数字电子时序电路
- 格式:ppt
- 大小:4.18 MB
- 文档页数:58
什么是数字电路有哪些常见的数字电路数字电路是由数字信号来控制和处理信息的电子电路。
它主要以离散的时间和离散的状态为基础,使用逻辑门和存储器元件等构建,实现逻辑计算、数据存储、信号转换等功能。
数字电路在现代电子技术中具有广泛的应用,其常见的类型包括组合逻辑电路、时序逻辑电路、存储器电路和通信电路等。
一、组合逻辑电路组合逻辑电路是一种将多个逻辑门按照特定的连接方式组合而成的电路。
它的输出信号仅取决于当前输入信号的状态,与之前的输入状态无关。
在组合逻辑电路中,常见的逻辑门有与门、或门、非门、异或门等。
这些逻辑门可以根据不同的连接方式构成多种功能的组合逻辑电路,例如加法器、减法器、比较器等。
二、时序逻辑电路时序逻辑电路是一种能够根据时钟信号和输入信号的状态变化而改变输出信号的电路。
它与组合逻辑电路相比,具有了记忆功能,可用于实现带有时序要求的各种功能。
时序逻辑电路中常见的元件是触发器和计数器。
触发器能够在时钟信号的作用下存储和改变其输入信号的状态;计数器能够根据时钟信号进行加、减或清零操作,用于计数和控制信号的生成。
三、存储器电路存储器电路是一种能够存储和读取数据的电路。
在数字电路中,存储器通常分为随机存取存储器(RAM)和只读存储器(ROM)两种类型。
RAM具有可读写的特性,能够存储和读取任意数据,常用于计算机内存等;而ROM一般是只读的,其存储内容在制造过程中被固化,用于存储程序或常量数据等。
四、通信电路通信电路指用于传输和接收数字信号的电路。
数字信号可以通过调制技术将其转换成模拟信号进行传输,也可以通过解调技术将模拟信号转换成数字信号进行接收和处理。
在通信电路中,常见的数字电路包括编码器、解码器、调制解调器等,它们能够将信息进行编码、压缩、调制和解码等操作,实现高效的数据传输和通信连接。
总结:数字电路是由离散的时间和状态来处理和控制信息的电子电路。
常见的数字电路类型包括组合逻辑电路、时序逻辑电路、存储器电路和通信电路。
第6章 时序逻辑电路一、选择题1.一个六位二进制减法计数器,初始状态为000000,问经过203个输入脉冲后,此计数器的状态为()。
[电子科技大学2008研]A.110011B.110101C.111000D.110110【答案】B【解析】六位减法器的计数周期为;203%64=11,即从000000经过11个6264计数周期,输出状态变为110101。
2.为了把串行输入的数据转换为并行输出的数据,可以使用()。
[北京科技大学2010研]A.寄存器B.移位寄存器C.计数器D.存储器【答案】B【解析】移位寄存器能能够串行输入串行输出,并行输入并行输出,串行输入并行输出。
3.一个四位二进制码加法计数器的起始值为1001,经过100个时钟脉冲后的值为( )。
[北京邮电大学2010研]A .1110B .1111C .1101D .1100【答案】C【解析】1001经过16的倍数个周期后仍为1001,即96个时钟脉冲后计数器显示1001,再经历4个时钟脉冲,即100个时钟脉冲时,计数为1001+0100(4)=11014.某计数器的状态转换图如下图所示,该计数器的模为( )。
[电子科技大学2010研]A .三B .四C .五D .八图6-1【答案】C【解析】循环状态的有5个,也就是说当计数器使用的过程中只有这5个状态才能保持一直计数。
二、填空题1.8级扭环计数器的状态转换圈中,无效状态有______个。
[电子科技大学2008研]【答案】240【解析】n 级扭环计数器的无效状态共有:个。
22n n 2.用移位寄存器产生1101010序列,至少需要______位的移位寄存器。
[电子科技大学2010研]【答案】6【解析】共七位序列数,由于采用移位寄存器,而且状态在序列中没有循环,移位寄存器在传输过程中数据是一次传递的,所以需要至少6位移位寄存器。
表6-13.一个三级环形计数器的初始状态是Q2Q1Q0=001(Q2为高位),则经过40个时钟周期后的状态Q2Q1Q0=______。
LOGIC对扰动不敏感(2)Register寄存器为存放二进制数据的器件,通常由Latch 构成。
一般地,寄存器为边沿触发。
(3)flip-flops(触发器)任何由交叉耦合的门形成的双稳电路Register 时序参数D Q Clk T Clk D tsu Q tc-q thold注意:数据的上升和下降时间不同时,延时将不同。
2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 11 页Latch 时序参数Latch 的时序( Timing )参数还要考虑tD 2 D Q DQtD-qQClkClktC 2QtC 2Q寄存器(Register)2004-12-1锁存器(Latch)第 8 章 (1) 第 12 页清华大学微电子所 《数字大规模集成电路》 周润德Latch 时序参数D Q Clk正电平 Latch 时钟负边沿T Clk D tc-q PWm thold td-q tsuQ注意:数据的上升和下降时间不同时,延时将不同。
2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 13 页最高时钟频率φ FF’s LOGIC tp,comb最高时钟频率需要满足:tclk-Q + tplogic+ tsetup < T =但同时需要满足:其中tplogic = tp,comb (max) tcd:污染延时(contamination delay) = 最小延时(minimum delay)第 8 章 (1) 第 14 页tcdreg + tcdlogic > thold =2004-12-1其中清华大学微电子所 《数字大规模集成电路》 周润德研究不同时刻 (t1, t2)FF1φ (t1) LOGIC t p,combφ (t2)CLKt1tsu D tholdFF1 输入数据 应保持稳定t tsuF F2t2holdtFF2 输入数据 应保持稳定tclk-q QFF1 输出数据 经组合逻辑到达 t 已达稳定 寄存器输入端tclk-Qtp,comb (max)tsetup因此要求:tclk-Q + tp,comb (max) + tsetup < T =2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 15 页研究同一时刻 (t1)t1 时FF1φ (t1) LOGIC FF1 t p,combt1 时FF2输入数据(2)φ (t1)输入数据(1)tclk-q QFF1 输出数据 已达稳定经组合逻辑已 到达FF2 输入端破坏了本应保 持的数据(2)tt1tcdregtcdlogicholdsuD输入数据(2)应保持稳定至 t1F F2t因此要求 := tcd: 污染延时(contamination delay) = 最小延时(minimum delay)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 16 页tcdreg + tcdlogic > thold写入(触发)静态 Latch 的方法:以时钟作为隔离信号, 它区分了“透明” (transparent )和“不透明” (opaque)状态CLKCLKQ CLKD CLKDD弱反相器CLKMUX 实现弱反相器实现(强制写入)(控制门可仅用NMOS实现)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德第 8 章 (1) 第 17 页Latch 的具体实现基于Mux 的 Latch负(电平) latch (CLK= 0 时透明) 正(电平) latch (CLK= 1 时透明)1 D 0Q D0 1QCLKCLKQ = Clk ⋅ Q + Clk ⋅ In2004-12-1Q = Clk ⋅ Q + Clk ⋅ In第 8 章 (1) 第 18 页清华大学微电子所 《数字大规模集成电路》 周润德基于(传输门实现的) Mux 的 LatchCLKQ CLK DCLK(1)尺寸设计容易 (2)晶体管数目多(时钟负载因而功耗大)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 19 页基于(传输管实现)Mux 的 Latch(仅NMOS 实现)CLK QM QM CLK CLKCLK仅NMOS 实现不重叠时钟 (Non-overlapping clocks)(1)仅NMOS 实现,电路简单,减少了时钟负载 (2)有电压阈值损失(影响噪声容限和性能,可能引起静态功耗)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 20 页Q单元形式的Latch采用串联电压开关逻辑(CVSL)QNon-overlap时间过长,存储在动态节点上的电荷会泄漏掉(故称伪静态)低电压静态Latch双边沿触发寄存器RS Latch?动态Latch 和Register(1)比静态Latch和Register 简单(2)基于在寄生电容上存储电荷,由于漏电需要周期刷新(或经常更新数据)(3)不破坏的读信息:因此需要输入高阻抗的器件传输门构成的动态边沿触发寄存器(只需8 个晶体管,节省功耗和提高性能,甚至可只用NMOS 实现)动态节点。
数字电路第6章(1时序逻辑电路分析方法)1、第六章时序规律电路本章主要内容6.1概述6.2时序规律电路的分析方法6.3若干常用的时序规律电路6.4时序规律电路的设计方法6.5时序规律电路中的竞争-冒险现象1.时序规律电路的特点2.时序规律电路的分类3.时序规律电路的功能描述方法§6.1概述一、时序规律电路的特点1、功能:任一时刻的输出不仅取决于该时刻的输入;还与电路原来的状态有关。
例:串行加法器:两个多位数从低位到高位逐位相加一、时序规律电路的特点2.电路结构①包含存储电路和组合电路,且存储电路必不行少;②存储电路的输出状态必需反馈到组合电路输入端,与输入变量共同确定组合规律的输出。
yi:输出信号xi:输2、入信号qi:存储电路的状态zi:存储电路的输入可以用三个方程组来描述:Z=G(X,Q)二、时序电路的分类1.依据存储电路中触发器的动作特点不同时序电路存储电路里全部触发器有一个统一的时钟源;触发器状态改变与时钟脉冲同步.同步:异步:没有统一的时钟脉冲,电路中要更新状态的触发器的翻转有先有后,是异步进行的。
二、时序电路的分类2.依据输出信号的特点不同时序电路输出信号不仅取决于存储电路的状态,而且还取决于输入变量。
Y=F(X,Q)米利(Mealy)型:穆尔(Moore)型:输出状态仅取决于存储电路的状态。
犹如步计数器Y=F(Q)三、时序规律电路的功能描述方法描述方法3、规律方程式状态转换表状态转换图时序图三、时序规律电路的功能描述方法(1)规律方程式:写出时序电路的输出方程、驱动方程和状态方程。
输出方程反映电路输出Y与输入X和状态Q之间关系表达式;驱动方程反映存储电路的输入Z与电路输入X和状态Q之间的关系状态方程反映时序电路次态Qn+1与驱动函数Z和现态Qn之间的关系三、时序规律电路的功能描述方法(2)状态〔转换〕表:反映输出Z、次态Qn+1和输入X、现态Qn间对应取值关系的表格。
(3)状态〔转换〕图:(4)时序图:反映时序规律电路状态转换规律及相应输入、输出取值关系的有向图形。
4 62习 题1.解:QQRS3.解: CP =0时,R D =S D =0,Q n+1=Q n ; CP =1时,S R R =D ,S D =S ;1D D n n n n Q S R Q S RSQ S RQ +=+=+=+不管S 、R 输入何种组合,锁存器均不会出现非正常态。
5.解:(1)系统的数据输入建立时间t SUsys =或门的传输延迟+异或门的传输延迟+锁存器的建立时间-与门的传输延迟=t pdOR +t pdXOR + t SU - t pdAND =18ns+22ns+20ns -16 ns =44ns 。
(2)4 63当C =1时, J =X X K = X Q K Q J Q n n n =+=+1 为D 触发器9. 解:当EN =0 ,Q n+1=Q n ;当EN =1,Q n+1=D ,则D EN Q EN Q n n ⋅+⋅=+11,令D EN Q EN D n ⋅+⋅=1即可。
10.解:根据电路波形,它是一个单发脉冲发生器,A 可以为随机信号,每一个A 信号的下降沿后;Q 1端输出一个脉宽周期的脉冲。
12.解:(1)(2)4 6415. 解:X =0时,计至9时置0000:03Q Q LD =,D 3D 2D 1D 0=0000X =1时,计至4时置1011:23Q Q LD =,D 3D 2D 1D 0=10112303Q Q X Q Q X LD +=,D 2=0,D 3=D 1=D 0=X16.解:当片1计数到1001时,置数信号LD 为低电平,这时,再来一个CP 脉冲,下一个状态就进入0000。
应该等到片0和片1的状态同时为1001时,片1的下一个状态才能进入0000。
改进后电路为:对改进后电路的仿真结果:17.解:4 6518.解:19. 解:从图所示电路图可知,S 1S 0=01,根据表4.8-3所示的74LS194功能表,电路处于右移功能。
右移数据输入端的逻辑表达式为:32IR Q Q D =。