CINRADSB雷达故障诊断分析及处理
- 格式:doc
- 大小:54.00 KB
- 文档页数:3
雷达液位计是一种常用的流程控制仪表,广泛应用于化工、石油、制药等行业中。
然而,雷达液位计在使用过程中也会遇到一些常见故障,如误差大、测量不准确等问题。
本文将针对雷达液位计常见的故障进行分析,并提出相应的处理方法,以便读者在日常工作中能够更好地应对雷达液位计的故障问题。
一、雷达液位计误差大的原因及处理方法1. 天线布线不良:雷达液位计误差大的一个常见原因是天线布线不良。
因为雷达液位计是通过发射和接收雷达波来测量液位的,如果天线的布线不良,就会导致信号传输不畅,从而影响测量的准确性。
处理方法是检查天线的布线是否良好,必要时更换天线。
2. 天线积尘:另一个导致雷达液位计误差大的原因是天线积尘。
如果雷达液位计的天线长时间没有清洁,就会积聚灰尘,导致接收和发送的雷达波受到影响,从而影响测量的准确性。
处理方法是定期清洁天线,保持其表面的清洁。
3. 天线角度不当:雷达液位计的天线角度不当也是导致误差大的一个常见原因。
天线角度不当会导致雷达波的发送和接收方向不准确,影响信号的传输和测量结果。
处理方法是调整天线的角度,确保其与液体的垂直角度一致。
二、雷达液位计测量不准确的原因及处理方法1. 液位杂波干扰:雷达液位计在测量液位时,可能会受到周围环境的杂波干扰,从而导致测量结果不准确。
处理方法是优化雷达液位计的安装位置,避免周围设备的电磁辐射干扰,并采用滤波器等措施消除杂波影响。
2. 液体介质变化:另一个导致雷达液位计测量不准确的原因是液体介质的变化。
因为雷达液位计是通过测量液体和介质的相对介电常数来测量液位的,如果液体的介质常数发生变化,就会导致测量结果不准确。
处理方法是对液体介质进行定期检测和校准,确保其介电常数的稳定性。
3. 反射目标不明确:雷达液位计在测量时需要有清晰的反射目标,如果反射目标不明确,就会影响雷达波的传输和接收,从而导致测量不准确。
处理方法是对液体容器进行清洁和维护,确保反射目标的清晰度和稳定性。
雷达故障检测与分析作者:王明煌来源:《科技创新导报》 2011年第24期摘要:本文对航海雷达在使用过程中基本上可能会出现的故障逐步进行分析,并提出可能会发生故障的地方,以便于使用者和维修人员参考。
关键词:雷达故障分析中图分类号:TN95 文献标识码:A 文章编号:1674-098X (2011) 08 (c) -0054-02雷达作为航海人员的眼睛,它的主要作用是探测前方情况,一旦它发生任何故障,驾驶人员就会象盲人一样迷失方向,甚至还会导致船舶碰撞事故的发生。
航海雷达的故障根据表现形式可分为显性和隐性,显性的故障是指能够根据肉眼或听觉就能直接判断的,比如无视频输出、指示灯熄灭等,隐性的故障一般情况下凭视觉或听觉器官无法察觉的故障,比如接收性能下降、发射机性能下降等。
雷达故障存在多样性,所以应根据不同故障的表现形式采取不同的方法去探测并维修。
1雷达隐性故障检测和分析对雷达的隐性故障的检测的最好的方法就是利用本雷达发射信号通过某些装置让自身接收,然后再对该信号进行放大处理,最后在显示屏幕上显示出对应的图象,根据图形的尺寸变化进行比较,就可以判断雷达性能的变化。
现采用总性能监视器来检测整个辐射系统和接收机系统的性能。
该监视器进行监视性能时,在雷达周围尽量没有物标出现的情况下,效果会比较好。
辐射接收总性能监视器:(1)总性能监视器的结构组成如图1,该监视器由喇叭天线和回波组成,安装于天线底座上。
角状喇叭天线辐射口面对雷达天线方向,其下端与回波箱相连。
回波箱是一个空腔谐振器,其固有谐振频率可由调谐装置调谐到发射信号频率上。
但平时有一螺杆插入谐振腔内,使它处于失谐状态。
当使用该监视器时,设计由继电器控制拉出螺杆,使铝制谐振腔处于谐振状态。
(2)监视对象:接通监视器开关后,雷达天线转到喇叭天线辐射口方向时,有一小部分辐射能量进入谐振腔并激起谐振,震荡频率与发射频率相同,持续时间约为lOus(大于发射脉冲宽度10:-100倍)。
波导开关和波导管导致的雷达故障分析作者:万海焰杨祝平进入夏季,雷雨频发,气象雷达作为飞机自备的气象导航设备,对于飞行员饶飞雷雨区、保障飞行安全的重要性不言而喻,其作为飞行员的眼睛的作用非常突出,本文从实际例子出发,简述波导开关和波导管导致的气象雷达故障,文章结尾提出维修建议,仅做参考。
一、故障现象:机组空中反映右气象雷达故障,空中选择右侧雷达时无雷达图像,该机前一航班已反映该故障,并在北京更换右雷达收发机,且测试正常。
二、故障处理过程地面在CMC上测试右侧气象雷达通过,但选择气象位测试右侧雷达却无雷达图像,判断波导电门故障,更换电门后测试雷达图像正常。
这不禁让人疑惑,为什么CMC上测试能通过,而实际上右侧气象雷达失效,下面就雷达系统原理简要作一分析。
同时此次飞机故障还发现了从波导开关出来的第一段公共波导管裂开损伤,已经穿透波导管,如下图所示,因无波导管备件,临时修复执飞两个航班正常,后因波导管在振动情况下裂开程度加大,导致了波导在波导管里传输时射频能量损失,出现波形失真,当损失足够大时,就会导致发射的雷达射频波能量很少,从而接收的雷达回波经过二次损失也会很弱,进而导致无雷达图像情况的出现,这也是在平时维护过程中应极力避免的,因为每次拆装波导开关都需要拆装该波导管。
三、故障原理分析747-400飞机的雷达系统是一个相对独立的系统,其输入信号有惯性基准组件IRU、大气数据计算机ADC、无线电高度表RA、EGPWS 和TCAS等,其中,左和中IRU给左雷达收发机提供稳定信号,右和中IRU给右雷达收发机提供天线稳定信号;ADC提供空速、地速和偏流角以计算风切变;RA提供高度信号以自动启动前位风切变;EGPWS、TCAS和WXR三者的警告有相互级别不同的抑制作用。
747-400飞机的雷达系统由雷达收发机、雷达控制面板、EFIS控制面板“WXR”开关、波导管、波导开关、雷达罩、天线和天线驱动组件组成。
因为本次故障现象中,左侧气象雷达使用正常,这就排除了两部雷达收发机收发回路公共部分故障的可能性了,即波导管公共部分(波导开关出来至天线部分)、天线和天线驱动组件均无故障。
气象雷达常见故障分析
气象雷达是一种能够探测大气中空间分布、形态和速度的重要气象探测仪器,它对于天气预报、气象灾害监测和预警等方面都起着至关重要的作用。
气象雷达也会出现各种故障,影响到其正常工作。
本文将针对气象雷达常见的故障进行分析,并提出相应的解决方法。
1. 接收信号弱
气象雷达在检测大气情况时需要接收回波信号,但有时接收信号会出现弱的情况。
造成接收信号弱的原因可能有:可能是接收天线或发射天线的故障,检查天线的接线是否良好,天线是否受损是解决此问题的必要步骤;可能是接收机或信号处理系统的故障,需要检查接收机和信号处理系统的工作状态;也有可能是接收链路中出现了其他的干扰或损耗。
针对接收信号弱的故障,可以进行以下解决方法:及时对天线进行检查和维护,保证天线的正常工作状态;定期对接收机和信号处理系统进行检查和维护,保持其良好的工作状态;及时找出并排除接收链路中的其他干扰或损耗。
2. 图像质量差
3. 信号漂移
4. 电源故障
气象雷达工作时需要稳定的电源供应,但有时可能会出现电源故障。
造成电源故障的原因可能有:可能是电源线路的故障,需要检查电源线路是否良好;可能是雷达设备中的电源模块故障,需要检查电源模块的工作状态。
气象雷达在工作中常见的故障有接收信号弱、图像质量差、信号漂移和电源故障等。
这些故障可能会影响到气象雷达的正常工作,需要及时找出并解决。
针对不同的故障,可以采取相应的解决方法,保证气象雷达能够稳定地工作,为气象预报和灾害监测提供可靠的数据支持。
分析雷达故障检测与诊断技术及新发展雷达故障检测与诊断技术是指通过对雷达系统进行监测和诊断,及时发现和排除系统故障,保障雷达系统的正常工作。
随着雷达技术的不断发展,雷达故障检测与诊断技术也在不断完善,并出现了许多新的发展。
本文将针对雷达故障检测与诊断技术及其新发展进行分析。
1. 雷达故障检测与诊断技术的现状雷达故障检测与诊断技术是指通过对雷达系统进行实时监测和分析,从而实现对雷达系统故障的及时诊断和处理。
目前,雷达故障检测与诊断技术主要包括以下几种方法:(1)基于模型的诊断技术。
这种方法是通过建立雷达系统的数学模型,对雷达系统进行模拟和分析,从而实现对系统故障的诊断和定位。
这种方法需要深入了解雷达系统的工作原理和结构,对实际应用要求较高。
随着雷达技术的不断发展,雷达故障检测与诊断技术也在不断更新和完善,出现了许多新的发展。
主要包括以下几个方面:(1)基于机器学习的故障诊断技术。
机器学习技术在近年来取得了长足的发展,已经在许多领域取得了成功的应用。
在雷达故障检测与诊断领域,机器学习技术可以应用于对雷达系统数据的分析和挖掘,从而实现对系统故障的自动诊断和预测。
这种方法可以大大提高雷达系统故障诊断的效率和准确度。
(2)基于网络化的故障诊断技术。
随着互联网和物联网技术的发展,雷达系统可以实现远程监控和管理,数据可以通过网络实时传输和共享。
基于网络化的故障诊断技术可以实现对多个雷达系统的集中监控和故障诊断,提高了雷达系统的运行效率和可靠性。
(1)智能化和自动化。
未来,雷达系统故障检测与诊断将会更加智能化和自动化,通过引入人工智能、大数据和自动化控制技术,实现对雷达系统故障的自动诊断和处理,提高了系统的故障诊断效率和准确度。
(2)多模态集成。
未来,雷达系统故障检测与诊断将会采用多种技术手段相互配合,包括机器学习、智能传感器、数据挖掘等技术,实现对系统故障的全方位监测和诊断,提高了系统故障诊断的全面性和准确度。
解决汽车倒车雷达故障的方法与技巧随着汽车的普及和城市交通的日益拥挤,倒车雷达已经成为现代汽车中一项重要的安全装备。
然而,有时候我们可能会遇到倒车雷达故障的情况,这可能会给我们的驾驶带来不便和风险。
因此,本文将介绍一些解决汽车倒车雷达故障的方法与技巧,以帮助驾驶员更好地应对这些问题。
一、定位故障在解决倒车雷达故障之前,我们首先需要定位故障所在。
常见的倒车雷达故障包括声音异常、显示屏不工作或无法启动、雷达传感器故障等多种情况。
通过仔细观察和排除法,可以初步确定故障的具体位置。
二、检查电源和连接线路倒车雷达的正常工作需要稳定的电源供应和良好的连接线路。
我们可以先检查倒车雷达的电源线和地线是否连接良好,排除线路接触不良或者断开的可能。
另外,还可以检查电源开关和保险丝是否正常,确保电供应稳定。
三、清洁雷达传感器和检查探头倒车雷达的传感器常常因为长期的露天使用而受到灰尘、油污和水汽的侵蚀。
因此,经常清洁雷达传感器是保持倒车雷达正常工作的重要环节。
使用干净柔软的布或海绵蘸取少量清洁剂进行擦拭,注意不要使用有腐蚀性的化学物质清洁,以免损坏传感器。
检查探头是另一个容易出故障的部分,由于长期震动和碰撞,探头可能会松动或损坏。
我们可以检查探头的固定螺丝是否松动,如果松动应该及时紧固。
如果探头损坏,需要更换新的探头。
四、校准倒车雷达倒车雷达工作过程中需要进行校准,确保测距准确。
校准过程因不同车型而异,具体步骤可以参考车辆的使用手册。
一般来说,校准包括设置传感器距离和判断障碍物距离的声音和显示灯。
按照要求进行校准可以修复一些简单的故障,并提高倒车雷达的准确性。
五、寻求专业帮助如果以上方法都无法解决倒车雷达故障,或者故障比较严重,我们可以寻求专业的维修帮助。
汽车维修店或者品牌授权维修中心的工程师具有丰富的经验和专业的设备,可以更准确地判断故障原因并进行修复。
六、日常维护与预防为了减少倒车雷达故障的发生,我们还需要进行日常维护和预防。
DOI :10.15913/ki.kjycx.2024.07.026新一代多普勒天气雷达典型故障处理及诊断分析*刘圆渊1,石梦杰2(1.太原市气象局,山西 太原 030000;2.上海海洋大学,上海 201306)摘 要:新一代多普勒天气雷达设备庞大、结构复杂、仪器精密,加之其对业务规范要求很高,对应技术保障比较困难。
因此,如何迅速定位新一代天气雷达的故障,寻找故障维修思路,是增强新一代天气雷达保障技术的关键。
关键词:新一代多普勒天气雷达;故障处理;诊断分析;技术保障中图分类号:TN951 文献标志码:A 文章编号:2095-6835(2024)07-0098-04——————————————————————————*[基金项目]山西省气象局2022年面上科研项目(编号:SXKMSTC20226323)太原新一代多普勒天气雷达(以下简称“太原新一代天气雷达”)在2019年经过大修升级后,匹配安装了天气雷达标准输出控制器。
如果雷达出现故障,控制器就会发出报警短信,雷达维护保障人员接收到短信后就会第一时间了解到雷达的故障情况,这样极大方便了维护保障人员的工作。
经过3年多的运行,太原新一代天气雷达已经慢慢趋于稳定。
本文总结了一些经常出现的故障,并对故障进行分析汇总[1],总结出了一些维修思路,以期为雷达维护保障人员在遇到类似故障时能够快速找到故障来源提供参考。
1 伺服系统故障实例处理及诊断分析1.1 故障现象2022年3月,太原新一代天气雷达终端报伺服系统俯仰电源故障,俯仰驱动器数码管显示ErT_14,伺服分机再次加电后故障仍在[2],雷达不能正常运行。
1.2 故障处理办法伺服驱动器报告Err_14,初步判断为伺服电机电力供应故障。
被检测的伺服驱动器的直流输出和供电并不存在问题,因俯仰电机上的交流电源还需经过汇流环转接,推断出可能是哪个汇流环出现问题,随后采取逐级断电来进一步判断。
俯仰电机电源切断后驱动器仍出现故障码,从而推断俯仰电机出现故障,切断天线转台供电,故障码变为Err_21,如此就确定了电机供电故障出在汇流环上。
气象雷达常见故障分析气象雷达是现代气象观测和预报的重要工具,但由于长期使用和环境因素的影响,常会出现故障。
以下是气象雷达常见故障及其分析。
1. 脉冲发生器故障:脉冲发生器是气象雷达中负责产生脉冲信号的关键部件。
常见故障有:频率不稳定、频率跳动、波形不规则等。
可能原因包括:电子元器件老化、电源电压不稳、外部干扰等。
解决方法是进行元器件更换或重新调整电源电压。
2. 接收机故障:接收机是气象雷达中负责接收并放大回波信号的部件。
常见故障有:无输出、信噪比低、接收灵敏度下降等。
可能原因包括:接收模块故障、放大器故障、信号线松动等。
解决方法是更换故障部件或重新检查信号线连接。
3. 反射镜故障:反射镜是气象雷达中用于收集和聚焦回波信号的重要组成部分。
常见故障有:变形、脱落、表面污染等。
可能原因包括:长期暴露于恶劣环境、外力撞击等。
解决方法是进行修复或更换反射镜。
4. 数据传输故障:气象雷达需要将采集到的数据传输给数据处理系统进行分析和处理。
常见故障有:数据传输中断、数据丢失、传输速度慢等。
可能原因包括:传输设备故障、网络故障、数据处理系统故障等。
解决方法是检查传输设备、修复网络问题或维修数据处理系统。
5. 天线系统故障:天线是气象雷达中用于发射和接收电磁波的部件,常见故障有:方位角不准、俯仰角不准、天线旋转不灵活等。
可能原因包括:驱动系统故障、机械部件老化等。
解决方法是进行调整或更换故障部件。
6. 数据质量问题:气象雷达采集的数据质量对于气象预报的准确性至关重要。
常见问题有:强回波遮挡、回波信号不稳定等。
可能原因包括:回波信号受到地物遮挡、大气湍流等。
解决方法是进行雷达站点选址优化、改进信号处理算法等。
气象雷达常见故障主要包括脉冲发生器故障、接收机故障、反射镜故障、数据传输故障、天线系统故障和数据质量问题。
对于这些故障,需要进行逐一分析,并采取相应的解决方法以保证气象雷达的正常运行和数据质量。
新一代天气雷达回波强度异常分析与处理方法
柴秀梅;潘新民;汤志亚;崔炳俭;多福学
【期刊名称】《气象》
【年(卷),期】2011(037)003
【摘要】根据新一代天气雷达回波强度在线定标修正原理,结合新一代天气雷达(CINRAD/要SA和SB)回波强度接收和定标及发射功率在线测量信号流程,对雷达回波强度出现的异常现象进行了详细分类和分析,总结提出了新一代天气雷达回波强度偏强、偏弱、回波面积减少等异常问题的分析思路和处理方法,列举了有效解决雷达回波强度异常故障的案例.结果表明:采用这种方法能提高处理新一代天气雷达回波强度异常故障的时效性和可靠性.
【总页数】6页(P379-384)
【作者】柴秀梅;潘新民;汤志亚;崔炳俭;多福学
【作者单位】中国气象局气象探测中心,北京,100081;河南省大气探测技术保障中心,郑州,450003;成都信息工程学院,成都,610225;郑州市气象局,郑州,450003;内蒙古阿拉善盟气象局,阿拉善盟,750306
【正文语种】中文
【相关文献】
1.SB型新一代天气雷达回波强度的定标及调整 [J], 王建军
2.新一代天气雷达回波强度误差分析及解决方法 [J], 刘永亮;於莹;李强
3.新一代天气雷达回波强度误差的分析与校准方法 [J], 王龙;陈昌迪;高原;徐新明;李颖姝
4.新一代天气雷达回波强度的定标检验 [J], 巨秉中;杨殷胜;陈国锋
5.相邻新一代天气雷达回波强度误差分析 [J], 胡松; 刘黎平; 李超; 张志强
因版权原因,仅展示原文概要,查看原文内容请购买。
气象雷达常见故障分析气象雷达是一种用于探测附近空气中的降水情况的仪器。
由于其重要性,一旦出现故障就会影响到气象预报的准确性和及时性。
以下是一些常见的气象雷达故障及其分析。
1. 信号丢失:当雷达无法接收到来自附近空域的雷达回波信号时,就会发生信号丢失的故障。
这可能是由于雷达天线指向错误造成的,也可能是由于雷达发射信号故障导致的。
对于信号丢失问题,首先要检查雷达天线的指向情况,确保其正确指向待测区域。
检查雷达的发射电源和发射机设备是否正常工作,确保雷达能够正常发射信号。
2. 信号强度不稳定:当雷达接收到的回波信号强度出现波动时,就会引起信号强度不稳定的故障。
这可能是由于雷达接收机故障、雷达天线系统故障或附近环境干扰导致的。
对于信号强度不稳定问题,首先要检查雷达接收机的工作状态,确保其能够稳定接收信号。
检查雷达天线系统的状态,确保其正常工作,没有受到干扰。
检查附近环境是否存在导致信号干扰的因素,如电磁干扰源或大面积遮挡物。
3. 显示故障:当雷达显示器无法正常显示雷达回波图像时,就会发生显示故障。
这可能是由于雷达显示器故障导致的。
对于显示故障问题,首先要检查雷达显示器的工作状态,确保其正常工作。
如果显示器故障无法修复,需要及时更换新的显示器设备。
4. 数据传输故障:当雷达无法正常传输观测数据到数据处理系统时,就会发生数据传输故障。
这可能是由于雷达与数据处理系统之间的通信故障或数据传输设备故障导致的。
对于数据传输故障问题,首先要检查雷达与数据处理系统之间的通信连接是否正常,确保其能够正常传输数据。
检查数据传输设备是否正常工作,确保其能够稳定传输数据。
气象雷达的常见故障包括信号丢失、信号强度不稳定、显示故障、数据传输故障和雷达调整故障等。
针对不同故障,需要进行相应的故障分析和处理,以确保气象雷达的正常运行。
汽车倒车雷达系统常见故障的诊断与检修倒车雷达系统作为汽车安全驾驶辅助装置之一,它能以声音或更为直观的显示告知驾驶员车辆周围是否有障碍物,解除了驾驶员泊车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶者扫除视野死角和视线模糊的缺陷,提高驾驶的安全性,在现代汽车中得到了普遍采用。
本文从倒车雷达系统的基础知识入手,并根据长期的实践经验,总结出了汽车倒车雷达系统的常见故障诊断与检修方法,最后介绍了汽车倒车雷达系统的使用注意事项。
标签:汽车;倒车雷达系统;故障诊断与检修;使用注意事项倒车雷达(Car Reversing Aid System)全称“倒车防撞雷达”,又称“泊车辅助装置”,它是主要针对汽车倒车或泊车时无法目测到车尾的障碍物与车身间的距离而设计开发的安全辅助装置,它能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和启动车辆时前后左右探视所引起的困扰,并帮助駕驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。
倒车雷达其实跟我们所知道的雷达是一样的,是根据蝙蝠在黑夜里高速飞行而不会与任何障碍物相撞的原理设计开发的,通过感应装置发出超声波,然后通过反射回来的超声波来判断前方有无障碍物,以及距障碍物的距离、障碍物的大小、方位和形状等。
不过,由于受到倒车雷达体积和实用性的限制,目前的倒车雷达主要具备的就是判断障碍物的距离,并做出提示,让驾驶者便于判断。
一、倒车雷达系统的组成及基本工作原理倒车雷达系统通常由倒车雷达模块(俗称主机)、超声波传感器(俗称探头)、指示部分等组成,其各主要组成部分的作用为:1.倒车雷达模块:是倒车雷达系统的核心,能发射正弦波脉冲给超声波传感器并同时传送各个探头探测到的距离和方位,并处理其接收的信号,换算出距离值后,将数据与指示设备通信,最近距离数据控制着变频蜂鸣音以及控制着指示装置。
2.探头:用于发射及接收超声波信号和测量距离,其装在后保险杠上,根据不同品牌和价格,探头有1、3、4、6只不等,有的高档进口车甚至要装8只,分别管前后左右,探头以45°角辐射,上下左右搜寻目标,它最大的特点是能探索到那些低于保险杠而驾驶员从后窗难以看见的障碍物(如花坛、蹲在车后玩耍的小孩等)并报警。
气象雷达常见故障分析气象雷达是一种用于探测和预测天气的重要设备。
它通过发送雷达波束并接收回波来检测附近的降水、风暴和其他天气现象。
在长期使用中,气象雷达可能会出现各种故障,影响其正常工作。
下面将介绍几种常见的气象雷达故障及其分析。
1. 发送故障:发送故障是指雷达无法正常发射雷达波束。
可能的原因包括雷达天线损坏、高压电源故障或天线供电电缆连接问题。
分析方法可以通过检查雷达天线连接情况、检查高压电源状态以及通过在雷达控制面板上查看发送功率是否为零来确定。
2. 接收故障:接收故障是指雷达无法接收到回波信号。
这可能是由于天线损坏、接收机故障或信号处理单元出现问题。
分析方法可以通过检查天线是否正常工作、观察回波信号质量以及检查雷达接收机和信号处理单元是否正常工作来确定。
3. 数据传输故障:数据传输故障是指雷达无法正常传输数据。
可能的原因包括雷达信号线路故障、传输链路故障或数据处理单元故障。
分析方法可以通过检查雷达信号线路连接情况、观察数据传输状态以及检查数据处理单元状态来确定。
4. 降水鉴别故障:降水鉴别故障是指雷达无法准确识别降水类型。
这可能是由于雷达频率选择错误、天线指向问题或信号处理算法错误。
分析方法可以通过观察回波图像、检查天线指向情况以及检查信号处理算法设置来确定。
气象雷达常见故障的分析需要综合考虑硬件和软件方面的问题。
通过仔细检查雷达各个部分的状态和工作情况,可以找出故障的具体原因,并采取相应的维修或更换措施,确保雷达正常运行,提高天气预报的准确性和精确度。
气象雷达常见故障分析
气象雷达是用于探测地球大气中降水、云和气象杂波等信息的重要装置。
由于各种原因,气象雷达在运行过程中可能会出现各种故障。
以下是一些常见的气象雷达故障及其分析。
1. 反射率图像不清晰或不连续:
可能原因包括:
- 雷达天线被积冰覆盖,导致信号不良。
解决方法是定期对雷达天线进行清理和维护。
- 反射率数据传输错误。
可以检查雷达数据传输设备和相关连接线路以解决问题。
4. 地图图像中存在虚假的降水回波信号:
可能原因包括:
- 大气中存在不规则的折射或反射,产生虚假的回波信号。
这种情况通常会在较大的山脉地区出现。
解决方法是通过对雷达数据进行滤波和降噪处理来减少虚假信号。
- 雷达接收机故障。
可以通过更换或修理雷达接收机来解决问题。
5. 雷达无法正常工作或连接失效:
可能原因包括:
- 电源故障。
可以检查雷达电源线路和电源设备以解决问题。
- 雷达控制系统故障。
可以检查雷达控制系统和相关软件以解决问题。
- 雷达数据传输设备故障。
可以检查雷达数据传输设备和相关连接线路以解决问题。
气象雷达可能会面临多种故障,这些故障可能导致数据不准确或无法正常工作。
针对不同的故障,我们可以采取不同的解决方法,包括清理维护、更换或修理设备、检查和修复连接线路等。
及时发现并解决故障对于确保气象雷达正常运行具有重要意义。
气象雷达常见故障分析气象雷达是一种用于探测大气中降水、云层以及其它大气目标的仪器。
它广泛应用于气象预测、飞行安全、地质灾害监测等领域,是现代气象观测系统的重要组成部分。
气象雷达在长时间运行中常常会遇到一些故障,这些故障会严重影响其观测质量和性能。
下面将介绍一些常见的气象雷达故障及其分析。
气象雷达中常见的故障之一是功率问题。
当雷达发送功率不足或接收功率异常时,会造成雷达观测的信号强度不稳定,甚至无法正常工作。
原因可能是雷达发射机或接收机的故障,电源电压异常或供电不稳定等。
解决方法是检查雷达设备的供电情况,确保发射机和接收机的正常工作,修复或更换故障部件。
雷达信号处理故障也是常见的问题。
如果雷达信号处理器损坏或参数设置错误,会导致观测数据的准确性和稳定性下降。
雷达工作在错误的观测模式下或观测参数设置不正确时,观测数据会出现误差或噪声。
解决方法是检查信号处理器的工作状态,重新设置观测模式和参数,修复或更换故障部件。
天线问题也是影响雷达性能的常见因素之一。
天线的位置、方向、角度等参数的不正确设置会导致雷达接收到的信号强度不稳定,观测数据的精度下降。
解决方法是对雷达天线进行详细的校正和调试,确保其位置、方向和角度的准确性,修复或更换故障部件。
还有一个常见的问题是雷达反射信号的强度不稳定。
这可能是由于大气条件的变化引起的,例如气溶胶、湿度等的影响。
解决方法是安装额外的校正装置,通过校正数据来修复强度变化问题。
气象雷达是气象预测和监测中不可或缺的设备,然而它在长时间运行中常常会遇到一些故障。
这些故障可能是由于功率问题、信号处理故障、天线问题以及大气条件的变化等因素引起的。
及时发现和解决这些故障,是确保气象雷达观测质量和准确性的关键。
新一代天气雷达常见业务故障及排除方法发表时间:2019-04-10T13:20:34.043Z 来源:《科技新时代》2019年2期作者:游文华 高翔宇 陈淼[导读] 本文主要根据福建省新一代天气雷达运用实际,首先介绍了新一代天气雷达的组成部分以及运行原理,接着重点对新一代天。
游文华高翔宇陈淼(福建省气象台,福建福州 350001)摘要:本文主要根据福建省新一代天气雷达运用实际,首先介绍了新一代天气雷达的组成部分以及运行原理,接着重点对新一代天气雷达运行中常见业务故障进行分析,并提出相应的排除方法,以供雷达机务保障人员参考借鉴。
关键词:新一代天气雷达;常见业务故障;排除方法引言新一代天气雷达属于综合气象观测系统的重要组成部分之一。
近年来,随着科技的不断发展进步,我国各个地区加快气象业务现代化建设,因新一代天气雷达具备高分辨率、高时效性等诸多优点,其在全国大多数区域得到广泛建设。
福建省目前已经建设了8部新一代天气雷达,通过新一代天气雷达的运用,大大提升了气象要素以及各类天气现象观测的精准性,为短时强降雨、大风、雷电等短期临近天气预报以及台风、暴雨等其他灾害性天气的监测预测等气象业务的开展提供了更为完整精确的资料依据,在大气探测和天气预报业务中占据着极其重要的位置。
但是,在新一代天气雷达在运行过程中,也时常会出现一些业务故障问题,在很大程度上影响了大气探测业务的正常开展。
基于此,本文针对新一代天气雷达常见业务故障以及排除方法进行探讨,以进一步提升地方气象探测业务水平。
1.新一代天气雷达组成以及运行原理新一代天气雷达属于一类性能较高的数字化雷达,该雷达主要由发射机、天线、天线罩、接收机、伺服系统、显示器、信号处理器以及波导管等部分共同构成。
新一代天气雷达采取全相干体质,主要涵盖七种型号,其中,S波段涵盖三种型号,即SA、SB、SC;C波段涵盖四种型号,即 CINRAD-CB、CC、CJ以及CD。
CINRAD/SB雷达故障诊断分析及处理
1引言
新一代多普勒天气雷达(CINRAD/SB)(简称SB)由北京敏视达公司和南京十四所共同生产,它能够定量探测降雨回波强度、平均径向速度、速度谱宽等信息。
其探测到的回波信息能为雷暴、暴雨等强对流天气的中小尺度结构特征分析提供重要依据,是目前其他大气探测手段无法取代的重要探测工具。
目前,万州雷达已经在渝东北地区强对流天气短时临近预报业务中发挥了不可替代的作用。
万州新一代多普勒天气雷达自2009年2月16日投入试运行后,极大提高了对三峡库区流域降水定量估测及暴雨、风雹等灾害性天气的监测预警能力,成为保障三峡库区蓄水安全、防灾减灾的重要工具。
本文主要结合万州雷达运行情况,将常见故障进行分析、总结,为雷达机务员处理常见故障提供参考,以便提高雷达保障技能。
2新一代多普勒天气雷达概述
常规天气雷达的探测原理是利用云雨目标物对雷达所发射电磁波的散射回波来测定其空间位置、强弱分布和垂直结构等。
新一代多普勒天气雷达除能起到常规天气雷达的作用外,还利用物理学上的多普勒效应来测定降水粒子的径向运动速度,推断降水云体的移动速度、风场结构特征、垂直气流速度等。
它可以有效地监测暴雨、冰雹、龙卷等灾害性天气的发生、发展;同时还具有良好的定量测量回波强度的性能,可以定量估测大范围降水;多普勒天气雷达除实时提供各种图像信息外,还可提供对多种灾害性天气的自动识别和追踪产品。
3雷达故障诊断分析及处理
3.1发射机部分
3.1.1发射机无法工作,调制器无高压输出。
发射机无法工作,调制器无高压输出,与厂家技术员沟通后判断为调制器高压组件问题。
通过人工线整形后的脉冲电压为4400V,但此组件无高压输出。
从调制器内部电路开始检测,用示波器测试人工线采样电压无波形显示,拆开调制器组件,按照电路流程逐步检测,发现调制器内扼流圈焊接断裂,重新焊接扼流线圈,发射机恢复正常。
3.1.2 发射机不能工作,报灯丝电源故障。
经过多次故障复位处理,故障仍然存在,仔细检查发射机控制面板的所有指示灯工作状态,发现除灯丝电流故障灯以外的其他指示灯全正确,初步确认为灯丝电源故障,紧接着开始检查灯丝电流的保险管,发现灯丝电流保险管其中一个熔断,及时更换新的保险丝,雷达开机,仍然报灯丝电源故障;与厂家技术人员取得联系后,结合厂家技术员的指导,开始逐级检查,测试灯丝电流保险管全是通路;查看灯丝电源的控制主板,发现主板异常,有被烧坏痕迹,更换灯丝电源主板后,发射机恢复正常工作。
3.1.3发射机强制待机,RDASC执行软件报发射机预警。
发射机强制待机,RDASC软件报发射机故障,发射机速调管过流、发射机故障恢复循环(发射系统)、波导开关打火/电压驻波比(发射系统)、发射机功率机内测试设备故障(发射系统)等故障。
自动复位不能消除,采用手动复位,现象仍然存在,发射机不能工作,整个雷达还是停止运转。
根据现象“波导开关打火/电压驻波比(发射系统)”判定有高压打火,锁定为高压部分有问题,于是拆检调制器组件,逐步检查看打火处。
在检查线路时,发现人工线充电回路4000V高压输电线被击穿,更换了高压输电线,继续查看其他,发现开关组件的IGBT(绝缘栅双极型晶体管)有黑色印记,更换开关组件的IGBT。
用调压器逐渐加大输入电压至380V,查看人工线电压是否处于正常值范围内(一般在4400V左右),此次加载正常,恢复发射机原有链路,开机运行,雷达恢复正常了。
3.1.4发射机油箱油位低于最低标线
发射机油箱面板上油位面低于要求的最低油位线,经现场分析、诊断为运输途中颠簸造成油位过低,其油位线已处于下限报警边界,对发射机的工作极其不利,极端情况可造成油箱内打火(内6万伏高压),从厂家采购同型号变压器油添加至安全线内。
特别提醒:在日常维护工作中需观测油箱的油面情况是否符合技术规范要求。
3.1.5发射机主风机故
在2009年6月13日的日维护中,发现雷达机房声音异常,同时伴有轻微的震动。
维护人员及时切断发射机高压,仔细判断声音来自于发射机。
再经过多次检查,将问题锁定在发射机主风机上。
在日后的维护中,维护人员加强了对发射机主风机运行情况的跟踪。
雷达连续开机运行到2009年11月,发现主风机震动声音巨大,并且震动强度加大,雷达停机等待厂家到场诊断处理。
厂家技术人员通过测试发射机相关参数:如脉冲包络、人工线电压和相关组件等均属正常范围,发现故障根源为:发射机主风机机械故障。
在更换发射机主风机后,雷达恢复正常运行。
3.2接收机部分
3.2.1微波延时线故障
接收机定标不达标,KD指标无线性特征,地物杂波抑制指标完全不正常,表现为极不稳定。
通过对KD指标信号路径的跟踪,确认为微波延时线故障。
测量微波延时线的路径衰减为85DB,与达标理论值(55DB左右)相差较大,返厂维修后,恢复正常。
3.2.2 扇形回波问题,接收机参数不达标
回波成扇形状,接收机的一系列参数不达标,以及伺服系统定标的太阳法不能完成,造成调试中几个重要的关于发射机的指标不合格,如CW、RFD、KD。
开始一直怀疑是数字中频的原因,在更换数字中频后并没好转,从而排除数字中频故障的可能性;仔细观查开机过程,发现加高压后才出现异常回波,对比SA机柜摆放位置又怀疑是因发射机对接收机的电磁干扰所引起的,关掉发射机后,用模拟天线法测量指标还是不达标;经过反复思考,将故障锁定在接地线接触不好对信号的干扰,通过仔细检查发现是接收机机柜接地线因油漆接触不好,重新连接后问题得到解决,回波正常。
3.3软件问题
3.3.1执行应用程序RDASC自动退出
在拷机的过程中,执行应用程序RDASC频繁退出,报天线动态出错,拷机不能正常进行。
最初怀疑是伺服硬件故障,清洗汇流环后现象仍然存在,又将问题锁定在软件RDASC自身。
和厂家多次沟通后,修改RDASC软件,问题得到解决。
3.3.2执行应用程序RDASC卡死
更换了新的RDASC执行程序后,解决了程序频繁自动退出的问题,但又出现新问题。
运行大概三天,就出现死机现象,程序指示停止在1.5仰角,天线被锁定,最初怀疑是方位角和俯仰角控制电路有问题,检查俯仰和方位电机没问题,查看角码控制器也无异常,最后将问题锁定在软件上,联系北京敏视达公司相关人员,发现是RDASC电脑系统版本过高,重新安装系统后,软件再无死机现象发生。
3.4波导充气机连续工作,持续报警波导压力低
波导充气机不间断工作,手触及其机箱表面发烫,波导充气机上报“波导压力低”故障,波导压力表显示高压上限值为24,下限阀值降到0.5左右,发射机控制面板上报“波导压力”故障。
最初怀疑是波导漏气,将波导压力下限上调至2.5,上限调回29,报警消失;继续观察,充压机仍然持续工作,表面发烫,下限阀值逐渐下滑。
联系厂家后,再厂家技术员的指导下,将波导连接处重新密封,观察,故障仍然存在;将波导拆开清洗重新连接,故障仍存在,认定是波导充压机自身有问题,更换上新的充压机后,故障消除。
4小结与讨论
本文阐述了新一代多普勒天气雷达的工作原理、常见故障的诊断分析和处理等,为从事雷达机务维护保障人员尤其没有工作经验的维护员提供处理雷达故障的思路、方法等。
在今后做雷达保障时可以作为一个故障判断、处理依据。
要很好的诊断分析和处理雷达故障,除了具备丰富的理论知识之外,还应具备强烈的责任心、敬业心,更要在实践中不断积累经验,总结分析,不断提高自身的分析和解决问题的能力。