当前位置:文档之家› 人教版数学中考复习:二次函数综合题(带答案)

人教版数学中考复习:二次函数综合题(带答案)

人教版数学中考复习:二次函数综合题(带答案)
人教版数学中考复习:二次函数综合题(带答案)

二次函数综合题

1.如图,在平面直角坐标系中,已知抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为,该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为的形式;

(2)若点H (1,y)在BC上,连接FH,求△FHB的面积;

(3)一动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,连接OM,BM,设运动时间为t 秒,在点M的运动过程中,当t为何值时,?

(4)在x轴上方的抛物线上,是否存在点P,使得被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

解:(1)∵抛物线与x轴交于A (1,0)、B (3,0)两点

∴解得:∴该抛物线解析式为:

(2)设直线BE的解析式为∵B (3,0)、E,

∴解得:,∴直线BE的解析式为.

因为F是抛物线与BE的交点∴整理得:

解得:、(舍去)∴∴F()

连接AH,与BE交于点G,设直线BC的解析式为∵B (3,0)、C

∴∴∴直线BC的解析式为∵H (1,y)在BC上

∴H (1,) ∵A (1,0) ∴AH // y轴设点G坐标为∵G在BE上

∴G (1,) ∴,过点F作FK⊥GH于K,∴∵S△FHB= S△FHG + S△BHG ∴

(3)延长MD 与x 轴交于点N ,∴ MN ⊥x 轴,垂足为N ,由题意可知: DM = t ∵ D (2,),∴ N (2,0),∴ ,

∵ ∴ 又∵

∴ Rt △ONM ∽Rt △MNB

∴ 即 ∵,, ∴

∴ ,(舍去)∴ 秒时,

(4)符合条件的P 点坐标为(,)

理由如下:作点F 关于x 轴的对称点F’,由(2)知: F (),∴点F’()

连接BF’,∵ B (3,0) 设直线BF’的解析式为 ∴

解得: ∴直线BF’的解析式为 联立抛物线

有 整理得: 解得:、(舍去)

故交点坐标为 (,) 由对称性可知,BF’交抛物线的交点即满足题意的P 点,使得

被BA 平分.

2. 已知抛物线2

y x bx c =++经过A ()1,0-,B ()3,0两点, 与y 轴相交于点C ,该抛物线的顶点为点D . (1)求该抛物线的解析式及点D 的坐标;

(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;

(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,

∠=∠?若存在,求出点M的坐标和此时刻直线

连接MC,是否存在点M使AMN ACM

MN的解析式;若不存在,请说明理由.

解:(1)如右图,∵ 抛物线2

y x bx c =++经过A ()1,0-,B ()3,0两

点 ∴ 10

930b c b c -+=??

++=? ∴

2

3

b c =-??

=-? ∴ 该抛物线的解析式是 2

23y x x =--

∵ 12b a

-=,2

444ac b a -=- ∴ 点D 坐标 ()1,4-

(2)S 1,S 2,S 3之间的数量关系是213S S S =+

过点D 作DE ⊥x 轴于点E ,作DF ⊥y 轴于点F ,∴ E ()1,0,F ()0,4- ∵ B ()3,0, C ()0,3- ∴ 22223332BC OB OC =++=

∴ 1CF =, 1DF =, 则在Rt CFD ?中 2222112CD CF DF +=+= ∴ 2BE =, 4DE =, 则在Rt CFD ?中 22222425BD BE DE +=+=∵ 2

2

2

BC CD BD += ∴ △BCD 是直角三角形

∴ 311

322322S BC CD =?=?= ∴ 111313222S OA OC =?=??=, 2119

33222

S OB OC =?=??=

∴ 213S S S =+

(3)存在点M ,使得AMN ACM ∠=∠,设点M (),0m ,∴ 13m -<< 则 (1)1MA m m =--=+ 在Rt AOC ?中,22221310AC OA OC =++ ∵ MN ∥BC ∴

AM AN AB AC

= ∴ 110

101)4AM m AN AC m AB +=?==+

若AMN ACM ∠=∠,∵ MAN CAM ∠=∠ ∴ △AMN ∽△ACM

AM AN AC AM

= ∴ 2

AM AN AC =? ∴ ()21011)10m m +=+∴ ()3

1()02

m m +?-= ∴ 132m =

,21m =-(舍)∴ 点M 坐标 3(,0)2

设直线BC 的解析式为y kx b =+ ()0k ≠ ∵ B ()3,0, C ()0,3-

30

3

k b

b

+=

?

?

=-

?

1

3

k

b

=

?

?

=-

?

∴直线BC的解析式为3

y x

=-

∵ MN ∥BC ∴ *设直线MN 的解析式为'y x b =+ ∵ 点M 坐标 3(,0)2

∴ 3'2b =-

∴ 直线MN 的解析式为32

y x =- ∴ 存在点M ,使得AMN ACM ∠=∠,此时 直线MN 的解析式为3

2

y x =-

3.已知抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0,﹣2)三点.

(1)请直接写出抛物线的解析式.

(2)连接BC ,将直线BC 平移,使其经过点A ,且与抛物线交于点D ,求点D 的坐标. (3)在(2)中的线段AD 上有一动点E (不与点A 、点D 重合),过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,△AFD 的面积最大?求出此时点E 的坐标和△AFD 的最大面积.

解:(1)∵抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0), ∴设抛物线解析式为y=a (x+1)(x ﹣4).

∵C (0,﹣2)在抛物线上,∴﹣2=a ×1×(﹣4),

∴a=

.

∴抛物线的解析式为y=(x+1)(x ﹣4)=x 2﹣x ﹣2,①

(2)设直线BC 的解析式为y=kx ﹣2, ∵B (4,0)∴4k ﹣2=0,∴k=,∴直线BC 的解析式为y=x ﹣2. ∵直线BC 平移,使其经过点A (﹣1,0),且与抛物线交于点D , ∴直线AD 的解析式为y=x+,② 联立①②,解得

(舍去),或

,∴D (5,3).

(3)∵A (﹣1,0),D (5,3),

∴以AD 为底,点F 到AD 的距离越大,△ADF 的面积越大,

作l ∥AD ,当l 与抛物线只有一个交点时,点F 到AD 的距离最大,

设l 的解析式为y=x+n ,③联立①③转化为关于x 的方程为x 2﹣4x ﹣2n ﹣4=0, ∴△=16﹣4(﹣2n ﹣4)=0,∴n=﹣4.∴直线l 的解析式为y=x ﹣4, ∴x 2﹣4x+4=0,解得x=2.将x=2代入y=x ﹣4得,y=﹣3, ∴F (1,﹣3),∴E (1,1).∴EF=4.

∴S△AFD的最大面积=EF×|x E﹣x A|+EF×|x D﹣x E|=×4×2+×4×4=12.

4.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;

(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF ∥DE交抛物线于点F,设点P的横坐标为m.

①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.

②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.

解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;

令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,

则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;

(2)①设直线BC的函数解析式为y=kx+b,

把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,

∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),

当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,

∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),

∴线段DE=4﹣2=2,∵0<m<3,∴y F>y P,

∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,

连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,

由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),

则当m=2时,四边形PEDF为平行四边形;

②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵

S=S△BPF+S△CPF=PF?BM+PF?OM=PF(BM+OM)=PF?OB,

∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),

则当m=时,S取得最大值.

5.如图所示,抛物线y=ax2﹣x+c经过原点O与点A(6,0)两点,过点A作AC⊥x轴,交直线y=2x﹣2于点C,且直线y=2x﹣2与x轴交于点D.

(1)求抛物线的解析式,并求出点C和点D的坐标;

(2)求点A关于直线y=2x﹣2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;

(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值.

解:(1)把点O(0,0),A(6,0)代入y=ax2﹣x+c,得,解得,∴抛物线解析式为y=x2

﹣x.

当x=6时,y=2×6﹣2=10,当y=0时,2x﹣2=0,解得x=1,∴点C坐标(6,10),点D的坐标(1,0)

(2)过点A′作AF⊥x轴于点F,∵点D(1,0),A(6,0),可得AD=5,

在Rt△ACD中,CD==5,∵点A与点A′关于直线y=2x﹣2对称,

∴∠AED=90°,∴S△ADC=×?AE=×5×10,解得AE=2,

∴AA′=2AE=4,DE==,∵∠AED=∠AFA′=90°,∠DAE=∠A′AF,

∴△ADE∽△AA′F,∴==,解得AF=4,A′F=8,∴OF=8﹣6=2,

∴点A′坐标为(﹣2,4),当x=﹣2时,y=×4﹣×(﹣2)=4,∴A′在抛物线上.

(3)∵点P在抛物线上,则点P(x,x2﹣x),

设直线A′C的解析式为y=kx+b,∵直线A经过A′(﹣2,4),C(6,10)两点,

∴,解得,∴直线A′C 的解析式为y=x+,

∵点Q 在直线A′C 上,PQ ∥AC ,点Q 的坐标为(x ,x+),

∵PQ ∥AC ,又点Q 在点P 上方,∴l=(x+)﹣(x 2﹣x )=﹣x 2+x+

∴l 与x 的函数关系式为l=﹣x 2+x+,(﹣2<x ≤6),

∵l=﹣x 2+x+

=﹣(x ﹣)2+

,∴当x=时,l 的最大值为

6.如图,已知抛物线y =ax 2

+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .

⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;

⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标; ⑶设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标

解:(1)依题意,得1,20,3.b

a a

b

c c ?-=-??++=??=?

?

解之,得1,2,3.

a b c =-??

=-??=?

∴抛物线解析式为322

+--=x x y . ∵对称轴为x =-1,且抛物线经过A (1,0),

∴B (-3,0). 把B (-3,0)、C (0,3)分别直线y =mx +n ,得

30,

3.m n n -+=??

=?

解之,得1,3.m n =??=? ∴直线BC 的解析式为3+=x y .

(2)∵MA =MB ,∴MA +MC =MB +MC .

∴使MA +MC 最小的点M 应为直线BC 与对称轴x = -1的交点.

设直线BC 与对称轴x =-1的交点为M ,把x =-1 代入直线3+=x y ,得y =2. ∴M (-1,2) (3)设P (-1,t ),结合B (-3,0),C (0, 3),得

BC 2=18,

PB 2=(-1+3)2+t 2=4+t 2,

PC 2=(-1)2+(t -3)2=t 2-6t +10.

①若B 为直角顶点,则BC 2+PB 2=PC 2,即 18+4+t 2=t 2-6t +10. 解之,得t =-2. ② 若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解之,得t =4. ③ 若P 为直角顶点,则PB 2+PC 2=BC 2,即

4+t 2+t 2-6t +10=18.解之,得t 1=

2173+,t 2=2

17

3-. 综上所述,满足条件的点P 共有四个,分别为

1P (-1,-2), 2P (-1,4), 3P (-1,

2173+) ,4P (-1,2

173-). 7.在直角坐标系xoy 中,(0,2)A 、(1,0)B -,将ABO ?经过旋转、平移变化后得到如图15.1所示的BCD ?. (1)求经过A 、B 、C 三点的抛物线的解析式;

(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将ABC ?的面积分成1:3两部分,求

此时点P 的坐标;

(3)现将ABO ?、BCD ?分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ?与BCD ?重叠

部分面积的最大值.

图4.1

x

解:(1)∵(0,2)A 、(1,0)B -,将ABO ?经过旋转、平移变化得到如图4.1所示的BCD ?,

∴2,1,90BD OA CD OB BDC AOB ?

====∠=∠=.∴()1,1C .

设经过A 、B 、C 三点的抛物线解析式为2y ax bx c =++,

则有0

12

a b c a b c c -+=??

++=??=?

,解得:31,,222a b c =-==.

∴抛物线解析式为231

222

y x x =-

++. (2)如图4.1所示,设直线PC 与AB 交于点E .

∵直线PC 将ABC ?的面积分成1:3两部分, ∴

13AE BE =或

3AE

BE

=, 过E 作EF OB ⊥于点F ,则EF ∥OA .

∴BEF ?∽BAO ?,∴

EF BE BF

AO BA BO

==. ∴当13AE BE =时,3241EF BF

==, ∴33,24EF BF ==,∴13

(,)42

E -.

设直线PC 解析式为y mx n =+,则可求得其解析式为27

55

y x =-+, ∴23127

22255

x x x -

++=-+,∴122,15x x =-=(舍去)

, ∴1

239(,)525P -. 当3AE BE =时,同理可得2623

(,)749

P -. (3)设ABO ?平移的距离为t ,111A B O ?与211B C D ?重叠部分的面积为S .

可由已知求出11A B 的解析式为22y x t =+-,11A B 与x 轴交点坐标为2

(

,0)2

t -. 12C B 的解析式为1122y x t =++,12C B 与y 轴交点坐标为1

(0,)2

t +.

x

图4.2

①如图4.2所示,当3

05

t <<

时,111A B O ?与211B C D ?重叠部分为四边形.

G

H A 1

O 1

B 2

图4.3

y

x

O C 1D 1B 1

设11A B 与x 轴交于点M ,12C B 与y 轴交于点N ,11A B 与12C B 交于点Q ,连结OQ .

由2211

22y x t y x t =+-???=++??,得433

53t x t y

-?=????=??

,∴435(,)33t t Q -. ∴1251134()223223

QMO QNO t t t

S S S t ??--=+=??+?+?

2131

124

t t =-

++. ∴S 的最大值为25

52.

②如图4.3所示,当34

55

t ≤<时,111A B O ?与211B C D ?重叠部分为直角三角形.

设11A B 与x 轴交于点H , 11A B 与11C D 交于点G .则(12,45)G t t --,

12451222t t

D H t --=

+-=,1

45DG t =-. ∴21111451(45)(54)2224t S D H D G t t -==-=-.

∴当3455t ≤<时,S 的最大值为14.

综上所述,在此运动过程中ABO ?与BCD ?重叠部分面积的最大值为25

52

. 8.如图,在平面直角坐标系中,抛物线经过点A

,B ,C

,对称轴与x 轴交

于点D

(1)求抛物线的表达式;

(2)点M 是抛物线上的一动点,过点M 作MN //CD 交x 轴于点N ,当以D 、C 、M 、N 为顶点的四边形为平行四边形时,求出点M 的坐标;

(3)若点E 在x 轴上,在抛物线上是否存在点P ,使得△PDE ≌△PDC ?若存在,请直接写出点P 的坐标;若不存在,请说明理由.

解:(1)∵抛物线经过点A,B,

可设两点式: 又∵C在抛物线上

∴∴∴

(2)∵抛物线对称轴为

∵以D,C,M,N为顶点的四边形是平行四边形,

∴应分CM∥D N,CN∥DM两种情况.

①当CM∥DN时.情况如图所示,因为D、N均在x轴上,所以当CM∥DN时,CM是一条平行于x轴的线段,∵C∴CM直线为,∵M是抛物线上一动点,

所以C、M关于对称轴对称,∴M

②当CN∥DM时.情况如图所示,若CDMN为平行四边形

∴MN可以看做线段CD向下平移4个单位而得,即M点纵坐标可看做D点纵坐标向下平移4个单位,∴点M的纵坐标是∵点M在抛物线上,

∴化简得

解得:点M的坐标为或

(3)∵C D ∴若△PDE≌△PDC ∴

∵E在x轴上,∴E,

若点E若△PDE≌△PDC ∴P点在CE的垂直平分线上则EC中点F 设直线DF的解析式为

∴∴∴

联立得

∴则点P或

若点E则EC中点F 设直线DF的解析式为

∴∴∴

联立得

解得:则点P或

9.已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(,﹣),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.

(1)求该二次函数的解析式,及顶点D的坐标;

(2)求|PC﹣PD|的最大值及对应的点P的坐标;

(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.解:(1)∵y=ax2﹣2ax+c的对称轴为:x=﹣=1,

∴抛物线过(1,4)和(,﹣)两点,

代入解析式得:,

解得:a=﹣1,c=3,

∴二次函数的解析式为:y=﹣x2+2x+3,

∴顶点D的坐标为(1,4);

(2)∵C、D两点的坐标为(0,3)、(1,4);

由三角形两边之差小于第三边可知:

|PC﹣PD|≤|CD|,

∴P、C、D三点共线时|PC﹣PD|取得最大值,此时最大值为,

|CD|=,

由于CD所在的直线解析式为y=x+3,

将P(t,0)代入得t=﹣3,

∴此时对应的点P为(﹣3,0);

(3)y=a|x|2﹣2a|x|+c的解析式可化为:

y=

设线段PQ所在的直线解析式为y=kx+b,将P(t,0),Q(0,2t)代入得:线段PQ所在的直线解析式:y=﹣2x+2t,

∴①当线段PQ过点(0,3),即点Q与点C重合时,线段PQ与函数

y=有一个公共点,此时t=,

当线段PQ过点(3,0),即点P与点(3,0)重合时,t=3,此时线段PQ与y=有两个公共点,所以当≤t<3时,

线段PQ与y=有一个公共点,

②将y=﹣2x+2t代入y=﹣x2+2x+3(x≥0)得:

﹣x2+2x+3=﹣2x+2t,

﹣x2+4x+3﹣2t=0,

令△=16﹣4(﹣1)(3﹣2t)=0,

t=>0,

所以当t=时,线段PQ与y=也有一个公共点,

③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ只与y=﹣x2﹣2x+3(x<0)有一个公共点,此时t=﹣3,

圆与二次函数难度题(含答案)

水尾中学中考专项训练(压轴题)答案 1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长. 解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形 ∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90° ∴∠DCF =30°,∴DF = 1 2 CD =3,CF =3DF =3 ∴BF =BC +CF =1+3=4 ∴BD = BF 2 +DF 2 = 16+3 =19 ∵AC =23,BC =1,∴AB = AC 2 +BC 2 = 13 ∵BE +DE =BD ,∴AB 2 -AE 2 + AD 2 -AE 2 =BD 即 13-AE 2 + 12-AE 2 =19 ∴13-AE 2 =19- 12-AE 2 两边平方得:13-AE 2=19+12-AE 2-2 19(12-AE 2 ) 整理得:19(12-AE 2 ) =9,解得AE = 7 19 57 2.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上 AC ︵ 的中点. (1)如图1,P 为 ABC ︵ 的中点,求证:PA +PC =3PD ; (2)如图2,P 为 ABC ︵ 上任意一点,(1)中的结论还成立吗?请说明理由. (1)证明:连接AD ∵D 为AC ︵ 的中点,P 为 ABC ︵ 的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° D D P 图1 图2

高考资料 二次函数基础练习题大全(含答案)

二次函数基础练习题 练习一 二次函数 1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到 小球滚动的距离s (米)与时间t (秒)的数据如下表: 写出用t 表示s 的函数关系式: 2、 下列函数:① 23 y x ;② 21y x x x ;③ 224y x x x ;④ 2 1 y x x ; ⑤ 1y x x ,其中是二次函数的是 ,其中a ,b ,c 3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数 4、当____m 时,函数2221m m y m m x 是关于x 的二次函数 5、当____m 时,函数2564m m y m x +3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.

7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1; 当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围 成24米长的旧木料,建造猪舍三间,如图,它们的平 面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎 样的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如 何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍

二次函数与圆结合的压轴题Word版

图6 x y F E H N M P D C B A O 二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线3 2 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、

(完整版)二次函数综合题分类讨论带答案.doc

二次函数综合题分类讨论 一、直角三角形分类讨论: 1 1、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形, 这样的 C 点你能找到个 2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点 A 在点 B 的左边),点 B 的横坐标是 1.( 1)求 P 点坐标及a的值;( 2)如图 1,抛物线 C2与抛物线 C1关于 x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x 轴正半轴上一点,将抛物线C1绕点 Q 旋转180 后得到抛物线 C,4,抛物线 C,4的顶点为 N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、 N、 F 为顶点的三角形 是直角三角形时,求点Q 的坐标。(2013 汇编 P56+P147)

3、如图,矩形 A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的. O’点在 x 轴的正半轴上, B 点的坐标为 (1,3). (1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为 —1.求这个二次函数的解析式; ? (2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形 若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由; (3)求边 C’O’所在直线的解析式.

中考数学(二次函数提高练习题)压轴题训练及答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图:在平面直角坐标系中,直线l :y=13x ﹣4 3 与x 轴交于点A ,经过点A 的抛物线 y=ax 2﹣3x+c 的对称轴是x=3 2 . (1)求抛物线的解析式; (2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ; (3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由. 【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】 (1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=3 2 列出关于a 、c 的方程组求解即可; (2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可; (3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到 22x x x x Q P F E ++=,22 y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】

2021届新高考数学(文)复习小题必刷第05练 二次函数与幂函数(解析版)

第05练 二次函数与幂函数 刷基础 1.(2020·贵溪市实验中学高二期末)已知函数( ) 2 53 ()1m f x m m x --=--是幂函数且是(0,)+∞上的增函数, 则m 的值为( ) A .2 B .-1 C .-1或2 D .0 【答案】B 【解析】 由题意得2 11,530,1m m m m --=-->∴=-, 故选:B. 2.(2020·浙江高一课时练习)如图,函数1y x = 、y x =、1y =的图象和直线1x =将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数 的图象经过的部分是④⑧,则 可能是( ) A .y =x 2 B .y x = C .12 y x = D .y=x -2 【答案】B 【解析】 由图象知,幂函数()f x 的性质为: (1)函数()f x 的定义域为()0+∞, ; (2)当01x <<时,()1f x >,且()1f x x <;当1x >时,01x <<,且()1 f x x >; 所以()f x 可能是y x = .故选B.

3.(2019·河南高三月考)若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( ) A .b a c << B .a b c << C .c a b << D .b c a << 【答案】A 【解析】 因为3x y =在R 上为增函数,所以33e π<,即b c <. 因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()x f x x = , 2 1ln ()x f x x -'= ,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数, (,)x e ∈+∞,()0f x '<,()f x 为减函数. 则()(3)f f π<,即 ln ln 3 3 π π < ,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <. 所以b a c <<. 故选:A 4.(2020·全国高一专题练习)下列关系中正确的是( ) A .2213 3 3 111252??????<< ? ? ? ?????? B .122333 111225??????<< ? ? ? ?????? C .212333 111522??????<< ? ? ? ?????? D .221333 111522??????<< ? ? ? ?????? 【答案】D 【解析】 因为12x y ??= ???是单调递减函数,1233<,所以12 331122????> ? ????? , 因为幂函数23y x =在()0,∞+上递增,11 52 <; 所以223 3 1152????< ? ? ???? ,

(完整版)二次函数综合题——等腰三角形

二次函数综合题——等腰三角形 一.解答题(共30小题) 1.(2014?新余模拟)如图,已知二次函数图象的顶点为(1,﹣3),并经过点C(2,0).(1)求该二次函数的解析式; (2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和△AOB的面积;(3)点Q在x轴上运动,求出所有△AOQ是等腰三角形的点Q的坐标. 2.(2014秋?怀宁县校级月考)如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x 轴的负半轴交于点B,且△AOB的面积为6. (1)求该二次函数的表达式; (2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标. 3.(2011?淮安)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B. (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

4.(2014?曲靖模拟)如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点C(0,﹣5). (1)求该二次函数的解析式和它与x轴的另一个交点B的坐标. (2)在上面所求二次函数的对称轴上存在一点P(2,﹣2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形. 5.(2008秋?密云县期末)已知二次函数y=ax2+bx+c的图象分别经过点(0,3)(3,0)(﹣2,﹣5), (1)求这个二次函数的解析式; (2)若这个二次函数的图象与x轴交于点C、D(C点在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ABC是等腰三角形,求出点B的坐标. 6.(2008?海淀区二模)已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求: (1)求这个二次函数的解析式; (2)求这个二次函数的最值; (3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标. 7.(2006?松江区二模)如图,已知二次函数y=x2+bx+c(c≠0)的图象经过点A(﹣2,m)(m<0),与y轴交于点B,AB∥x轴,且3AB=2OB. (1)求m的值; (2)求二次函数的解析式; (3)如果二次函数的图象与x轴交于C、D两点(点C在左恻).问线段BC上是否存在点P,使△POC为等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.

二次函数的实际应用题-中考数学题型专项练习

题型04 二次函数的实际应用题 一、单选题 1.如图,隧道的截面由抛物线和长方形OABC 构成,长方形的长OA 是12m ,宽OC 是4m .按照图中所示的平面直角坐标系,抛物线可以用y =﹣ 16 x 2 +bx +c 表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m .那么两排灯的水平距离最小是( ) A .2m B .4m C . D .【答案】D 【分析】根据长方形的长OA 是12m ,宽OC 是4m ,可得顶点的横坐标和点C 的坐标,即可求出抛物线解析式,再把y =8代入解析式即可得结论. 【详解】根据题意,得 OA =12,OC =4. 所以抛物线的顶点横坐标为6, 即﹣2b a =13 b =6,∴b =2. ∵C (0,4),∴c =4, 所以抛物线解析式为: y =﹣ 16 x 2 +2x +4 =﹣ 16 (x ﹣6)2 +10 当y =8时, 8=﹣ 1 6 (x ﹣6)2+10, 解得:x 1 x 2=6﹣ 则x 1﹣x 2 . 所以两排灯的水平距离最小是 43.

故选:D. 【点睛】本题考查了二次函数的应用,解决本题的关键是把实际问题转化为二次函数问题解决. 2.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为() A.33°B.36°C.42°D.49° 【答案】C 【分析】据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题. 【详解】解:由图象可知,物线开口向上, 该函数的对称轴x>1854 2 且x<54, ∴36<x<54, 即对称轴位于直线x=36与直线x=54之间且靠近直线x=36, 故选:C. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 3.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

(完整版)到陕西中考数学二次函数综合题(无答案)

二次函数与几何图形结合题(24题考查) (2007 陕西) 24.(本题满分10分) 如图,在直角梯形OBCD 中,8110OB BC CD ===,,. (1)求C D ,两点的坐标; (2)若线段OB 上存在点P ,使PD PC ⊥,求过D P C ,, 三点的抛物线的表达式. (2008陕西) (2009 陕西) (第24题

(2010 陕西)

(2011 陕西) 24.(本题满分10分) 如图,二次函数x x y 3 1 322—= 的图像经过△AOC 的三个顶点,其中A(-1,m),B(n,n) 一、求A 、B 的坐标 二、在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形 三、这样的点C 有几个? 四、能否将抛物线x x y 3 1 322—= 平移后经过A 、C 两点,若能求出平移后经过A 、C 两点的一条抛物线的解读式;若不能,说明理由。 (2012年24题) 24.(2012)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是三角形; (2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.

(2013年24题) 24.(2013)在平面直角坐标系中,一个二次函数的图像经过A (1,0)B (3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y 轴交与点C ,它的对称轴与x 轴交与点E ,连接AC 、DE 和DB.当△AOC 与△DEB 相似时,求这个二次函数的表达式. (2014年24题) 24.(2014)已知抛物线C:c bx x y ++-=2 经过A(-3,0)和B(0,3)两点,将抛物线的顶点记为M,它的对称轴与x 轴的交点记为N. (1)求抛物线C 的表达式; (2)求点M 的坐标; (3)将抛物线C 平移到抛物线C ’,抛物线C ’的顶点记为M ’、它的对称轴与x 轴的交点记为N ’。如果点M 、N 、M ’、N ’为顶点的四边形是面积为16的平行四边形,那么应将抛物线C 怎样平移?为什么?

历届二次函数中考题集锦

历届中考二次函数试题精选 一、填空题 1.(2012?烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个 2.(2012泰安)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( ) A .213y y y >> B .312y y y >> C .321y y y >> D .312y y y >> 3.(2012潜江)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0; ④8a+c>0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个 4. (2011湖北襄阳)已知函数12)3(2 ++-=x x k y 的图象与x 轴有交 点,则k 的取值范围是( ) A.4

A .31≤≤-x B .31<<-x C .31>-;(2)c >1;(3)2a -b <0;(4)a +b +c <0。你认为其中错误.. 的有( ) A .2个 B .3个 C .4个 D .1个 8. (2011江苏宿迁)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( ) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3是方程ax 2+bx +c =0的一个根 9.(2012?德阳)设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是( ) A .c=3 B .c≥3 C .1≤c≤3 D .c≤3 10.(2012?杭州)已知抛物线y=k (x+1)(x ﹣)与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是( )

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

二次函数与圆综合训练(含解析)

二次函数与圆综合提高(压轴题) 1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点, 且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图 形L. (1)求△ABC的面积; (2)设AD=x,图形L的面积为y,求y关于x的函数解析式; (3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.解 解:(1)如图3,作AH⊥BC于H, 答: ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,

∴x=1.5时,y 最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3﹣x, ∴DG=(3﹣x),MF=MN=2x﹣3, ∴MG=(3﹣x), ∴y=, =﹣; (3),如图4,∵y=﹣; ∴y=﹣(x2﹣4x)﹣, y=﹣(x﹣2)2+, ∵a=﹣<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°,

∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π. 2、(2013?压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4), 点B的坐标为(4, 0),点C的坐标为 (﹣4,0),点P在 射线AB上运动,连 结CP与y轴交于点 D,连结BD.过P, D,B三点作⊙Q与 y轴的另一个交点 为E,延长DQ交⊙Q于点F,连结EF,BF. (1)求直线AB的函数解析式; (2)当点P在线段AB(不包括A,B两点)上时. ①求证:∠BDE=∠ADP; ②设DE=x,DF=y.请求出y关于x的函数解析式; (3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由. 解:(1)设直线AB的函数解析式为y=kx+4, 代入(4,0)得:4k+4=0, 解得:k=﹣1, 则直线AB的函数解析式为y=﹣x+4; (2)①由已知得: OB=OC,∠BOD=∠COD=90°, 又∵OD=OD, ∴△BOD≌△COD,

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

完整word版,高考数学复习二次函数测试题

高考数学复习二次函数测试题 1.解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为 (0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、 ()2,0B x ,且2212269 x x += ,试问该二次函数的图像由()()2 31f x x =--的图像向上平移几个单位得到? 2.图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值 或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则 122x x f +??= ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、 ()1f 的大小关系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2 f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.单调性 x y O

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

秒杀二次函数综合问题(高考专题)

秒杀二次函数综合问题(高考专题) 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知,满足1 且 ,求 的取值 范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1 和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵ ,2)1(1≤-≤f , ∴ ()1025≤≤f . 例2 设 ,若 ,,, 试证

专题63 构造圆与隐形圆在二次函数中的综合问题(解析版)

专题63 构造圆与隐形圆在二次函数中的综合问题 1、如图,在直角坐标系中,直线y=﹣1 3x ﹣1与x 轴,y 轴的交点分别为A 、B ,以x=﹣1为对称轴的抛物线 y=x 2+bx+c 与x 轴分别交于点A 、C ,直线x=﹣1与x 轴交于点D . (1)求抛物线的解析式; (2)在线段AB 上是否存在一点P ,使以A ,D ,P 为顶点的三角形与△AOB 相似?若存在,求出点P 的坐标;如果不存在,请说明理由; (3)若点Q 在第三象限内,且tan△AQD=2,线段CQ 是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由. 【答案】(1)y=x 2+2x ﹣3;(2)存在;点P 坐标为(﹣1,?23 )或(-65 ,-3 5 ); (3)存在,CQ 最小值为 √37?√5 2 . 【解析】(1)△直线y=﹣1 3x ﹣1与x 轴交于A 点, △点A 坐标为(﹣3,0), 又△直线x=﹣1为对称轴, △点C 坐标为(1,0), △抛物线解析式为:y=(x+3)(x ﹣1)=x 2+2x ﹣3; (2)存在;

由已知,点D 坐标为(﹣1,0),点B 坐标为(0,﹣1), 设点P 的坐标为(a ,﹣13 a ﹣1), △当△AOB△△ADP 时, AD AO = DP OB ,即23 = 1 3 a+11 , 解得:a=﹣1; 点P 坐标为(﹣1,?2 3); △当△AOB△△APD 时, 过点P 作PE△x 轴于点E , 则△APE△△PED , △PE 2=AE?ED , △(﹣1 3a ﹣1)2=(a+3)(﹣a ﹣1), 解得a 1=﹣3(舍去),a 2=﹣6 5, △点P 坐标为(﹣6 5 ,﹣3 5 ); (3)存在,CQ 最小值为 √37?√5 2 ; 如图,取点F (﹣1,﹣1),过点ADF 作圆,则点E (﹣2,﹣1 2)为圆心,

2018广州中考二次函数综合测试题(绝版押题)

2018广州中考二次函数综合测试题 (绝版 押题) 一、 选择题:(每小题3分,共45分) 1.已知h 关于t 的函数关系式为22 1 gt h =,( g 为正常数,t 为时间), 则函数图象为( ) (A ) (B ) (C ) (D ) 2.在地表以下不太深的地方,温度y (℃)及所处的深度x (k m )之 间的关系可以近似用关系式y =35x +20表示,这个关系式符合的数学模型是( ) (A )正比例函数 (B )反比例函数. (C )二次函数 (D )一次函数 3.若正比例函数y =(1-2m )x 的图像经过点A (1x ,1y )和点B (2x ,2y ),当1x <2x 时1y >2y ,则m 的取值范围是( ) (A )m <0 (B )m >0 (C )m <21 (D )m >2 1 4.函数y = k x + 1及函数 x y k = 在同一坐标系中的大致图象是( ) O x y O x y O x y O x y (A ) (B ) (C ) (D )

5.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2及一 次函数y =a x +c 的大致图像,有且只有一个是正确的,正确的是( ) (A ) (B ) (C ) (D ) 6.抛物线1)1(22+-=x y 的顶点坐标是( ) A .(1,1) B .(1,-1) C .(-1,1) D .(-1,-1) 7.函数y =a x +b 及y =a x 2+bx +c 的图象如右图所示,则下列选项中正 确的是( ) A . a b >0, c>0 B . a b <0, c>0 C . a b >0, c<0 D . a b <0, c<0 8.已知a ,b ,c 均为正数,且k=b a c c a b c b a += +=+,在下列四个点中,正比例函数kx y = 的图像一定经过的点的坐标是( ) A .(l ,21) B .(l ,2) C .(l ,-2 1) D .(1,-1) 9.如图,在平行四边形ABCD 中,AC=4,B D=6,P 是BD 上的任一点,过P 作EF ∥AC ,及平行四边形的两条边分别交于点E ,F .设BP =x , EF =y ,则能反映y 及x 之间关系的图象为……………( ) A B C D E F P

相关主题
文本预览
相关文档 最新文档