空气液相氧化概述
- 格式:pptx
- 大小:2.25 MB
- 文档页数:8
双氧水生产过程中危险、有害因素评价通过对国内现役双氧水生产装置进行调研,同时结合国内外其他涉及双氧水生产厂家的情况,分析并指出了生产过程中可能出现的危险有害因素,进而提出了相应的对策措施,为企业消防事故及安全生产提供参考。
1前言双氧水(过氧化氢,H2O2)生产有电解法、异丙醇法和蒽醌法,由于蒽醌法原料简便易得,且大量节省能耗,近几年得到普遍发展。
但是在双氧化蒽醌法生产过程中还是存在着多种危险危害因素,一旦发生事故可能造成极为严重的后果。
我对国内某双氧水现役装置进行了调研,同时查阅了国内外双氧水生产的资料和国家安全生产规范与标准,在经有关专家论证后,对双氧水生产过程中可能遇到的危险有害因素进行了辨识与评价,同时提出了相应的对策措施。
2双氧水装置流程简述双氧水生产采用蒽醌法钯催化剂固定床氢化工艺,该法以重芳烃和磷酸三辛酯为溶剂,以2-乙蒽醌为溶质,配成工作液,工作液与氢气在钯剂的作用下催化氢化,得到氢蒽醌溶液即氢化液,氢化液经空气氧化,得到H2O2和蒽醌的混合液即氧化液,氧化液经萃取分离出H2O2,再经净化处理为合格的H2O2(27.5%)。
分享出的蒽醌溶液经后处理除去其中夹带的H2O2,作为工作液返回氢化工序。
稀品H2O2还可经精馏浓缩成浓品H2O2。
整个工艺过程中,蒽醌、芳烃和磷酸三辛酯组成的工作液循环使用,仅有少量工艺损耗,主要物耗为该厂合成氨系统的副产品氢气,电耗全部为动力电耗,因而具有原料简便、能耗较低的优点。
其工艺流程图1。
图1双氧水生产简易工艺流程图2危险及有害因素分析双氧水生产的火灾危险性分类按照《建筑设计防火规范》第3.1.1条的要求是属于甲类,其生产的原料氢气和重芳烃是众所周知的易燃易爆物质,其产品过氧化氢是一种强氧化剂,生产过程中涉及到的危险、危害物质,品种多、数量大,可以说该工艺流程是用危险的原料生产危险的产品。
因此,双氧水生产的主要危险因素是火灾和爆炸,另外还有毒害、腐蚀及其他危险及有害因素。
编号:No.23课题:乙烯液相氧化法生产乙醛授课内容:●乙烯氧化法生产乙醛反应原理●乙烯氧化法生产乙醛工艺流程知识目标:●了解乙醛物理及化学性质、用途、生产方法●掌握乙烯氧化法生产乙醛反应原理●掌握乙烯氧化法生产乙醛工艺流程能力目标:●分析影响反应过程的主要因素●分析和判断主副反应程度对反应产物分布的影响思考与练习:●乙烯氧化法生产乙醛反应催化剂组成和特点●影响乙烯氧化法生产乙醛反应过程的主要因素●乙烯氧化法生产乙醛工艺流程的构成授课班级:授课时间:年月日第二节乙烯液相氧化法生产乙醛图6-4 以乙醛为基础的合成由于石油和天然气制乙炔技术得到了很大的发展,目前乙炔水合法仍是重要的一种工业生产路线。
为了避免汞催化剂的毒害和设备的腐蚀,已经对非汞催化剂进行了许多研究,出现了乙炔气相水合工艺,即乙炔气在非汞型的固体催化剂上用水蒸汽进行直接水合。
研究用过的催化剂很多,主要是磷酸盐,如:磷酸镉钙和磷酸铜钙,并已实现了工业化。
(2)乙醇氧化或脱氢法乙醇氧化法是用银或铜作催化剂,在550℃左右的温度下进行反应,反应式为:CH3CH20H + 1202→ CH3CHO + H2O + 173KJ/mol此法生产乙醛的转化率为35%左右,产率达90~95%,在此反应中易生成一些深度的氧化产物而消耗一部分乙醇。
乙醇脱氢法是以铜或以铬活化的铜作催化剂,在260~290℃的温度下进行反应,反应式为:CH3CH2OH → CH3CHO + H2 - 69KJ/mol由于反应温度较低,不易生成深度氧化物,所生成的乙醛也不易分解,并副产高纯度氢气,因而,用脱氢法比用氧化法更为优越。
工业上也有将氧化法和脱氢法结合起来的工艺,即只提供不足量的空气作氧化剂,氧化反应释放的热量正好为脱氢反应所吸收,解决了热量的供应和消散问题。
用乙醇为原料来生产乙醛,还需注意原料乙醇的来源,如乙醇由粮食发酵而得,显然是不合理的;如果由乙烯水合而得,就比较经济合理。
均三甲苯液相空气氧化工艺条件优化李辉;孟艳;梁斌;唐盛伟【摘要】以冰乙酸为溶剂,空气为氧化剂,醋酸钴/醋酸锰/溴化钠为复合催化剂,在气升式环流反应器中以半连续方式进行均三甲苯的液相氧化反应.系统地考察了催化剂配比、催化剂用量、反应压力、空气流量、溶剂含水量和反应时间对均三甲苯液相氧化反应性能的影响.结果表明,当冰乙酸与均三甲苯质量之比为15∶1,催化剂中Co、Mn和Br物质的量之比为8∶3∶3,Co与均三甲苯物质的量之比为13∶1 000,反应温度200 ℃,压力2.0 MPa,空气流量4.0 L/min以及反应时间60 min时,目标产物均苯三甲酸的收率达到82.23%.【期刊名称】《化学反应工程与工艺》【年(卷),期】2010(026)003【总页数】6页(P242-247)【关键词】均三甲苯;均苯三甲酸;环流反应器;工艺条件【作者】李辉;孟艳;梁斌;唐盛伟【作者单位】四川省多相流传质与反应工程重点实验室,四川大学化工学院,四川,成都,610065;四川省多相流传质与反应工程重点实验室,四川大学化工学院,四川,成都,610065;四川省多相流传质与反应工程重点实验室,四川大学化工学院,四川,成都,610065;四川省多相流传质与反应工程重点实验室,四川大学化工学院,四川,成都,610065【正文语种】中文【中图分类】TQ245.12随着我国催化重整产生重芳烃产量的大幅提高,作为C9主要成份之一的均三甲苯(1,3,5-三甲基甲苯)的产量增加迅速 ,而价格却因产量的增加而日益降低,因此加强对均三甲苯下游产品的开发利用具有重要的意义。
在均三甲苯的下游产品中,均苯三甲酸(1,3,5-苯三甲酸)是一种高附加值的重要化工中间体,在工业上有着广泛的应用,目前处于供不应求的状态。
通过适当的氧化剂将均三甲苯侧链上的三个甲基进行氧化即可制得均苯三甲酸[1]。
采用空气或氧气为氧化剂具有经济性好、环境友好等优点,是目前进行芳烃侧链液相氧化反应过程的主要生产工艺。
目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类:(1)精PTA工艺此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。
这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。
(2)优质聚合级对苯二甲酸(QTA、EPTA)工艺此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。
此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。
生产能力约占PTA 总产能的16%。
两种工艺路线差异在于精制方法不同,产品质量也有所差异。
即两种产品所含杂质总量相当,但杂质种类不一样。
PTA产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA较高(250ppm 左右),PT酸较低(25ppm以下)。
两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。
目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。
PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。
工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工艺,这种工艺在对苯二甲酸的制备工艺中占有绝对优势。
对二甲苯高温氧化工艺是在高温、高压下进行的,副反应较多;而且由于温度高、压力大对设备本身的要求就高。
因此工艺改进主要就集中在降低氧化反应温度和降低氧化反应的压力两个方面。
目前,拥有这一专利技术的公司主要有美国Amoco公司、英国ICI公司和日本三井油化公司,我国曾在不同时期引进过这三家公司的专利技术。
全液体空分液氧液氮变换是一种将空气中的氧气和氮气分离出来的技术。
该技术利用了液态空气在不同温度下的不同沸点,通过冷却和压缩空气,使其变成液态,然后通过分馏的方法将氧气和氮气分离出来。
具体来说,全液体空分液氧液氮变换的过程包括以下几个步骤:
1. 空气进入压缩机,被压缩成高压气体。
2. 高压气体经过冷却器,被冷却成液态。
3. 液态空气进入分馏塔,通过不同温度下的蒸发和冷凝过程,将氧气和氮气分离出来。
4. 氧气和氮气分别从分馏塔的不同出口流出,经过冷却器后变成液态。
5. 液态氧气和氮气可以用于各种工业应用,如钢铁生产、化学工业、医疗等领域。
全液体空分液氧液氮变换技术具有以下优点:
1. 能够高效地将空气中的氧气和氮气分离出来,提高了资源的利用率。
2. 液态氧气和氮气的储存和运输更加方便,减少了管道运输的成本和风险。
3. 液态氧气和氮气的纯度高,能够满足各种工业应用的需求。
然而,全液体空分液氧液氮变换技术也存在一些挑战和问题,如设备的投资成本较高、能源消耗较大等。
因此,在实际应用中需要综合考虑各种因素,选择最适合的技术和设备。
编号:No.23课题:乙烯液相氧化法生产乙醛授课内容:●乙烯氧化法生产乙醛反应原理●乙烯氧化法生产乙醛工艺流程知识目标:●了解乙醛物理及化学性质、用途、生产方法●掌握乙烯氧化法生产乙醛反应原理●掌握乙烯氧化法生产乙醛工艺流程能力目标:●分析影响反应过程的主要因素●分析和判断主副反应程度对反应产物分布的影响思考与练习:●乙烯氧化法生产乙醛反应催化剂组成和特点●影响乙烯氧化法生产乙醛反应过程的主要因素●乙烯氧化法生产乙醛工艺流程的构成此法技术成熟,并可得到纯度高、产率高的乙醛,但是当所用乙炔来自电石时,则需消耗大量的电力,同时它所使用的催化剂中含有硫酸,催化剂再生时需用硝酸,设备的腐蚀严重。
催化剂中还含有汞,在生产过程中易挥发,严重影响工人的身体健康。
所以此法逐步被淘汰。
图6-4 以乙醛为基础的合成由于石油和天然气制乙炔技术得到了很大的发展,目前乙炔水合法仍是重要的一种工业生产路线。
为了避免汞催化剂的毒害和设备的腐蚀,已经对非汞催化剂进行了许多研究,出现了乙炔气相水合工艺,即乙炔气在非汞型的固体催化剂上用水蒸汽进行直接水合。
研究用过的催化剂很多,主要是磷酸盐,如:磷酸镉钙和磷酸铜钙,并已实现了工业化。
(2)乙醇氧化或脱氢法乙醇氧化法是用银或铜作催化剂,在550℃左右的温度下进行反应,反应式为:02→CH3CHO + H2O + 173KJ/molCH3CH20H + 12此法生产乙醛的转化率为35%左右,产率达90~95%,在此反应中易生成一些深度的氧化产物而消耗一部分乙醇。
乙醇脱氢法是以铜或以铬活化的铜作催化剂,在260~290℃的温度下进行反应,反应CH3CH2OH →CH3CHO + H2 - 69KJ/mol由于反应温度较低,不易生成深度氧化物,所生成的乙醛也不易分解,并副产高纯度氢气,因而,用脱氢法比用氧化法更为优越。
工业上也有将氧化法和脱氢法结合起来的工艺,即只提供不足量的空气作氧化剂,氧化反应释放的热量正好为脱氢反应所吸收,解决了热量的供应和消散问题。
大气环境化学第一节的要求 1概念:大气的温度层结:大气垂直递减率:随高度的升高气温的降低率τ=‐dT \dZ干绝热垂直递减率:干空气在上升时的温度降低值与上升高度之比。
Τd=dT \dZ 2对流层的特点: 和平流的特点:3利用大气垂直递减率和干绝热垂直递减率变化判断大气的稳定度 4逆温现象对大气中污染物的迁移有何影响5掌握大气的源与汇,掌握大气中一次污染物和二次污染物的概念及其代表物 6掌握大气污染物在环境中的迁移 第二节的要求1初级过程:光解离过程,直接反应,辐射跃迁,无辐射跃迁次级过程:指在初级过程中反应物、生成物之间进一步发生反应的过程。
2大气中有哪些重要的吸光物质?其吸光特征是什么? ①O2、N2、O3的光离解②NO2的光离解③亚硝酸和硝酸的光离解 ④二氧化硫对光的吸收由于SO2的键能较大,在240-400nm 的光不能使其解离,只能生成激发态⑤甲醛的光离解⑥卤代甲烷的光离解-------近紫外光照射3掌握· OH 和HO2·的源和汇,及其它们之间的相互转化规律; OH 自由基的来源主要有以下几个方面 (1) O3的光分解 (2) HNO2光分解 (3) H2O2光分解 HO2·的主要来源是大气中甲醛(HCHO)的光分解:· OH 和HO2 · 自由基的汇与相互转化OH 自由基的汇HO2 · 自由基的汇 自由基通过复合反应而去除NN N +−−−→−+〈120nm2hv λOO O +−−−→−+〈nm4022hv λOO O +−−−→−+〈2nm9023hv λONO NO +−−−→−+〈nm4202hv λM O M O O +−→−++32213)(O D O hv O +→+OHO H D O ⋅→+2)(21NOOH hv HONO +⋅→+OHhv O H ⋅→+222COHO O O HC HO O H OHC H hv HCHO M+⋅→+⋅⋅−→−+⋅⋅+⋅→+2222⋅+→⋅++⋅→⋅+3242CHO H OH CHCO H OH CO OH O O HO OH NO NO HO ⋅+→+⋅⋅+→+⋅2322222222222222O O H HO HOO H OH OH O O H OH HO+→⋅+⋅→⋅+⋅+→⋅+⋅4碳氢化合物参与光化学反应对各种自由基的形成有哪些贡献光化学烟雾形成过程是由多种自由基参与的一系列反应,NO2 和醛的光解可引发O、H 自由基的产生,而烃类RH 的存在又是自由基转化和增殖为数量大,种类多的根本原因。
精细化工课后习题及答案化工0951、以下化工原料主要来自哪些资源:(1)甲烷(2)一氧化碳(3)乙炔(4)乙烯(5)苯(6)萘答:(1)天然气(2)煤的气化(3)煤制电石(4)石油烃类热裂解(5)石油馏分催化重整(6)煤的高温干馏2、相似相溶原则:溶质易溶于化学结构相似的溶剂,而不易溶于化学结构完全不同的溶剂。
极性溶质易溶于性溶剂,非极性溶质易溶于非极性溶剂。
1 什么是精细化工,精细化工的特点是什么?2 什么是精细化学品,请列举五类主要的精细化学品。
3 精细化学品的原料来源主要有哪些?4 精细有机合成的主要单元反应有哪些?1. 芳香族亲电取代的反应历程绝大多数是按照经过C络合物中间体的两步历程进行的。
第一步是亲电试剂E+进攻芳环,先生成n络合物,接着E+与芳环上某一个碳原子形成c键,生成c络合物中间体。
第二步是c络合物中间体脱落一个H+,生成取代产物。
2、取代基的电子效应包括哪些内容? 诱导效应、共轭效应、超共轭效应统称取代基的电子效应。
3、萘环的a位比B位的亲电取代反应活性高的原因是什么?a -取代和B -取代中间体正离子含有一个苯环的较稳定的共振结构式:a -取代时,含有一个苯环的较稳定的共振结构式有两个,而B -取代时只有一个;同时a -取代的中间体正离子的的一个共振结构式中非苯环部分有一个烯丙基型正碳离子直接和苯环相连,使电子离宇范围较大,因而取代需要的能量更低。
上述两个原因使萘的一元亲电取代在a位比B位更容易发生。
4、苯发生亲电取代反应时,亲电试剂的活泼性越高,亲电取代反应速度越快,反应的选择性越低。
亲电试剂的活泼性越低,亲电取代反应速度越低,反应的选择性越高。
第三章1 芳环上亲电取代卤化时,有哪些重要影响因素?2 卤化反应用到的催化剂主要有哪些?3 丙酮用氯气进行氯化制一氯丙酮时,如何减少二氯化副产物?4 对叔丁基甲苯在四氯化碳中,光照下进行一氯化,生成什么产物?5 简述由甲苯制备以下化合物的合成路线和工艺过程(1)邻氯三氟甲苯(2)间氯三氟甲苯6 写出本章所遇到的各种亲电卤化反应、亲核卤化反应和自由基卤化反应的名称。
食品添加剂苯甲酸的合成1.1合成苯甲酸的工作任务1.苯甲酸概述苯甲酸又名安息香酸,是一种重要的精细有机化工产品,世界年产量达数十万吨。
苯甲酸主要用于生产苯甲酸钠食品防腐剂、染料、农药、增塑剂、媒染剂、医药、香料的中间体,还可用作醇酸树脂和聚酰胺树脂的改性剂,用于生产涤纶的原料对苯二甲酸以及用作钢铁设备的防锈剂等。
1.2苯甲酸合成任务分析1.2.1 苯甲酸分子结构的分析首先要搞清需要合成的物质是什么?对于有机化合物而言,必须搞清楚其分子结构式、分子的基本骨架结构、相关基团组成以及连接的方式等。
①苯甲酸分子式:C6H5C00H。
②苯甲酸分子结构式:不难看出,目标化合物基本结构为苯的结构,在苯环上接有一个羧基。
1.2.2 苯甲酸的合成路线分析一种化合物的制备路线可能有多种,但并非所有的路线都能适用于实验室合成或工业化生产,选择正确的制备路线是极为重要的。
比较理想的制备路线几乎应同时具备下列条件:①原料资源丰富,价廉易得,生产成本低;②副反应少,产物容易分离、提纯,总收率高;③反应步骤少,时间短,能耗低,条件温和,设备简单,操作安全方便;④产生的废水、废气、废渣少,“三废”能得到有效控制,不污染环境;⑤副产品可综合利用。
物质的制备过程中还经常需要应用一些酸、碱及各种溶剂作为反应的介质或精制的辅助材料,如能减少这些材料的用量或用后能够回收,便可节省费用,降低成本,避免对环境的污染。
另一方面,制备中如能采取必要措施避免或减少副反应的发生及产品分离、提纯过程中的物料损失,就可有效地提高产品的收率。
因此,要选择一条合理的产品制备路线,根据不同的原料有不同的方法。
何种方法比较优越,需要综合考虑各方面的因素,最后确定一条技术可行、经济效益较好、符合国家环保要求的制备路线。
在有机化学课程里,我们学习了有关苯环侧链氧化的知识,即中性或碱性条件时苯环的侧链在强氧化剂(如高锰酸钾)的作用下,侧链可被氧化为羧基。
故要合成苯甲酸,可以用含侧链的苯(如甲苯、乙苯等)为原料,在中性或碱性条件下经高锰酸钾(或其它氧化剂,可在酸性条件下)氧化即可。
间苯二甲酸的生产间苯二甲酸(简称IPA)又名1,3-苯二甲酸或异酞酸,分子式C8H6O4,分子量166.13,外观为白色结晶性粉末或针状结晶,熔点345-347℃,能升华,易溶于甲醇、乙醇、丙酮和冰醋酸,微溶于沸水,不溶于苯、甲苯和石油醚。
间苯二甲酸具有较强的耐热性、耐水解性和耐化学性,易燃、低毒,对皮肤、眼睛、粘膜等软组织有刺激作用。
间苯二甲酸具有一般二元酸的特征反应,可发生成盐、脱水、加氢、卤化等反应,在涂料、聚酯(PET)树脂、不饱和聚酯(UPR)树脂、特种纤维、热熔粘合剂、印刷油墨、聚酯纤维染色改性以及树脂增塑等方面具有广泛的用途。
1 生产方法目前,间苯二甲酸的生产方法主要是间二甲苯液相空气氧化法、间二甲苯硫氧化法和间二甲苯硝酸氧化法3种。
1.1 间二甲苯液相空气氧化法间二甲苯液相空气氧化法是工业上生产间苯二甲酸的主要方法。
该方法以间二甲苯为原料,醋酸钴为催化剂、乙醛为促进剂、醋酸为溶剂,在约0.6 MPa下于120℃液相氧化制得间苯二甲酸。
具体工艺过程为:催化剂系统(醋酸钴、醋酸锰与溴化物)和循环醋酸在进入氧化反应器之前,在催化剂溶解槽内先混合。
溶剂与间二甲苯的质量比为2:4,催化剂的用量一般为所用溶剂的1%-2%(质量比,下同),助催化剂溴原子对催化剂原子的比例在1/10-10/1之间选取。
使用喷射空气的连续搅拌氧化器,反应器温度和压力分别为236℃和2.46MPa,停留时间约为1h,反应热量依靠溶剂和间二甲苯的冷凝和回流以及发生水蒸汽带走。
间二甲苯接近全部转化,该步工序的产得率约为98%(mol)。
氧气供给量比理论值过量,在反应器上方气体空间中,氧含量保持在1.0-1.5%为宜,少量醋酸会被氧化过程破坏。
生成的粗IPA与醋酸的热泥浆连续从反应器排出进入结晶器。
将部分醋酸、未反应间二甲苯和反应生成水闪蒸,热泥浆被冷却,粗IPA 结晶析出,经离心和干燥,然后再加以精制。
粗IPA先在泥浆槽内用热水洗涤,经加热与溶解,粗IPA水溶液进入加氢反应器。
精细化工课后习题及答案化工0951、以下化工原料主要来自哪些资源:(1)甲烷(2)一氧化碳(3)乙炔(4)乙烯(5)苯(6)萘答:(1)天然气(2)煤的气化(3)煤制电石(4)石油烃类热裂解(5)石油馏分催化重整(6)煤的高温干馏2、相似相溶原则:溶质易溶于化学结构相似的溶剂,而不易溶于化学结构完全不同的溶剂。
极性溶质易溶于性溶剂,非极性溶质易溶于非极性溶剂。
1什么是精细化工,精细化工的特点是什么?2什么是精细化学品,请列举五类主要的精细化学品。
3精细化学品的原料来源主要有哪些?4精细有机合成的主要单元反应有哪些?绝大多数是按照经过σ络合物中间体的两步历程进行的。
第一步是亲电试剂E+进攻芳环,先生成π络合物,接着E+与芳环上某一个碳原子形成σ键,生成σ络合物中间体。
第二步是σ络合物中间体脱落一个H+,生成取代产物。
2.取代基的电子效应包括哪些内容?诱导效应、共轭效应、超共轭效应统称取代基的电子效应。
3、萘环的α位比β位的亲电取代反应活性高的原因是什么?α-取代和β-取代中间体正离子含有一个苯环的较稳定的共振结构式:α-取代时,含有一个苯环的较稳定的共振结构式有两个,而β-取代时只有一个;同时α-取代的中间体正离子的的一个共振结构式中非苯环部分有一个烯丙基型正碳离子直接和苯环相连,使电子离宇范围较大,因而取代需要的能量更低。
上述两个原因使萘的一元亲电取代在α位比β位更容易发生。
4、苯发生亲电取代反应时,亲电试剂的活泼性越高,亲电取代反应速度越快,反应的选择性越低。
亲电试剂的活泼性越低,亲电取代反应速度越低,反应的选择性越高。
第三章1 芳环上亲电取代卤化时,有哪些重要影响因素?2 卤化反应用到的催化剂主要有哪些?3 丙酮用氯气进行氯化制一氯丙酮时,如何减少二氯化副产物?4 对叔丁基甲苯在四氯化碳中,光照下进行一氯化,生成什么产物?5 简述由甲苯制备以下化合物的合成路线和工艺过程(1)邻氯三氟甲苯(2)间氯三氟甲苯6 写出本章所遇到的各种亲电卤化反应、亲核卤化反应和自由基卤化反应的名称。