现了⾸颗“宜居”⾏星,其质量约为地球质量的6.4倍.已知⼀个在地球表⾯质量为50 kg 的⼈在这个⾏星表⾯所受的重⼒约为800 N ,地球表⾯处的重⼒加速度为10 m/s 2.求: (1)该⾏星的半径与地球的半径之⽐;(2)若在该⾏星上距⾏星表⾯2 m ⾼处,以10 m/s 的⽔平初速度抛出⼀只⼩球(不计任何阻⼒),则⼩球的⽔平射程是多⼤?答案(1)2∶1 (2)5 m解析 (1)在该⾏星表⾯处,有G ⾏=mg ⾏,可得g ⾏=16 m/s 2.在忽略⾃转的情况下,物体所受的万有引⼒等于物体所受的重⼒,得GMm R 2=mg ,有R 2=GMg ,故R ⾏2R 地2=M ⾏g 地M 地g ⾏=4,所以R ⾏R 地=2∶1.(2)由平抛运动规律,有h =12g ⾏t 2,x =v t ,故x =v2hg ⾏,代⼊数据解得x =5 m. 15.(10分)“嫦娥⼀号”探⽉卫星在空中的运动可简化为如图5所⽰的过程,卫星由地⾯发射后,经过发射轨道进⼊停泊轨道,在停泊轨道经过调速后进⼊地⽉转移轨道,再次调速后进⼊⼯作轨道.已知卫星在停泊轨道和⼯作轨道运⾏的半径分别为R 和R 1,地球半径为r ,⽉球半径为r 1,地球表⾯重⼒加速度为g ,⽉球表⾯重⼒加速度为g6.求:图5(1)卫星在停泊轨道上运⾏的线速度⼤⼩; (2)卫星在⼯作轨道上运⾏的周期. 答案 (1)rg R (2)2πR 1r 16R 1g解析 (1)设卫星在停泊轨道上运⾏的线速度为v ,卫星做圆周运动的向⼼⼒由地球对它的万有引⼒提供,有G mMR 2=m v 2R ,且有G m ′M r 2=m ′g ,解得v =r g R. (2)设卫星在⼯作轨道上运⾏的周期为T ,则有G mM 1R 12=m 2πT 2R 1,⼜有G m ″M 1r 12=m ″g 6,解得T =2πR 1r 16R 1g. 【考点】天体运动规律分析【题点】应⽤万有引⼒提供向⼼⼒分析天体运动规律。
一、选择题1.已知小船在静水中的速度是河水流速的2倍,设河水匀速流动,小河两条河岸互相平行,若小船渡过小河的最短时间为t,则小船以最短位移过河需要的时间为()A.2t B.3t C.233t D.332t2.小王和小张两人从一侧河岸的同一地点各自以大小恒定的速度向河对岸游去,小王以最短时间渡河,小张以最短距离渡河,结果两人抵达对岸的地点恰好相同,若小王和小张渡河所用时间的比值为k,则小王和小张在静水中游泳的速度的比值为()A.k B.kkC.k D.2k3.在一次运动会上某运动员在铅球比赛中成绩是9.6m,图示为他在比赛中的某个瞬间,不考虑空气阻力,下列说法正确的是()A.刚被推出的铅球只受到重力B.9.6m是铅球的位移C.铅球推出去后速度变化越来越快D.该运动员两次成绩一样,则铅球位移一定相同4.如图所示,水平向右运动的小汽车通过轻绳和光滑定滑轮拉小船,使小船向河岸匀速靠近,假设该过程中小船受到的水的阻力不变。
则该过程中()A.小汽车向右做匀速运动B.小汽车向右做减速运动C.轻绳受到的拉力保持不变D.小船受到的浮力保持不变5.排球比赛中的发球是制胜的关键因素之一,提高发球质量的方法主要是控制适当的击球高度H和击球速度,以达到较小的落地角度θ(落地时速度方向与水平地面的夹角)。
若将发出的排球的运动看成是平抛运动,且排球落在对方场地内,排球击出时的水平速度为v0,击球位置到本方场地底线的距离为l,如图所示。
下列判断中除给出的条件变化外,其他条件不变,忽略空气阻力,则下列说法正确的是()A.H越大,排球落地的角度θ越小B.接球高度一定时,H越大,对手的反应时间越长C.同时增大l和v0,排球落地的角度θ增大D.同时增大H和l可减小排球落地的角度θ6.如图所示,斜面AB倾角为θ,小球a从斜面顶端以v0水平抛出,同时,小球b从斜面底端B的正上方与小球a等高处以速度2v0水平抛出两球恰好在斜面上的C点相遇(图中未画出)。
3. 在民族运动会上有一个骑射工程 假设运发动骑马奔跑的速度为 近距离为 d, 那么〔〕, 运发动骑在奔跑的马背上 , 弯弓放箭射击侧向的目标 v 2, 跑道离固定目标的最, 高中物理学习材料v 1, 运发动静止时射出的弓箭速度为dv 2A. 要想命中目标且箭在空中飞行时间最短B. 要想命中目标且箭在空中飞行时间最短 , 运发动放箭处离目标的距离为v 12021——2021 学年度第二学期模块测验, 运发动放箭处离高一物理试卷d v 12 v 22 目标的距离为v 2考前须知:1.本试卷分第一卷和第二卷两局部。
第一卷为选择题,共dC.箭射到靶的最短时间为52 分,请将正确答案填 v 2涂到答题卡上;第二卷为非选择题,共 定位置。
48 分,总分值 100 分,请将答案写到答题纸的指 2 2v1v 2D.只要击中侧向的固定目标 , 箭在空中运动合速度的大小4. 一个物体以初速度 v 0 从 A 点开始在光滑程度面上运动v =, 一个程度力作用在物体上 , 物体运2.测验时间为 90 分钟。
动轨迹为图中实线所示 . 图中 B 为轨迹上的一点 , 虚线是过 A 、B 两点并与该轨迹相切的直线, 3.试卷卷面分 3 分,如果答题不标准,将分等级1、2、3 分扣除。
虚线和实线将程度面划分为图示的 5 个区域 , 那么关于施力物体位置的判断, 下面说法中正确第一卷一.选择题。
〔每题至少有一个答案是正确的,选对得 得分〕的是 ( )4 分,漏选得 2 分,错选或不选不A. 如果这个力是引力 , 那么施力物体必然在 (4) 区域B. 如果这个力是引力 , 那么施力物体必然在 (2) 区域C.如果这个力是斥力 , 那么施力物体必然在 (2) 区域D.如果这个力是斥力 , 那么施力物体必然在 (3) 区域 5. 在平坦的垒球运动场上 , 击球手挥动球棒将垒球程度击出计空气阻力 , 那么 〔 〕1. 关于运动的性质,以下说法中正确的选项是A. 曲线运动必然是变速运动 〔 〕B. 变速运动必然是曲线运动 , 垒球飞行一段时间后落地 . 假设不C.曲线运动必然是变加速运动D.物体加速度大小、速度大小都不变的运动必然是直线运动A. 垒球落地时瞬时速度的大小仅由初速度决定2. 关于运动的合成和分解,下述说法中正确的选项是 A. 合运动的速度大小等于分运动的速度大小之和 B. 两个分运动是直线运动,那么合运动必然是直线运动C.合运动和分运动具有等时性〔 〕B. 垒球落地时瞬时速度的标的目的仅由击球点离地面的高度决定C.垒球在空中运动的程度位移仅由初速度决定D.垒球在空中运动的时间仅由击球点离地面的高度决定6. 如下图 , 在同一竖直面内 , 小球 a 、b 从高度不同的两点 , 别离以初速度 v 和 v 沿程度方a b D.假设合运动是曲线运动,那么其分运动中至少有一个是曲线运动向抛出 , 颠末时间 t 和 t 后落到与两抛出点程度距离相等P 点. 假设不计空气阻力 , 以下关a b3 2B= : 1式正确的选项是 ( )D .它们的运行角速度之比为A:A.t >t ,v <v 11.通信卫星又叫同步卫星,下面关于同步卫星的说法中正确的选项是A 、所有的地球同步卫星都位于地球的赤道平面内B 、所有的地球同步卫星的质量都相等a b a a a b bbb B.t C.t a >t b ,v >v <v a <t b ,vD.t <t ,v >vC 、所有的地球同步卫星绕地球作匀速圆周运动的角速度都相等D 、所有的地球同步卫星离地心的距离都相等a b a 7. 长为 L 的轻杆 , 一端固定一个小球 , 另一端固定在光滑的程度轴上周运动 , 关于最高点的速度 v, 以下说法中正确的选项是〔〕 , 使小球在竖直面内做圆12.发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道 2 运 gLA.v 的极小值为B.v 由零逐渐增大 , 向心力也增大 行,最后再次点火,将卫星送人同步圆轨道 3。
选择题1、关于平抛运动,下列说法正确的是:A、平抛运动是匀变速曲线运动B、平抛运动的速度大小不变C、平抛运动的加速度方向时刻改变D、平抛运动的轨迹是直线解析:平抛运动只受重力作用,加速度恒定为重力加速度g,且方向始终竖直向下,因此是匀变速曲线运动。
(答案)A2、一个物体在水平面上做匀速直线运动,若突然撤去外力,物体将:A、立即停止运动B、继续做匀速直线运动C、速度逐渐减小至零D、速度逐渐增大解析:根据牛顿第一定律,若物体不受外力作用,将保持静止状态或匀速直线运动状态不变。
因此,物体将继续做匀速直线运动。
(答案)B3、关于向心力,下列说法正确的是:A、向心力是物体受到的合力B、向心力是物体受到的一个新的力C、向心力不做功D、向心力改变物体速度的大小解析:向心力是使物体保持圆周运动所需的力,它并不是物体受到的新的力,而是由其他力(如重力、弹力等)提供的合力在指向圆心方向上的分力。
向心力始终与物体速度方向垂直,因此不做功,只改变物体速度的方向,不改变速度的大小。
(答案)C4、关于万有引力定律,下列说法正确的是:A、万有引力定律只适用于天体之间B、万有引力定律适用于任何两个可以看作质点的物体之间C、万有引力定律中的G是一个恒定的值,与两物体间的距离无关D、万有引力定律中的G与两物体的质量有关解析:万有引力定律适用于任何两个可以看作质点的物体之间,且G是万有引力常数,与两物体的质量和距离都无关。
(答案)B5、关于功和能的关系,下列说法正确的是:A、物体做功越多,具有的能量就越大B、物体具有的能量越大,就一定做功越多C、做功是能量转化的量度D、功和能是两个完全无关的物理量解析:功是能量转化的量度,即做了多少功,就有多少能量从一种形式转化为另一种形式。
但物体做功多,并不意味着它具有的能量就大,因为能量是状态量,而功是过程量。
(答案)C6、关于机械能守恒定律,下列说法正确的是:A、只有重力做功时,物体的机械能才守恒B、只有弹簧弹力做功时,物体的机械能也守恒C、只有重力和弹簧弹力做功时,物体的机械能守恒D、只要合外力做功为零,物体的机械能就守恒解析:机械能守恒定律的条件是只有重力或系统内弹力做功时,物体的机械能才守恒。
A C地球卫星高一物理 下学期期末测试卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题意的。
)1.在光滑水平面上,一质量为m 的小球在绳的拉力作用下做半径为r 的匀速圆周运动,小球运动的线速度大小为v ,则绳的拉力F 大小为A .rvm B . r v m 2 C .mvr D .mvr 22.如图所示,一个物块在与水平方向成α角的恒定推力F 的作用下,沿水平面向右运动一段距离l 。
在此过程中,恒力F 对物块所做的功为A .FlB .Fl sin αC .Fl cos αD .Fl tan α3.一颗运行中的人造地球卫星,若它到地心的距离为r 时,所受万有引力为F ,则它到地心的距离为2r 时,所受万有引力为A .41F B .21F C .4F D .2F 4.将一小球以3m/s 的速度从0.8m 高处水平抛出,不计空气阻力,取g =10m/s 2,小球落地点与抛出点的水平距离为A .0.8mB .1.2mC .1.6mD .2.0m 5.如图所示,一卫星绕地球运动,运动轨迹为椭圆, A 、B 、C 、D 是轨迹上的四个位置,其中A 点距离地球最近,C 点距离地球最远。
卫星运动速度最大的位置是A .A 点B .B 点C .C 点D .D 点6.质量是2g 的子弹,以300m/s 的速度垂直射入厚度为5cm 的木板,射穿后的速度为100m/s 。
则子弹射穿木板过程中受到的平均阻力大小为A .1000NB .1600NC .2000ND .2400N 7.如图所示,一半圆形碗,内径为R ,内壁光滑。
将一质量为m 的小球从碗边缘A 点由静止释放,当球滑到碗底的最低点B 时,球对碗底的压力大小为A .mgB .2mgC .3mgD .4mg 8.在一根两端封闭的玻璃管中注满清水,水中放一个圆柱形的红蜡块R ,(蜡块的直径略小于玻璃管的内径),轻重适宜,它能在玻璃管内的水中匀速上升。
高一物理必修二、三章单元复习及测试题第二、三章 归纳·总结·专题一、单元知识网络 物体的运动:运动的描述:⎪⎩⎪⎨⎧想化的物理模型有质量的点,是一种理质点:用来代替物体的时,用来做参考的物体参考系:描述物体运动其他物体位置的变化机械运动:物体相对于基本概念的物理量加速度的区别速度、速度的变化量与关系不确定方向的化的方向相同,与速度矢量:其方向与速度变位:(速度的变化率),单定义:度变化快慢的物理量物理意义:表示物体速加速度速度与速率平均速度与瞬时速度,矢量位(位置的变化率),单定义:动的快慢物理意义:表示物体运速度位置的有向线段表示变化,用从初位置到末位移:表示物体位置的描述运动⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆=⎪⎪⎪⎩⎪⎪⎪⎨⎧=2s /m t v a s /m tx v⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧-⎪⎪⎩⎪⎪⎨⎧-加速度大小等向、负方向),⑤比较断运动方向(正方速、非匀变速),④判质(静止、匀速、匀变),③判断运动性速度,②求位移(面积应用:①确定某时刻的的变化规律意义:表示速度随时间图像等确定位移或时间,③比较运动快慢,④向(正方向、负方向),②判断运动方(匀速、变速、静止)应用:①判断运动性质的变化规律意义:表示位移随时间图像图像t v t x匀变速直线运动的研究: 1. 匀变速直线运动①⎩⎨⎧共线与恒定,化相等任意相等时间内速度变运动特点0v a a②运动规律:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==-+=+=t2v v x ax 2v v at 21t v x at v v t 0202t 200t 基本公式⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+==+==∆2v v v v 2v v v aT x 2t 202x2tt 02推论⎪⎪⎪⎩⎪⎪⎪⎨⎧----=-====)1N N ()23()12(1t t t t )1N 2(531s s s s n 941s s s s n321v v v v 0v N III II I N III II I 2n 321n 3210::::::::::::::::::::::::::::::::)几个比例式(只适用于2. ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==∆⎩⎨⎧⎪⎩⎪⎨⎧的应用,照片分析原理闪光照相纸带分析使用原理打点计时器探究匀变速直线运动的实验2/t 2v v aT x二. 方法归纳总结1. 科学抽象——物理模型思想这是物理学中常用的一种方法。
人教版高中物理必修二寒假复习题含答案(解析版)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷一、单选题(共10小题,每小题4.0分,共40分)1.如图所示,一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mgB.mω2RC.D.【答案】C【解析】设其他土豆对该土豆的作用力为F,受力分析知该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=,而F向=mω2R,所以F=,C正确.2.如图所示,一质量为m、边长为a的正方体物块与地面间的动摩擦因数为μ=0.1.为使它水平移动距离a,可以用将它翻倒或向前缓慢平推两种方法,则下列说法中正确的是()A.将它翻倒比平推前进做功少B.将它翻倒比平推前进做功多C.两种情况做功一样多D.两种情况做功多少无法比较【答案】B【解析】使物块水平移动距离a,若将它翻倒一次,需要克服重力做功,使其重心位置由离地h1=增加到h2=a,所以至少需要做功W1=mg(h2-h1)=mg(-1)a;而缓慢平推需要做功W2=μmga=0.1mga<W1.3.“飞流直下三千尺,疑是银河落九天”是唐代诗人李白描写庐山瀑布的佳句.瀑布中的水从高处落下的过程中()A.重力势能增加B.重力势能减少C.重力对水做的功大于水的重力势能的改变量D.重力对水做的功小于水的重力势能的改变量【答案】B【解析】瀑布中的水从高处落下的过程中重力做正功,重力势能减小,重力对水做的功等于水的重力势能的改变量.4.质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为()A.0B.mgC.3mgD.5mg【答案】C【解析】当小球以速度v经内轨道最高点时,小球仅受重力,重力充当向心力,有mg =m当小球以速度2v经内轨道最高点时,小球受重力mg和向下的支持力FN,如图所示,合力充当向心力,有mg+FN=m;又由牛顿第三定律得到,小球对轨道的压力与轨道对小球的支持力相等,FN′=FN;由以上三式得到,FN′=3mg.故C正确.5.如图所示,直线AB和CD是彼此平行且笔直的河岸,若河水不流动,小船船头垂直河岸由A点匀速驶向对岸,小船的运动轨迹为直线P.若河水以稳定的速度沿平行河岸方向流动,且整个河流中水的流速处处相等,现仍保持小船船头垂直河岸由A点匀加速驶向对岸,则小船实际运动的轨迹可能是图中的()A.直线B.曲线QC.曲线SD.直线R【答案】C【解析】小船在流动的河水中行驶时,同时参与两个方向的分运动,一是沿水流方向的匀速直线运动,二是沿垂直于河岸方向的匀加速直线运动;沿垂直于河岸方向小船具有加速度,由牛顿第二定律可知,小船所受的合外力沿该方向;根据物体做曲线运动时轨迹与其所受合外力方向的关系可知,小船的运动轨迹应弯向合外力方向,故轨迹只可能是S.即只有选项C正确.6.在匀速下降的电梯顶部,用细线吊一物体,用火烧断悬线后,物体落至地板需时间t1;在匀速上升的同一电梯顶部,也用细线吊一物体,用火烧断悬线后,重物落至地板需时间t2,则这两种情况下的时间大小关系是()A.t1=t2B.t1<t2C.t1>t2D.无法确定【答案】A【解析】物体相对地面,第一种情景是竖直下抛,第二种是竖直上抛,均可以视为一个自由落体运动和竖直方向的匀速运动的合成.剪断细线瞬间,物体相对电梯的初速度均为零.若选电梯为参考系,则物体均做自由落体运动,运动时间均为t=.7.下面四个公式中an表示匀速圆周运动的向心加速度,v表示匀速圆周运动的线速度,ω表示匀速圆周运动的角速度,T表示周期,r表示匀速圆周运动的半径,则下面四个式子中正确的是()①an=②an=ω2r③an=ωv④an=T2A.①②③B.②③④C.①③④D.①②④【答案】A【解析】向心力加速度an==ω2r=vω=r,故①②③对,④错.故选A.8.位于赤道上随地球自转的物体P和地球的同步通信卫星Q均在赤道平面上绕地心做匀速圆周运动.已知地球同步通信卫星的轨道半径为r,地球半径为R,地球表面的重力加速度为g.仅利用以上已知条件不能求出()A.地球同步通信卫星的运行速率B.第一宇宙速度C.赤道上随地球自转的物体的向心加速度D.万有引力常量【答案】D【解析】地球同步卫星的周期等于地球自转周期T=24 h,地球同步卫星的速率:v同步=,A正确;根据第一宇宙速度G=m,且G=mg,可得v=,可求解第一宇宙速度,B正确;根据a=()2R可求解赤道上随地球自转的物体的向心加速度,C正确;现有条件无法求出万有引力常量,D错误;选D.9.如图所示,圆环以它的直径为轴做匀速转动,圆环上A、B两点的线速度大小分别为vA、vB,角速度大小分别为ωA、ωB,则()A.vA =vBωA=ωBB.vA ≠ vBωA≠ ωBC.vA=vBωA≠ ωBD.vA≠ vBωA=ωB【答案】D【解析】两点共轴转动,角速度相等,rA>rB,根据v=rω知,vA>vB,故选:D10.如图所示,靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍.A,B分别为大、小轮边缘上的点,C为大轮上一条半径的中点.则()A.两轮转动的角速度相等B.大轮转动的角速度是小轮的2倍C.质点加速度aA=2aBD.质点加速度aB=4aC【答案】D【解析】大小两轮靠摩擦传动而不打滑,则边缘处线速度相等,vA=vB,而角速度ω=,所以ωA∶ωB=RB∶RA=1∶2,A、B错.加速度a=ω2R,所以aA∶aB=ωRA∶ωRB=1∶2,答案C错.同轴转动各点角速度相等ωA=ωC,aB∶aC=ωRB∶ωRC=ωRB∶ωRA=4∶1,答案D对.二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆.设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()A.T卫<T月B.T卫>T月C.T卫<T地D.T卫=T地【答案】A C【解析】因r月>r同>r卫,由开普勒第三定律=k可知,T月>T同>T卫,又同步卫星的周期T同=T地,故有T月>T地>T卫,选项A、C正确.12.(多选)在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到vmax后,立即关闭发动机直至静止,v-t图象如图所示,设汽车的牵引力为F,受到的摩擦力为Ff,全程中牵引力做功为W1,克服摩擦力做功为W2,则()A.F∶Ff=1∶3B.W1∶W2=1∶1C.F∶Ff=4∶1D.W1∶W2=1∶3【答案】B C【解析】对汽车运动的全过程,由动能定理得:W1-W2=ΔEk=0,所以W1=W2,选项B正确,选项D错误;由图象知x1∶x2=1∶4,由动能定理得Fx1-Ffx2=0,所以F∶Ff=4∶1,选项A错误,选项C正确.13.(多选)一物体在xOy直角坐标平面内运动的轨迹如图所示,其中初速度方向沿虚线方向,下列判断正确的是()A.物体可能受沿x轴正方向的恒力作用B.物体可能受沿y轴负方向的恒力作用C.物体可能受沿虚线方向的恒力作用D.物体不可能受恒力作用【答案】A B【解析】根据物体做曲线运动的条件可知A、B两项都正确.14.(多选)火星表面特征非常接近地球,适合人类居住.近期,我国宇航员王跃正与俄罗斯宇航员一起进行“模拟登火星”实验活动.已知火星半径是地球半径的,质量是地球质量的.地球表面重力加速度是g,若王跃在地面上能向上跳起的最大高度是h,在忽略地球、火星自转影响的条件下,下述分析正确的是()A.王跃在火星表面受到的万有引力是在地球表面受到的万有引力的倍B.火星表面的重力加速度是C.火星的第一宇宙速度是地球第一宇宙速度的倍D.王跃以相同的初速度在火星上起跳时,可跳的最大高度是【答案】B D【解析】根据万有引力定律的表达式F=G,已知火星半径是地球半径的,质量是地球质量的,所以王跃在火星表面受的万有引力是在地球表面受万有引力的倍.故A错误.由G=mg得到g=G.已知火星半径是地球半径的,质量是地球质量的,火星表面的重力加速度是.故B正确.由G=m,得v=已知火星半径是地球半径的,质量是地球质量的,火星的第一宇宙速度是地球第一宇宙速度的倍.故C错误.王跃以v0在地球起跳时,根据竖直上抛的运动规律得出:可跳的最大高度是h=,由于火星表面的重力加速度是,王跃以相同的初速度在火星上起跳时,可跳的最大高度h′==h.故D正确.第II卷三、实验题(共1小题,每小题10.0分,共10分)15.在“验证机械能守恒”的实验中,有下述A至F六个步骤:A.将打点计时器固定在铁架台上B.接通电源,再松开纸带,让重物自由下落C.取下纸带,更换新纸带,重新做实验D.将重物固定在纸带的一端,让纸带穿过打点计时器,用手提着纸带,让重物靠近打点计时器E.选择一条纸带,用刻度尺测出重物下落的高度h1、h2、h3、…hn,计算出对应瞬时速度v1、v2、v3…vnF.分别计算出mv和mghn,在误差范围内看是否相等(1)以上实验步骤按合理的操作步骤排序应是__________________.(2)计算表明,总有mv________mghn(填“>” “=”或“<”),原因是__________________(3)实验操作正确,能得出实验结论_________________________________________________【答案】(1) ADBCEF(2)<实验存在空气阻力、纸带与打点计时器间有摩擦(3)实验误差允许范围内,重物减少的重力势能等于重物增加的动能,即验证了机械能守恒【解析】(1)根据先安装设备,再进行实验,最后数据处理的整体思考,可知实验步骤为:A、D、B、C、E、F.(2)在该实验中一定是动能的增加量小于重力势能的减小量,原因是重物下落过程中需要克服摩擦阻力做功,即重力势能没有全部转化为重物的动能.(3)实验结论:实验误差允许范围内,重物减少的重力势能等于重物增加的动能,即验证了机械能守恒四、计算题(共3小题,每小题10.0分,共30分)16.如图所示,ABC是固定的倾角为θ的斜面,其高AB=h,在其顶端A点,有一个小球以某一初速度水平飞出(不计空气阻力),恰好落在其底端C点.已知重力加速度为g,求:(1)小球飞出的初速度;(2)小球落在C点时的竖直分速度大小、合速度大小及其方向正切值.【答案】(1)小球飞出的速度为;(2)小球落在C点时的竖直分速度大小为,合速度的大小为,速度与水平方向的正切值为2tanθ.【解析】(1)根据h=得,t=,则小球飞出的初速度.(2)小球落在C点时的竖直分速度.根据平行四边形定则知,合速度大小.设速度方向与水平方向的夹角为α,17.如图甲,质量为m的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g.(1)图甲中,在线的另一端施加一竖直向下的大小为F的恒力,木块离开初始位置O由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P点时,速度大小为v,O、P两点间距离为s.求木块拉至P点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M的物块,如图乙所示,木块也从初始位置O由静止开始向右运动,求当木块通过P点时的速度大小.【答案】(1)Fs-mv2(2)【解析】(1)用力F拉木块至P点时,设此时弹簧的弹性势能为Ep,根据功能关系有Fs=Ep+mv2①解得:Ep=Fs-mv2②(2)悬挂物块M时,当木块运动到P点时,弹簧的弹性势能仍为Ep,设木块的速度为v′,由机械能守恒定律得Mgs=Ep+(m+M)v′2③联立②③解得v′=18.如图所示,质量为m=0.5 kg的小球从距离地面高H=5 m处自由下落,到达地面时恰能沿凹陷于地面的半圆形槽运动,半圆形槽的半径R=0.4 m,小球到达槽最低点时速率恰好为10 m/s,并继续沿槽运动直到从槽左端边缘飞出且沿竖直方向上升、下落,如此反复几次,设摩擦力大小恒定不变,求:(1)小球第一次飞出半圆槽上升距水平地面的高度h为多少;(2)小球最多能飞出槽外几次.(g取10 m/s2,空气阻力不计)【答案】(1)4.2 m(2)6次【解析】(1)对小球从下落到最低点的过程,设克服摩擦力做功为Wf,由动能定理得mg(H+R)-Wf=mv2-0.设小球从下落到第一次飞出到达最高点距地面高为h,由动能定理得mg(H-h)-2Wf=0-0.解得h=4.2 m.(2)设小球恰好能飞出n次,则由动能定理得mgH-2nWf=0-0解得n====6.25次应取n=6次.。
高中物理学习材料
(精心收集**整理制作)
信丰二中
于都实验中学 2011-2012学年度第二学期三校联考
瑞金二中
高一年级物理试卷 时间:2012.4
一、选择题(每题4分,共40分,每题给出的四个选项中,至少有一个是符合题目要求
的。全部选对的得4分,选对但不全的得2分,有选错的得0分)
1在曲线运动中,下列说法错误的是( )
A.速度v大小可能不变 B.加速度a大小可能不变
C.合力F大小可能不变 D.位移s始终变大
2.如图所示,红蜡块能在玻璃管的水中匀速上升,若红蜡块在
A
点匀速上升的同时,使玻璃管水平向右作匀加速直线运动,则红
蜡块实际运动的轨迹是图中的( )
A.直线R B.曲线p C.曲线 Q D.无法确定
3如右图所示,两小球a、b从直角三角形斜面的顶端以相同
大小的水平速率v0向左、向右水平抛出,分别落在两个斜面
上,三角形的两底角分别为30°和60°,则两小球a、b运动时
间之比为( )
A.1∶3 B.1∶3 C. 3∶1 D.3∶1
4.如图所示,质量为M的物体穿在离心机的水平光滑滑杆上,
M用绳子与另一质量为m的物体相连。当离心机以角速度ω
旋转时,M离转轴轴心的距离是r。当ω增大到原来的2倍时,
调整M离转轴的距离,使之达到新的稳定状态,则:( )
A.M受到的向心力增大 B.M的线速度减小到原来的1/2
C.M离转轴的距离是 r/2 D.M离转轴的距离是r/4
5.对于万有引力定律的表达式F=G221rmm,下面说法中正确的是( )
A.公式中G为引力常量,它是人为规定的, 而不是由实验测得的.
B.当r趋近于零时,万有引力趋近于无穷大
C.m1与m2受到的引力总是大小相等的,而与m1,m2是否相等无关
r
M
m
D.m1与m2受到的引力总是大小相等,方向相反的,是一对平衡力
6.如右图所示,a、b、c是地球大气层外圆形轨道上运行的三
颗人造地球卫星,a、b质量相同,且小于c的质量,则( )
A.b所需向心力最大;
B.b、c周期相等,且大于a的周期.
C.b、c向心加速度相等,且大于a的向心加速度;
D.b、c的线速度大小相等,且小于a的线速度.
7.地球半径为R,在离地面h高度处与离地面H高度处的重力
加速度之比为( )
A.22hH B.hH C.HRhR D.22)()(hRHR
8.下列各组数据中,能够估算出月球质量的是( )
A.月球绕地球运行的周期及月地中心间的距离
B.绕月球表面运行的飞船的周期及月球的半径
C.绕月球表面运行的飞船的周期及线速度
D.月球表面的重力加速度
9.下列几种情况下力F都对物体做了功:①水平推力F推着质量为m的物体在光滑水平
面上前进了s;②水平推力F推着质量为2m的物体在粗糙水平面上前进了s;③沿倾角
为θ的光滑斜面的推力F将质量为m的物体向上推了s。下列说法中正确的是( )
A.③做功最多 B.②做功最多 C.做功都相等 D.不能确定
10.从空中以40m/s的初速度平抛一重为10N的物体。物体在空中运动3s落地,不计空
气阻力,取g=10m/s2,则物体落地前瞬间,重力的瞬时功率为( )
A.300W B.400 W C.500W D.700W
二、实验题
11.(8分)以下是几位同学对平抛运动的规律的探究,请据要求回答问题。
(1)甲同学设计了如图A所示的演示实验,来研究平抛运动。两球置于同一高度,用力
快速击打右侧挡板后,他观察到的现象是__________________
__,这说明______________________________
___。
(2)乙同学设计了如图B的演示实验,来研究平抛运动。轨道1安置在轨道2的正上方,
两轨道的槽口均水平,且在同一竖直线上,滑道2与光滑水平板吻接。将两个质量
相等的小钢球,从斜面的同一高度由静止同时释放,他观察到的现象是_____
________________,这说明______________。
(3)丙同学利用频闪照相的方法,获取了做平抛运动小球的部分照片,如图C所示。图
中背景是边长为5cm的小方格,A、B、C是摄下的三个小球位置,闪光的时间间隔
为0.1s。小球抛出的初速度为_______m/s。
小球经过B点的速度为______m/s。(g取10m/s2)
图A 图B
A
C
B
图C
12.(8分)一艘宇宙飞船飞近某一新发现的行星,并进入靠近行星表面的圆形轨道绕行
数圈后,着陆在该行星上,飞船上备有以下实验器材料:
A.精确秒表一个 B.已知质量为m的物体一个
C.弹簧测力计一个 D.天平一台(附砝码)
已知宇航员在绕行时和着陆后各作了一次测量,依据测量数据,可求出该行星的半径R
和行星质量M。(已知万有引力常量为G)
(1)两次测量所选用的器材分别为 、 。(用序号表示)
(2)两次测量的物理量分别是 、 。
(3)用该数据推出半径R、质量M的表达式:R= ,M= 。
三、计算题(共44分。)请写出必要的文字说明,重要的方程式、重要的演算过程,明
确的数值和单位。只有答案,没有过程的不能得分,书写不认真、无法辨认的不能得分。
13.(10分)如图所示,一架装载救援物资的飞机,在距水平地面h=500m的高处以v=100m/s
的水平速度飞行。地面上A、B两点间的距离x=100m,飞机在离A点的水平距离x0=950m
时投放救援物资,不计空气阻力,g取10m/s2.
(1)求救援物资从离开飞机到落至地面所经历的时间。
(2)通过计算说明,救援物资能否落在AB区域内。
14.(10分)如图所示,长L=0.5m、质量可以忽略的杆,其下端固定于O点,上端连接
着一个质量m=2 kg的小球A,杆可以绕O点无摩擦转动,即A球绕O点做圆周运动;现
使A球在竖直平面内做圆周运动,如图示,在A通过最高点时,试求
在下列两种情况下杆对球的作用力。(g取10m/s2)
(1)当A的速率V1=1m/s时。
(2)当A的速率V2=4m/s时。
O
A
15.(10分)已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。
(1)推导第一宇宙速度v1的表达式;
(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T。
16.(14分)如图所示,一个质量为m=0.6kg的小球,在左侧平台上运行一段距离后从边
缘A点以smv/3200水平飞出,恰能沿切线从P点进入竖直圆弧管道并继续滑行。已知
管道口径远小于圆弧半径,OP与竖直方向的夹角是37°,平台到地面的高度差为
h=1.45m。若小球运动到圆弧轨道最低点时的速度大小是 10m/s。取g=10m/s2,
sin53°=0.8,cos53°=0.6。求:
(1)P点距地面的高度
(2)圆弧轨道最低点对小球支持力的大小
(3)若通过最高点Q点时小球对外管壁的压力大小9N,则小球经过Q点时的速度大小是多
少?
A
O
P
Q
R
h
37°
v0
信丰二中
于都实验中学 2011-2012学年度第二学期三校联考
瑞金二中
高一年级物理答题卷
一、不定项选择题(4X10=40分)
题号
1 2 3 4 5 6 7 8 9 10
答案
二、实验题(共计16分)
11:(1)_______________________________________________(1分)
______________________________________________(1分)
(2)_______________________________________________(1分)
______________________________________________(1分)
(3)_____________(2分)、______________(2分)
12:(1)_______________(1分)、________________ (1分)
(2)_______________(1分)、________________(1分)
(3)_______________(2分)、________________(2分)
三、计算题(10分+10分+10分+14分共计44分)
13:(10分)
14: (10分)
O
A
学
校
:
班
级
:
姓
名
:
学
号
:
考
号
:
15: (10分)
16:(14分)
A
O
P
Q
R
h
37°
v0