当前位置:文档之家› 等离子弧焊接技术

等离子弧焊接技术

等离子弧焊接技术
等离子弧焊接技术

浅谈等离子弧焊接技术

摘要:等离子弧技术已经在国际上被广泛认可和采用,尤其在焊接领域,他的发展速度最快。

abstract: plasma arc technology has been widely recognized and adopted in the world, especially in the field of welding;it develops rapidly.

关键词:等离子弧焊接;焊接模式

key words: plasma arc welding;welding mode

中图分类号:tv547.6 文献标识码:a 文章编号:1006-4311(2013)23-0034-02

等离子弧焊接(paw)是在钨极氩弧焊的基础上发展起来的,是一种利用建立在钨极和被焊金属间的压缩电弧进行焊接的熔化焊

方法。按照焊接电流的极性与波形的不同,等离子焊接可分成多种不同的工艺方法,其中主要的几种工艺方法的发展进程见图1[1]。等离子弧焊接使用惰性气体作为工作气和保护气,可以加入填充金属,也可以直接熔化母材来形成焊缝。其原理简图见图2。等离子弧焊与钨极氩弧焊最大的区别是它使用压缩电弧。焊接时,靠水冷喷嘴的强压缩效应使电弧能量高度集中,大幅度提高了电弧的温度和能量密度,从而获得更高的焊接质量。经喷嘴压缩的等离子弧,其能量密度相当于钨极氩弧焊电弧的3倍以上,温度也要高得多。等离子电弧是仅次于激光和电子束的高能流密度热源。等离子电弧和激光束(lb)和电子束(eb)一样,可以进行“小孔法”焊接,

材料的等离子弧焊接

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采纳V形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,能够填充焊丝也能够不加焊丝,均能够获得良好质量的焊缝。一般厚板采纳小孔型等离子弧焊,薄板采纳熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采纳陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有专门高的同心度。等离子气流和焊接电流均要求能递增和衰减操纵。 焊接时,采纳氩和氩中加适量氢气作为爱护气体和等离子气体,加入氢气能够使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采纳填充焊丝依照需要确定。选用填充焊丝的牌号与钨极惰性气体爱护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的差不多相同,应注意操纵焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应操纵焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

穿孔等离子弧焊接技术

穿孔等离子弧焊接技术研究*    中航一集团625所 朱轶峰 张 慧 董春林 邵亦陈  文摘论述了等离子弧焊接的新进展,介绍一脉一孔的等离子弧焊接工艺、正面弧光传感器、焊接质量模糊控制系统以及采用该系统进行的焊接质量控制的初步试验结果。研究表明在不锈钢等离子弧焊接过程中,采用该系统可以提高等离子弧焊接焊缝的质量。 主题词等离子弧焊一脉一孔弧光传感模糊控制 1 引言 进入21世纪,航空航天制造业对焊接技术提出了更高要求,人们在追求低成本高强度的焊接结构时对穿孔等离子弧焊接产生了新的兴趣。 等离子弧能量密度高、射流速度大、等离子流力强 [1],穿孔等离子弧焊接(K-PAW)时等离子弧穿透工件形成小孔,随着小孔的弥合形成焊缝。对于国防工业中常用金属材料如高强钢、高温合金、钛合金、不锈钢等,在中厚度(3~10mm)范围与钨极氩弧焊相比,PAW具有更佳的工艺焊接性,接头内部缺陷率降低、焊件变形减小、焊接效率提高。“单面焊接双面成形”是K-PAW的典型特征,特别适合密闭容器、小直径管焊缝等背面难于施焊的结构件焊接。 但是穿孔等离子弧焊接过程的稳定性及焊接工艺参数的再现性始终是摆在焊接科研人员面前的难题,制约着等离子弧焊接技术的工程应用。本研究通过采用优化工艺参数、脉冲焊接工艺方式以及增加质量控制的手段提高等离子弧焊接的工艺裕度、提高离子弧焊接过程的稳定性。 2 试验系统 建立一个能够满足焊接试验、参数实时采集、实时控制的完整的试验系统,是本研究课题的基础。 2.1 焊接电源 目前国内使用的等离子弧焊接电源中,以晶体管、可控硅电源为主,新型的IGBT电源还处于研究阶段,电源输出的稳定性难以保证,成为影响焊接质量稳定性的因素之一。 同时考虑到逆变电源的控制响应时间较快等因素,选用进口的等离子焊接电源及焊枪,逆变频率可达 32kHz,能够提供较好的输出特性,便于实现自动焊。 2.2 焊接夹具 自动等离子弧焊接工艺对焊接夹具的压紧均匀性、焊缝对中有一定要求,为此我们自行设计研制了具有琴键式压紧纵缝、机械对中装置的LCAW-2型纵缝和环缝自动焊机。 2.3 焊接质量模糊控制单元 利用具有内置模糊控制模块的可编程控制器,开发了外围数字接口电路,结合奔腾133计算机,再加上我们开发的模糊控制规则表,形成了质量模糊控制单元。 模糊控制系统执行机构为焊接电流控制器与焊接速度控制器。尽管影响等离子焊接焊缝成型质量的参数有很多,考虑到焊接电流和焊接速度对等离子焊接熔池的体积、温度及弧柱压力均有 收稿日期:2001-12-04 *本课题被评为2000年度国防科技进步二等奖 22

等离子弧焊原理及操作安全

等离子弧焊原理及操作安全 什么是等离子弧焊?试述等离子弧的产生方法。 借助水冷喷嘴对电弧的拘束作用,获得高能量浓度的等离子弧进行焊接的方法称为等离子弧焊。 等离子弧是自由电弧压缩而成,它是通过以下三种压缩作用获得的,机械压缩效应示意图见图22。 1.机械压缩将电弧强制通过具有小孔径喷嘴的孔道,使电弧受到压缩。 2.热压缩当等离子气体(Ar、N气)以一定的速度和流量经喷嘴时,靠近电弧一侧的气体通过弧柱,吸收大量热量而电离,成为等离子弧的一个组成部分。但是靠近喷嘴内壁的气体,由于受到喷嘴强烈的冷却作用,形成一个冷气套,迫使弧柱截面进一步缩小称为热压缩。 3.磁压缩弧柱电流是一束平行的同向电流线,必然产生往内的收缩力。当电弧受到机械压缩和热压缩之后,截面缩小,因而电流密度增大,由此产生的电磁收缩力必然增大,形成磁压缩。 试述等离子弧的类型。 按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。

⑴非转移型等离子弧钨极接电源负端,焊件接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。 ⑵转移型等离子弧钨极接电流负端,焊件接电流正端,等离子弧产生的钨极和焊件之间。因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。 ⑶联合型等离子弧工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。主要用于微束等离子弧焊和粉末堆焊。 56 试述转移型等离子弧的产生方法。 为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃 烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

等离子堆焊技术的原理与应用

等离子堆焊技术的原理与应用 ___宁波镭速激光科技有限公司 摘要:等离子弧堆焊是利用等离子弧作为热源将填加金属熔化,使之与基体金属作为实现冶金结合的一种堆焊方法。等离子堆焊技术具有节能、高效和质量稳定等特点,使其成为重要的绿色制造及再制造技术之一。随着国内制造业的迅速发展,焊接技术尤其是等离子堆焊技术也得到较快的发展。本文介绍了等离子堆焊技术的原理、应用以及发展前景。关键词:等离子堆焊技术原理设备与材料工艺及应用 引言:等离子堆焊于20世纪60年代开始投入工业应用。它是利用焊炬的钨极作为电流的负极和基体作为电流的正极之间产生的等离子体作为热量,并将热量转移至被焊接的工件表面,并向该热能区域送入焊接粉末,使其熔化后沉积在被焊接工件表面,从而实现零件表面的强化与硬化的堆焊工艺。该堆焊技术具有生产率高,成型美观以及堆焊过程易于实现机械化及自动化等优点。与钨极氩弧焊相比,等离子堆焊具有熔深可控性强、熔敷速度大、生产率较高,堆焊后基体材料与堆焊材料之间的界面呈冶金结合状态,其结合强度高,热输入量低,稀释率小。更为重要的是,由于钨极承载电流的能力较差,因此在氩弧焊中较大的电流会引起钨极熔化和蒸发,其微粒有可能进入熔池,造成污染,而等离子堆焊中钨极需要承受电流较小[2-3];与手工电弧焊相比,虽然在应用灵活性、方便性上稍逊一筹,但在生产效率上枪体现出明显的优势,且手工电弧焊劳动强度较大、影响焊工健康,产品质量受焊工水平和焊条质量影响较大;与埋弧焊相比,在焊接位置上的灵活性比较大。另外等离子弧本身具有弧心热量集中、电弧稳定、稀释率低等优点。随着自控技术的发展,越来越多的堆焊设备中引入了CNC控制,从而实现对弧压、电流、送粉量、摆动幅度他摆动频率等堆焊重要参数的精确控制,另外在堆焊系统中引入数控系统,可以控制焊枪行走速度和工件运动,通过调节相关的堆焊参数,可以对堆焊层的厚度、宽度、硬度在一定范围内自由调整[4];与其他堆焊技术相比,等离子堆焊过程中基体材料与堆焊材料的互熔较少,堆焊材料特性变化小;另外采用粉末作为堆焊材料可提高合金设计的自由度,使堆焊难熔材料成为可能,从而大幅度提高工件的耐磨、耐高温、耐腐蚀性。因此等离子堆焊可广泛地用于石油、化工、工程机械、矿山机械等行业的新品制造与装备再制造中。 1、等离子堆焊技术的原理 等离子粉末堆焊是以等离子弧作为热源,应用等离子弧产生的高温将合金粉末与基体表面迅速加热并一起熔化、混合、扩散、凝固,等离子束离开后自激冷却,形成一层高性能的合金层,从而实现零件表面的强化与硬化的堆焊工艺,由于等离子弧具有电弧温度高、传热率大、稳定性好,熔深可控性强,通过调节相关的堆焊参数,可对堆焊层的厚度、宽度、硬度在一定范围内自由调整。等离子粉末堆焊后基体材料和堆焊材料之间形成融合界面,结合强度高;堆焊层组织致密,耐蚀及耐磨性好;基体材料与堆焊材料的稀释减少,材料特性变化小;利用粉末作为堆焊材料可提高合金设计的选择性,特别是能够顺利堆焊难熔材料,提高工件的耐磨、耐高温、耐腐蚀性。等离子粉末堆焊具有较高的生产率,美观的成型以及堆焊过程易于实现机械化及自动化。 等离子弧是属于高温高能束流,电弧温度可达30000℃,功率密度在 1.5×102~1.6×104W/mm2。高压缩程度的等离子弧用于焊接、切割和喷涂时,其效果可与激光、电子束方法相比;而较低压缩程度的堆焊等离子弧,是一种压缩性可调的柔性等离子弧,它既可以实现堆焊对高速熔敷的需求,又可以满足低稀释率的条件,同时还不易产生双弧,成为理想的堆焊热源。

等离子弧焊接原理及设备

第4章等离子弧焊接等离子弧焊接设备

4.1 等离子弧的产生及其特性1. 等离子弧的产生 1 )等离子弧概念 等离子电弧的形成及电弧形态比较 等离子弧是通过外部拘束 使自由电弧的弧柱被强烈 压缩形成的电弧。 通常情况下的GTA和GMA 电弧,为自由电弧,除受到电弧 自身磁场拘束和周围环境的冷却拘束 外,不受其他条件束缚,电弧相同相对比较扩展,电弧能量密度和温度较低。若把自由电弧缩进到喷嘴里,喷嘴的孔径小,电弧通过时,弧柱截面积受到限制,不能自由扩展,产生了外部拘束作用,电弧在径向上被强烈压缩,形成等离子弧。

2)等离子弧的工作方式 ①转移型等离子弧。 (a)等离子弧方式 在喷嘴内电极与被加工工件间 产生等离子弧。由于电极到工件的 距离较长,引燃电弧时,首先在电极 和喷嘴内壁间引燃一个小电弧,称作“引燃弧”, 电极被加热,空间温度升高,高温气流从喷嘴孔道中流出,喷射到工件表面,在电极与工件间有了高温气层,随后在主电源较高的空载电压下,电弧能够自动的转移到电极与工件之间燃烧,称为“主弧”或“转移弧”。

②等离子焰流 在钨电极与喷嘴内壁之间引燃等离子弧。由于保护气通过电弧区被加热,流出喷嘴时带出高温等离子焰流,堆被加工工件进行加热,称作“等离子焰流”。电极与喷嘴内壁间的电弧,其电流值较小,电弧温度低,故等离子焰流的温度也明显低于电弧,指向性不如等离子弧。 等离子焰流方式 ③混合型等离子弧 当电弧引燃并形成转移电弧后仍然能保持引燃弧的存在,即形成两个电弧同时燃烧的局面,效果是转移弧的燃烧更为稳定。

2. 等离子弧特性及用途 1)电弧静特性 与TIG电弧相比,等离子弧的静特性的特点: ①受到水冷喷嘴孔道壁的拘束,弧柱截面积小,弧柱电场强度增大,电弧电压明显提高,从大范围电流变化看,静特性曲线中平特性区不明显,上升特性区斜率增加。 等离子弧静特性变化特点 (a)等离子弧与TIG电弧静特性(b)小弧电流对等离子弧静特性影响

电子束焊及等离子弧焊特点

电子束焊 真空电子束焊接具有以下特点: ●电子束能焊接不同的金属及合金材料,尤其高难熔金属都能焊接 ●电子束可以精确的确定焊缝的位置,精度和重复性误差为0% 。 ●最大的穿透深度,可达15MM ●最高的深宽比大于10:1。 ●焊接直径可达400MM ●电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好。 ●电子束焊接所需线能量小,而焊接速度高,因此焊件的热影响区小、焊件变形小,除一般焊接外,还可以对精加工后的零部件进行焊接。 ●可焊接异种金属, 如铜和不锈钢、钢与硬质合金、铬和钼、铜铬和铜钨等。 ●真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属焊接。也常用于电子束焊接真空密封元件,焊后元件内部保持在真空状态 ●在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。 ●电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。 ●与普通焊接相比, 其焊接速率更高(尤其对于大厚件的焊接工件)。 等离子弧焊 1.1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。

等离子焊(PAW)简介

等离子焊(PAW)简介 索引:等离子弧能量密度高,挺直度非常好。 关键词:等离子弧焊接 等离子是指在标准大气压下温度超过3000℃的气体,在温度谱上可以把其看作为继固态、液态、气态之后的第四种物质状态。等离子是由被激活的高子、电子、原子或分子组成。例如:它可通过自然界中的闪电产生。从1960年以后,等离子这个词获得了新的含义,那就是电弧通过涡流环或喷嘴压缩而形成的高能量状态,此原理现在被广泛用于钢铁、化工及机械工程工业。 等离子弧焊是在钨极氩弧焊的基础上发展起来的一种焊接方法·。钨极氩弧焊使用的热源是常压状态下的自由电弧,简称自由钨弧。等离子弧焊用的热源则是将自由钨弧压缩强化之后而获得电离度更高的电弧等离子体,称等离子弧,又称压缩电弧。两者在物理本质上没有区别,仅是弧柱中电离程度上的不同。经压缩的电弧其能量密度更为集中,温度更高。 等离子弧的最大电压降是在弧柱区里,这是由于弧柱被强烈压缩,使电场强度明显;增大的缘故。因此,等离子弧焊主要是利用弧柱等离子体热来加热金属,而自由钨弧是利用两电极区产生的热来加热母材和电极金属。 等离子弧的特性 等离子弧能量密度可达10000--100000W/cm2,比自由钨弧(约10000W/cm2以下)高,其温度可达18000~24000K,也高于自由钨弧(约5000~8000K)很多。图1-1为两种电弧的温度分布,左侧为自由钨弧,右侧为等离子弧。 图 1-1

等离子弧的静特性曲线接近U形(图1-2)。与自由钨弧比较最大区别是电弧电压比自由钨弧高。此外,在小电流时,自由钨弧静特性为陡降(负阻特性)的,易与电源外特性曲线相切,使电弧失稳。而等离子弧则为缓降或平的,易与电源外特性相交建立稳定工作。 图1-2 图1-3表示了等离子弧与自由钨弧的形态区别。等离子弧呈圆柱形,扩散角约5度左右,焊接时,当弧长发生波动时,母材的加热面积不会发生明显变化,而自由钨弧呈圆锥形,其扩散角约45度,对工作距离变化敏感性大。 图1-3 等离子弧的挺直度非常好。由于等离子弧是自由钨弧经压缩而成,故其挺度比自由钨弧好,焰流速度大,可达300m/s以上,因而指向性好,喷射有力,其熔透能力强。 等离子弧焊的特点 由于等离子弧弧柱温度高,能量密度大,因而对焊件加热集中,熔透能力强,一次可焊透的厚度如表1-4所示,在同样熔深下其焊接速度比TIG焊高,故可提高焊接生产率。 表1-4

等离子焊机说明书

目录 1.等离子焊接方法简介 (2) 1.1简介 (2) 1.2等离子电弧 (2) 1.3等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) 2.1 PHOENIX EWA 400DC-P等离子焊接电源 (3) 2.2 HP400等离子焊枪 (5) 2.3等离子焊接控制电源 (6) 2.4 RC-3型冷却水箱 (6) 2.5焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 3.1焊接电流 (8) 3.2等离子气流量 (8) 3.3焊接速度 (8) 3.4喷嘴距离 (9) 3.5正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11)

1.等离子焊接方法简介 1.1简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达0.1~500A,适合于厚度在0.1mm~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显著的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 1.2 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。

等离子弧焊概要

等离子弧焊接(WP 15) 一、等离子弧焊原理及方法分类 1. 等离子弧: 是等离子体组成。自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。 2.等离子弧产生的三要素 (1)机械压缩作用: 利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。 (2)热收缩作用: 由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。这叫热收缩,也叫热压缩。 (3)磁收缩作用: 弧柱电流本身产生的磁场对弧柱再压缩作用。也叫磁收缩效应。电流密度越大,磁收缩作用越强。 3.等离子弧的特点 (1)能量集中(能量密度105~6 W/cm2TIG自由电弧<10 4W/cm2)。 (2)温度高(18000K~24000K)。 图1 自由电弧和等离子弧的比较图

4.等离子弧的三种基本形式 (1)非转移型等离子弧 钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。(等离子束焊接) 图2 非转移型等离子弧示意图 (2)转移型等离子弧 钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。(等离子弧焊接) 图3 转移型等离子弧示意

(3)联合型等离子弧 非转移型和转移型弧同时并存。主要用于微束等离子弧焊、粉末堆焊等方面。 图4 联合型等离子弧示意图 5.等离子弧焊基本方法 (1)小孔型等离子弧焊(穿孔、锁孔、穿透焊) 利用能量密度大和等离子流力大的特 点,将工件完全熔透并产生一个贯穿工件的 小孔,熔化金属被排挤在小孔的周围,沿着 电弧周围的熔池壁向熔池后方移动,使小孔 跟着等离子弧向前移动,形成完全熔透的焊 缝。 一般大电流等离子弧(100~300安培) 时采用该方法。 图5 小孔型等离子弧焊焊缝成形原理

等离子弧焊接技术

等离子弧焊接技术 摘要:焊接技术可以追溯到几千年前的青铜器时代,在人类早期工具制造中,无论是中国还是当时的埃及等文明地区都能见到焊接 技术的雏形。 关键词:等离子弧焊 焊接是指通过适当的物理化学过程使两个分离的固态物体产生原子(分子)间的结合力而连接成一体的连接方法。被连接的两个物体可以是各种同类或不同类的金属、非金属,也可以是一种金属与一种非金属。由于金属的连接在现代工业中具有很重要的实际意义,因此,狭义地说,焊接通常就是指金属的焊接。等离子弧焊是一种不熔化极电弧焊,是钨极氩弧焊的进一步发展。等离子弧是自由电弧压缩而成,其功率密度比自由电弧可提高100倍以上。其离子气为氩气、氮气、氦气或其中二者的混合气。等离子弧的能量集中,温度高,焰流速度大。这些特性使得等离子弧广泛应用于焊接、喷涂和堆焊。 等离子弧焊的起源 在第三次工业革命,这阶段在能源、微电子技术、航天技术等领域取得重大突破,推动了焊接技术的发展,1950年后成为又一次焊接方法迅速发展的时期,在这个阶段各个国家的焊接工作者开发了不少崭新的焊接方法。1957年美国的盖奇发明了等离子弧焊;20世纪40年代德国和法国科学家发明的电子束焊,也在

20世纪50年代得到了应用和进一步发展;20世纪60年代又出现了激光焊。等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使得许多难以用其他方法焊接的材料和结构得以焊接。 等离子弧焊的原理 等离子弧焊(PAW,Plasma Arc Welding)是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。 等离子弧焊的分类 按焊缝成型原理等离子弧焊分为: a.穿孔型等离子弧焊 b.熔透型等离子弧焊 c.微束等离子弧焊 脉冲等离子弧焊、交流等离子弧焊、熔化极等离子弧焊等 1.穿孔型等离子弧焊 原理:利用等离子弧能量密度大和等离子流吹力大的特点,将工件完全熔透,并在熔池上产生一个贯穿焊件的小孔。

等离子焊机说明书

等离子焊机说明书 Prepared on 22 November 2020

目录 1.等离子焊接方法简介 (2) 简介 (2) 等离子电弧 (2) 等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) PHOENIX EWA 400DC-P等离子焊接电源 (3) HP400等离子焊枪 (5) 等离子焊接控制电源 (6) RC-3型冷却水箱 (6) 焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 焊接电流 (8) 等离子气流量 (8) 焊接速度 (8) 喷嘴距离 (9) 正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11) 1.等离子焊接方法简介 简介

等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达~500A,适合于厚度在~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显着的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。 自由电弧经过等离子焊枪中的三个压缩:机械压缩,热压缩和电磁压缩后形成等离子电弧,等离子电弧的功率及温度明显高于自由电弧,其功率基本上是自由电弧的两倍。 等离子电弧主要分为三种类型: 1.非转移型等离子电弧 主要用于非金属材料的焊接。 2.转移型等离子电弧 金属材料的焊接一般采用此电弧。

安全:等离子弧焊接及切割的操作技术

安全:等离子弧焊接及切割的操作技术 等离子弧焊接及切割的安全操作技术 1.等离子弧焊接和切割用电源的空载电压较高,尤其在乎操作时,有电击妁危险。因此: (1)电源在使用时必须可靠接地。 (2)焊枪枪体或割枪枪体与手触摸部分必须可靠绝缘。 (3)可以采用较低电压引燃非转移弧后再接通较高电压的转移弧回路。 (4)如果起动开关装在手把上,必须对外露开关套上绝缘橡胶管,避免手直接接触开关。 (5)等离子弧焊接和切割用喷嘴及电极的寿命相对较短,要经常更换,更换时要保证电源处于断开状态。 2.防电弧光辐射 等离子弧较其他电弧的光辐射强度更大,尤其是紫外线强度,故对皮肤损伤严重,操作者在焊接和切割时必须戴上良好的面罩、手套,颈部也要保护。面罩上除具有黑色目镜外,最好加上吸收紫外线的镜片。自动操作时,可在操作者与操作区之间设置防护屏。等离子弧切割时,可采用水下切割方法,利用水来吸收光辐射。 3.防高频和射线

等离子弧焊接和切割都采用高频振荡器引弧,但高频对人体有一定的危害。引弧频率选择在20~60kHz较为合适,还要求工件接地可靠,转移弧引弧后,立即可靠地切断高频振荡器电源。等离子弧焊接和切割采用钍钨极时,同钨极氩弧焊一样,要注意射线的危害。 4.防灰尘和烟气 等离子弧焊接和切割过程中伴随有大量气化的金属蒸气、臭氧、氮氧化物等。尤其切割时,由于气体流量大,致使工作场地上的灰尘大量扬起,这些烟气和灰尘对操作工人的呼吸道、肺等产生严重影响。因此要求工作场地必须配罩良好的通风设备措施。切割时,在栅格工作台下方还可安置排风装置,也可以采取水中切割方法。 5.防噪声 等离子弧会产生高强度、高频率的噪声,尤其采用大功率等离子弧切割时,其噪声更大,这对操作者的听觉系统和神经系统非常有害。要求操作者必须戴耳塞,或可能的话,尽量采用自动化切割,使操作者在隔音良好的操作室内工作,也可以采取水中切割方法,利用水来吸收噪声。

等离子弧焊接及切割的安全操作技术(正式版)

文件编号:TP-AR-L4319 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 等离子弧焊接及切割的安全操作技术(正式版)

等离子弧焊接及切割的安全操作技 术(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.等离子弧焊接和切割用电源的空载电压较 高,尤其在乎操作时,有电击妁危险。因此: (1)电源在使用时必须可靠接地。 (2)焊枪枪体或割枪枪体与手触摸部分必须可靠 绝缘。 (3)可以采用较低电压引燃非转移弧后再接通较 高电压的转移弧回路。 (4)如果起动开关装在手把上,必须对外露开关 套上绝缘橡胶管,避免手直接接触开关。 (5)等离子弧焊接和切割用喷嘴及电极的寿命相

对较短,要经常更换,更换时要保证电源处于断开状态。 2.防电弧光辐射 等离子弧较其他电弧的光辐射强度更大,尤其是紫外线强度,故对皮肤损伤严重,操作者在焊接和切割时必须戴上良好的面罩、手套,颈部也要保护。面罩上除具有黑色目镜外,最好加上吸收紫外线的镜片。自动操作时,可在操作者与操作区之间设置防护屏。等离子弧切割时,可采用水下切割方法,利用水来吸收光辐射。 3.防高频和射线 等离子弧焊接和切割都采用高频振荡器引弧,但高频对人体有一定的危害。引弧频率选择在20~

等离子弧焊的工艺参数

等离子弧焊的工艺参数 索引:等离子弧焊的几个工艺参数 关键词:焊接电流,焊接速度,喷嘴离工件的距离,等离子气及流量,引弧及收弧,接头形式和装配要求 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离

·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊

材料的等离子弧焊接工艺技术(doc 8页)

材料的等离子弧焊接工艺技术(doc 8页)

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V 形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。等离子气流和焊接电流均要求能递增和衰减控制。 焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采用填充焊丝根据需要确定。选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

微束等离子弧焊工艺知识

微束等离子弧焊工艺知识 人们通常将焊接电流在30A以下的等离子弧焊接,称为微束等离子弧焊接。由于是在小电流条件下,无论是等离子弧的形态、稳定性及其对电源,设备的要求,还是焊接工艺过程及其操作方法,都有一系列的特殊性。 (1)微束等离子弧焊的特点 微束等离子焊接是一种小电流(通常小于30A)熔人型焊接工艺,为了保持小电流时电弧的稳定,一般采用小孔径压缩喷嘴(0.6~1.2mm)及联合型电弧。即焊接时会存在两个电弧,一个是燃烧于电极与喷嘴之间的非转移弧,另一个为燃烧于电极与焊件之间的转移弧,前者起着引弧和维弧作用,使转移弧在电流小至0.5A时仍非常稳定,后者用于熔化工件。 微束等离子弧是等离子弧的一种。在产生普通等离子弧的基础上采取提高电弧稳定性措,进一步加强电弧的压缩作用,减小电流和气流,缩小电弧室的尺寸。这样,就使微小的等离子焊枪喷嘴喷射出小的等离子弧焰流,如同缝纫机针一般细小。与钨极氩弧焊相比,微束等离子弧焊接的优点是: a.可焊更薄的金属,最小可焊厚度为0.01mm b.弧长在很大的范围内变化时,也不会断弧,并能保持柱状特征,巳焊接速度快、焊缝窄、热影响区小、焊接变形小。

(2)获得微束等离子弧的三要素 获得微束等离子弧,必须满足以下三个基本条件。 ①微束等离子弧发生器是产生微束等离子弧的器件,也称为等离子枪,它是以等离子电弧室为主体组成的。产生微束等离子弧的第一要素是要有一个良好的等离子枪,要求不漏气、不漏水、不漏电,电极对中且调整更换方便,喷嘴耐用又便于更换。 电弧室由上下两体构成,中间加以绝缘。上枪体的主要功能是:夹持钨极并使之接人电源负极,以使钨极尖端能产生电弧放电的阴极斑点;将电弧放电产生在钨极区的热量及时排出;钨极应能始终保持对准下枪体的喷嘴孔径中心,且应能调整极尖的高度和更换新钨极,导人惰性压缩气体。这样,上枪体应有电、气、水三个导人孔道和一个水的出口。下枪体上安装经常更换的喷嘴,要接电源的正极,要有进出冷却水的散热系统。有的微束等离子弧焊枪上设有保护气系统,也设置在下枪体上。 ②直流电源作为微束等离子弧的电源,除了普通等离子弧的直流电源、下降伏安特性、电流可以细微调节等要求外,还有一个重要的特殊要求,即高空载电压。一般直流电源的空载电压是80~100V,微束等离子弧的电源空载电压应是120~160V,有时还要高达200V。因为微束等离子弧的电流小(<30A),电弧气体介质质点的电离、发射作用弱,为便于引弧和稳弧,就需要提高空载电压来加强场致发射作

等离子弧堆焊综述

材料表面工程结课论文—— 等离子弧堆焊 学院(系): 专业: 学生姓名: 学号: 教学老师: 完成日期:

目录 摘要................................................................................................................... - 1 - 一、堆焊简介........................................................................................................... - 1 - 1.1堆焊定义 .............................................................................................. - 1 - 1.2堆焊材料 .............................................................................................. - 1 - 1.2.1 铁基堆焊合金 ........................................................................... - 1 - 1.2.2 钴基堆焊合金 ........................................................................... - 2 - 1.2.3 镍基堆焊合金 ........................................................................... - 2 - 1.2.4 铜基堆焊合金 ........................................................................... - 2 - 1.2.5 复合堆焊合金 ........................................................................... - 2 - 1.3堆焊的常用方法 .................................................................................. - 3 - 1.3.1 手工电弧堆焊 ........................................................................... - 3 - 1.3.2 氧—乙炔火焰堆焊 ................................................................... - 3 - 1.3.3埋弧堆焊 ................................................................................... - 4 - 1.3.4钨极氩弧堆焊 ........................................................................... - 4 - 1.3.5等离子弧堆焊 ........................................................................... - 5 - 二、等离子弧堆焊简介........................................................................................... - 5 - 2.1等离子弧的产生及特点 ...................................................................... - 5 - 2.2等离子弧堆焊的原理及特点 .............................................................. - 6 - 2.2.1 等离子弧堆焊的原理 ............................................................... - 6 - 2.2.2 等离子弧堆焊的特点 ............................................................... - 7 - 2.3等离子弧堆焊的分类 .......................................................................... - 8 - 2.4粉末等离子弧堆焊 .............................................................................. - 8 - 2.4.1 自熔性合金粉末 ....................................................................... - 8 - 2.4.2 复合合金粉末 ........................................................................... - 9 - 2.5等离子弧堆焊的应用 .......................................................................... - 9 - 2.5.1 修复机械零件 ........................................................................... - 9 - 2.5.2制造双金属零件 ....................................................................... - 9 - 三、等离子弧堆焊的发展趋势............................................................................. - 10 -参考文献........................................................................................................... - 11 -

相关主题
文本预览
相关文档 最新文档