应用随机过程试题及答案
- 格式:docx
- 大小:24.50 KB
- 文档页数:3
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
证明:当12n 0t t t t <<<<<L 时,1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x ,X(t )-X(0)=x )≤L =n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n P(X(t)x X(t )=x )≤3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p pl l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
证明:{}(n)ij k IP P X(n)=j X(0)=i P X(n)=j,X(l)=k X(0)=i ∈⎧⎫==⎨⎬⎩⎭U ={}k I P X(n)=j,X(l)=k X(0)=i ∈∑ ={}{}k IP X(l)=k X(0)=i P X(n)=j X(l)=k,X(0)=i ∈∑g =(l)(n-l)ik kjPP ∑,其意义为n 步转移概率可以用较低步数的转移概率来表示。
4.设{}N(t),t 0≥是强度为λ的泊松过程,{}k Y ,k=1,2,L 是一列独立同分布随机变量,且与{}N(t),t 0≥独立,令N(t)k k=1X(t)=Y ,t 0≥∑,证明:若21E(Y <)∞,则[]{}1E X(t)tE Y λ=。
1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。
每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。
求在所有乘客都走出电梯之前,该电梯停止次数的期望值。
2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。
若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。
(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。
应用随机过程习题随机过程是概率论和统计学中的一种数学模型,用来描述随机事件在时间上的演化。
应用随机过程的习题有很多,可以涵盖多个领域,例如通信、金融、电力系统等。
下面我将给出一些应用随机过程的习题,并进行详细的解答。
习题1:航空公司的每小时飞行延误时间服从均值为2小时的指数分布。
计算飞行延误时间小于等于3小时的概率。
解答:首先,我们知道指数分布的概率密度函数为f(x)=λe^(-λx),其中λ为参数。
延误时间小于等于3小时的概率可以表示为P(X≤3),其中X为随机变量表示延误时间。
由于题目已经给出了参数λ=1/2小时^-1,我们可以直接代入计算概率。
P(X ≤ 3) = ∫[0, 3] λe^(-λx) dx= ∫[0, 3] (1/2)e^(-(1/2)x) dx=[-e^(-x/2)],0,3=-(e^(-3/2)-1)≈0.7769所以飞行延误时间小于等于3小时的概率约为0.7769习题2:染料厂制造的染料每小时以恒定速率泄漏。
设染料从泄漏口出来的间隔时间服从均值为30分钟的指数分布。
求在1小时内泄漏从未中断的概率。
解答:设泄漏从未中断的概率为P(X>1),其中X为随机变量表示泄漏中断的时间。
由于题目已经给出了参数λ=1/30分钟^-1,我们可以直接代入计算概率。
P(X>1)=1-P(X≤1)= 1 - ∫[0, 1] λe^(-λx) dx= 1 - ∫[0, 1] (1/30)e^(-(1/30)x) dx=1-[-e^(-x/30)],0,1=1-(e^(-1/30)-1)≈0.0335所以在1小时内泄漏从未中断的概率约为0.0335习题3:商店的顾客到达服从均值为10分钟的指数分布,服务时间服从均值为8分钟的指数分布。
求平均每分钟服务完的顾客数。
解答:设顾客到达和服务完的速率为λ和μ,分别表示单位时间内到达和服务完的顾客数。
根据泊松过程的理论,平均每分钟服务完的顾客数为λ/μ。
应用随机过程熊德文答案一、哎呀,这“应用随机过程熊德文答案”可有点难搞呢。
我就先说说我对这门课的感受吧。
这应用随机过程啊,就像一个神秘的魔法世界,里面的各种概念和公式就像魔法咒语一样,让人眼花缭乱。
不过呢,要是能掌握好,就像学会了魔法一样厉害。
二、如果这是一份试卷的话,那我就来出出题目。
1. 什么是随机过程的基本定义呢?(10分)2. 请列举出三种常见的随机过程类型。
(15分)3. 对于泊松过程,它的重要特性有哪些?(15分)4. 马尔可夫链的状态转移矩阵怎么构建?(15分)5. 解释一下平稳随机过程的含义。
(10分)6. 随机过程中的期望和方差有什么重要意义?(10分)7. 如何判断一个随机过程是否是独立增量过程?(10分)8. 维纳过程在实际应用中有哪些例子?(5分)答案和解析:1. 随机过程是一族随机变量的集合,每个随机变量对应一个特定的时刻或者事件。
2. 比如泊松过程、马尔可夫链、维纳过程。
3. 泊松过程的重要特性包括独立增量性、平稳增量性等。
4. 马尔可夫链的状态转移矩阵是根据状态之间的转移概率构建的。
5. 平稳随机过程的统计特性不随时间的平移而改变。
6. 期望反映了随机过程的平均水平,方差反映了随机过程的波动程度。
7. 主要看不同增量之间是否相互独立。
8. 例如在股票价格的波动模型中可能会用到维纳过程。
三、要是从学习这门课的角度来说呢,就像是在黑暗中摸索着前进。
有时候一个概念要琢磨好久才能有点感觉。
老师上课讲的时候,就像在讲一个超级复杂的故事,我们得努力跟上节奏。
而且课后的作业也特别考验人,就像一个个小怪兽,得一个个打败它们才能真正掌握知识。
这门课虽然难,但是如果能把答案都弄明白,就像打开了通往宝藏的大门,能收获满满的知识财富呢。
2. (1) 求参数为的()b p ,分布的特征函数,其概率密度为Γ()()是正整数p b x x e x p b x p bx p p ,0 000,1>⎪⎩⎪⎨⎧≤>Γ=−−(2)求其期望和方差。
(3)证明对具有相同参数的b Γ分布,关于参数具有可加性。
p 函数有下面的性质:解 (1) 首先,我们知道Γ()()! 1−=Γp p根据特征函数的定义,有()[]()()()()()()()()()()()()()()()()()()()()pp p x jt b p p xjt b p p x jt b p p xjt b p p xjt b p p bxp p jtxjtxjtXX jt b b jt b p p b dxe x jt b p p b dx e x jt b p p b dx e x jt b p p b e x jt b p b dx e x p b dx e x p b edx x p e e E t f ⎟⎟⎠⎞⎜⎜⎝⎛−=−−Γ=−−Γ==−−Γ=−−Γ+−−Γ=Γ=Γ===∫∫∫∫∫∫∞−−−∞−−−∞−−−∞−−−∞−−−−−∞∞∞−!1!11110010202010110L所以()pX jt b b t f ⎟⎟⎠⎞⎜⎜⎝⎛−=(2)根据期望的定义,有[]()()()()()()()bpdx x p b p dx e x p b b p dx e x bp p b e x bp b dx e x p b dx e x p b x dx x xp X E m bx p p bx p p bxp p bx p p bx p p X ==Γ=Γ+−Γ=Γ=Γ===∫∫∫∫∫∫∞∞−∞−−∞−−∞−∞−∞−−∞∞−010100011类似的,有[]()()()()()()()()()()()()()2201200010101222111111b p p dx x p b p p dx e x p b b p p dx e x b p p b dx e x bp p b e x bp b dx e x p b dx e x p b x dx x p x XE bxp p bxp p bxp p bxp p bx p p bx p p +=+=Γ+==+Γ=+Γ+−Γ=Γ=Γ==∫∫∫∫∫∫∫∞∞−∞−−∞−∞−∞−+∞−+∞−−∞∞−L的方差为X 所以,[]()222221b pb p b p p mXE D XX =⎟⎠⎞⎜⎝⎛−+=−=(3)()()()jt jnt jt e n e e t f −−=115. 试证函数为一特征函数,并求它所对应的随机变量的分布。
湖南科技学院二○一 年 学期期末考试数学与应用数学 专业 年级 应用随机过程试题考试类型:闭卷 试卷类型:C 卷 考试时量: 120分钟F一 、填空题(每空4分共24分)1、过程12{()cos sin ;0}X t Z at Z at t =+≥,其中1Z ,2Z 独立同分布,其共同分布为2(0,)N σ,a 为常数,则均值函数(())E X t = ,方差函数(())Var X t = ,协方差函数(,)s t γ= .2、计数过程{}(),0N t t ≥为参数为2的泊松过程,则{}(20)(18)2P N N -== ,((3))=E N .3、()1()N t i i S t Y ==∑是复合Poisson 过程,其中{}(),0N t t ≥为参数为3的泊松过程,1Y 服从正态分布(1,4)N ,则[(5)]E S = .二 、判断题(小题2分,共16分)1、 设{}(),0N t t ≥是强度为λ的Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则{}{}()n N t n T t <⇔>. ( ) 2、{}(),0N t t ≥是更新过程,则对0t≤<+∞,有()EN t <+∞. ( )3、Poisson 过程具有独立增量性. ( )4、{}n Z 是马尔可夫链,则202(,)()n n n n P X j X i X k P X j X i ++======.题 号 一二三四五总分 统分人得 分 阅卷人复查人( )5、Brown 运动的样本路径()B t ,0t T ≤≤具有连续性. ( )6、{}n Z 是有限状态的马尔可夫链,其一步转移矩阵为P ,则其n 步转移矩阵()n n PP =.( )7、Brown 运动不是平稳增量过程. ( ) 8、{}(),0N t t ≥是Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则当t →+∞时,()1()N t r t T t +=-与()()N t s t t T =-有相同的极限分布. ( )三 、计算题(共46分)1、(12分)设{}(),0N t t ≥是强度为3的Poisson 过程, 求(1){}(1)2,(3)4,(5)6P N N N ===; (2){}(5)6(3)4P N N ==;(3)求协方差函数(),s t γ,写出推导过程.2、(10分)设{}(),0N t t ≥是更新过程,第k 次更新与第1k -次更新的时间间隔k X 服从分布2(2)3k P X ==,1(3)3k P X ==.计算((1))P N n =,((2))P N n =,((3))P N n =,0,1,2,n =.3、(12分)设1{(),0}N t t≥,2{(),0}N t t ≥是强度分别为1λ,2λ 且相互独立的Poisson 过程,记k T 为1{(),0}N t t≥的第k 次事件发生的等待时间,1V 为2{(),0}N t t ≥第1次事件发生的等待时间.求1()k P T V <.4、(12分){,1,2,}n X n =为独立同分布的随机变量序列,具有如下分布1(1)(1)2n n P X P X ===-=1,2,n =令1nni i S X ==∑.(1)求随机过程{,1,2,}n S n =的均值函数和自相关函数;(2)判断{,1,2,}n S n =是否为宽平稳过程.四 、证明题(共14分)1、设{}(),0i N t t ≥,1,2,,in =是n 个相互独立的Poisson 过程,参数分别为i λ,1,2,,i n =,试证{}1()=(),0ni i N t N t t =≥∑是Poisson 过程.。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===L 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑Q()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑Q222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)W2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰Q (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ: 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+:同理可得:()()iiP X b f t b jt∑=∑- W3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。
第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。
如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则j ξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。
(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。
解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。
脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。
也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。
图题1-2画出了它的样本函数。
试求)(t ξ的一维概率密度)(x f t ξ。
解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。
山东财政学院2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A )(考试时间为120分钟)参考答案及评分标准考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ)1. 严平稳过程一定是宽平稳过程。
(ⅹ )2. 非周期的正常返态是遍历态。
(√ )3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。
(ⅹ )4. 有限马尔科夫链没有零常返态。
(√ )5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(〉nd iip 。
(ⅹ )二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。
2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。
三. 简答题(每小题5分,共10分)1. 简述马氏链的遍历性。
答:设)(n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(〉=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。
2. 非齐次泊松过程与齐次泊松过程有何不同?答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。
它反映了其变化与时间相关的过程。
如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。
四. 计算、证明题(共70分)1. 请写出C —K 方程,并证明之. (10分)解:2. 写出复合泊松过程的定义并推算其均值公式. (15分)解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y1,那么{}0),(≥t t X 复合泊松过程3. 顾客以泊松过程到达某商店,速率为小时人4=λ,已知商店上午9:00开门,求到9:30时仅到一位顾客,而到11:30时总计已达5位顾客的概率。
随机过程与应用考试试题一、选择题1. 在马尔科夫链中,状态转移概率矩阵的要求是:A. 每行所有元素之和等于1B. 每列所有元素之和等于1C. 对角线上的元素均大于0D. 所有元素均大于02. 在随机过程中,平稳性的要求是:A. 每个时刻的概率分布都相同B. 概率分布随时间发生改变C. 均值和方差不随时间发生改变D. 方差不随时间发生改变3. 泊松过程的特点是:A. 不存在跳跃B. 存在连续的状态变化C. 均值和方差相等D. 每个单位时间发生事件的数量是恒定的4. 马尔科夫链是一种:A. 离散时间和离散状态的随机过程B. 离散时间和连续状态的随机过程C. 连续时间和离散状态的随机过程D. 连续时间和连续状态的随机过程5. 连续时间马尔科夫链的状态转移概率与时间的关系是:A. 与时间无关B. 每个时间段内相同C. 随时间变化而变化D. 无法确定二、填空题1. 在泊松过程中,到达的时间间隔满足 ______ 分布。
2. 在连续时间马尔科夫链中,状态转移概率与时间的关系可以由______ 函数来表示。
3. 马尔科夫链具有 ______ 性,即过去的状态对未来的状态具有影响。
4. 在随机过程中, ______ 是指在给定前面状态下,未来状态的条件概率分布。
三、解答题1. 请说明马尔科夫链的定义,并列举出两个例子。
2. 请说明泊松过程的特点,并说明其在实际应用中的一个例子。
3. 请解释连续时间马尔科夫链的平稳分布,并给出一个实际应用的例子。
四、应用题1. 假设某商品的售出数量服从泊松分布,平均每天售出5件。
如果要求计算每天售出不少于3件的概率,应如何计算?2. 某公交车站的乘客到达服从泊松过程,平均每小时到达12人。
如果公交车每隔10分钟发车一次,求在每趟车发车前等待的乘客人数的概率分布。
3. 某产品的寿命服从指数分布,平均寿命为1000小时。
如果要求计算寿命在800小时到1200小时之间的概率,应如何计算?以上是随机过程与应用考试试题的部分内容,请按要求回答题目。
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
一、选择题1.在随机过程中,若某一过程的所有可能状态及其概率在时间上保持不变,则称该过程为:A.平稳过程B.非平稳过程C.马尔可夫过程D.遍历过程2.下列哪个不是描述随机变量分布特性的重要参数?A.期望值(均值)B.方差C.协方差D.样本容量3.马尔可夫链中,若当前状态仅依赖于前一个状态,则称该链具有:A.一阶记忆性B.无记忆性C.高阶记忆性D.完全记忆性4.在随机游走模型中,若每一步的位移是独立同分布的随机变量,且均值为0,则该模型属于:A.布朗运动B.泊松过程C.几何布朗运动D.平稳独立增量过程5.泊松分布常用于描述:A.单位时间内某事件发生次数的概率分布B.连续型随机变量的概率分布C.样本均值的分布D.两个随机变量之间的线性关系6.若一个随机过程的任意两个时间点上的随机变量之间都存在线性关系,则称该过程具有:A.平稳性B.相关性C.正态性D.独立性7.在连续时间马尔可夫链中,状态转移率矩阵描述了:A.各状态间的直接转移概率B.各状态间的间接转移概率C.单位时间内从某状态转移到其他状态的概率D.所有状态的总转移概率8.布朗运动的一个关键性质是:A.路径可预测性B.路径连续但几乎处处不可导C.路径分段平滑D.路径与时间呈线性关系9.对于随机过程X(t),若对任意t,X(t)的概率分布函数与时间t无关,则X(t)是:A.平稳过程B.严格平稳过程C.弱平稳过程D.遍历过程10.下列哪个随机过程模型常用于金融市场中的股票价格模拟?A.几何布朗运动B.泊松过程C.平稳独立增量过程D.线性回归过程。
应用随机过程试题及答案
一.概念简答题(每题5 分,共40 分)
1. 写出卡尔曼滤波的算法公式
2. 写出ARMA(p,q)模型的定义
3. 简述Poisson 过程的随机分流定理
4. 简述Markov 链与Markov 性质的概念
5. 简述Markov 状态分解定理
6.简述HMM 要解决的三个主要问题得分 B 卷(共9 页)第2 页
7. 什么是随机过程,随机序列? 8.什么是时齐的独立增量过程?
二.综合题(每题10 分,共60 分)
1 .一维对称流动随机过程 n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2
k kk X p x p x ? ? ? ? ? 具有的概率分布为且 1 2 , , ... X X是相互独立的。
试求 1 Y 与 2 Y 的概率分布及其联合概率分布。
2. 已知随机变量 Y 的密度函数为其他而且,在给定 Y=y 条件下,
随机变量X 的条件密度函数为 ? ? 其他试求随机变量X 和Y 的联合
分布密度函数 ( , ) f x y . 得分 B 卷(共9 页)第3 页
3. 设二维随机变量( , ) X Y 的概率密度为 ( ,其他试求 p{x<3y}
4.设随机过程 ( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的
随机变量。试求数学期望 ( ) t E X ,方差 ( ) t D X ,相关函数 1 2 ( , )
X R t t,协方差 1 2 ( , ) X C t t。 B 卷(共9 页)第4 页 5 .设马尔
科夫链的状态空间为 I={0,1}, 一步转移概率矩阵为P= 0 ,求其相应
的极限分布。 6.设I={1,2,3,4},其一步转移概率矩阵P= 1 1 0 0 2 2 1
0 0 0 1 ,试画出状态传递图,对其状态进行分类,确定哪些状态是
常返态,并确定其周期。 B 卷(共9 页)第5 页
河北科技大学2010——2011 学年第一学期《应用随机过程》试卷(B)
答案一.概念简答题(每题5 分,共40 分)
1. 写出卡尔曼滤波的算法公式答:X(k|k-1)=AX(k-1|k-1)+BU(k)…(1)
P(k|k-1)=AP(k-1|k-1)A’+Q…(2) X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))…
(3) Kg(k)=P(k|k-1)H’/(HP(k|k-1)H’+R)…(4) P(k|k)=(I-Kg(k)H) P(k|k-1)…
(5) 2.写出ARMA(p,q)模型的定义答 : 自回归移动平均 ARMA(p,q)
模型为 1 1 2 2 1 1 2 2 t tt p t p t t q t q X XXX ?其中,p 和 q 是模型的
自回归阶数和移动平均阶数; , ? ? 是不为0 的待定系数;t ?是独立
的误差项; t X 是平稳、正态、零均值的时间序列。 3 简述Poisson
过程的随机分流定理答:设 t N 为强度为? 的poisson过程,如果把
其相应的指数流看成顾客流,用与此指数流相互独立的概率p,把每个
到达的顾客,归入第一类,而以概率1-p 把他归入第二类。对i=1,2,
记 ( ) i t N 为t 前到达的第i 类顾客数,那么 (1) ( 2 ) { : 0} , { : 0} t t N
t N t ? ? 分别为强度为p? 与(1-p)? 的poisson过程,而且这两个
过程相互独立。 4 简述Markov 链与Markov 性质的概念答:如果随
机变量是离散的,而且对于 0 n ? ? 及任意状态 0 1 1 1 1 0 0 1 , , , , ,
( | , , , ) ( | ) n nnnnnn i j i i p j i ii p j i都有,该随机序列为Markov 链,
该对应的性质为Markov 性质。5. 简述Markov 状态分解定理答:(1)
Markov 链的状态空间S 可惟一分解为 1 2 S T H H ? ? ? ? ,其中T 为
B 卷(共9 页)第6 页暂态的全体,而 i H 为等价常返类。(2)若
Markov 链的初分布集中在某个常返类 k H 上,则此 Markov 链概率
为 1 地永远在此常返类中,也就是说,它也可以看成状态空间为 k H
的不可约Markov 链。 6.简述HMM 要解决的三个主要问题答:(1)
从一段观测序列{ , } k Y k m ? 及已知的模型 ( , , ) A B ? ? ? 出发,估计
n X 的最佳值,称为解码问题。这是状态估计的问题。 (2) 从一段观
测序列{ , } k Y k m ? 出发,估计模型参数组 ( , , ) A B ? ? ? ,称为学习
问题。这是参数估计问题。 (3) 对于一个特定的观测链{ , } k Y k m ? ,
已知它可能是由已经学习好的若干模型之一所得的观测,要决定此观
测究竟是得自于哪一个模型,这称为识别问题,就是分类问题。 7.什
么是随机过程,随机序列?答:设T 为[0,+? )或(- ? ,+? ),依
赖于t(t? T)的一族随机变量(或随