制革厂废水处理设计—毕业设计论文.
- 格式:doc
- 大小:1.69 MB
- 文档页数:102
皮革化学与工程毕业论文范文一、论文说明本团队专注于毕业论文写作与辅导服务,擅长案例分析、编程仿真、图表绘制、理论分析等,论文写作300起,具体价格信息联系二、论文参考题目化学脱氮在皮革废水深度处理中的应用研究思路:皮制革废水富含蛋白质,在好氧处理过程中,经过好氧微生物的脱氨基作用,蛋白质中的氨基酸被转化成游离氨。
所以对皮革废水而言,经过单级好氧生化处理后,出水的氨氮浓度要比原水高出很多,远远超过了排放标准所规定的排放限值;加上皮革废水二级出水的可生化性较差,生物法并不能达到理想的出水效果,因此研究化学脱氮法在皮革废水。
题目:皮革当中六价铬形成机理研究思路:本文采用分光光度法与化学发光法相结合的分析方法对皮革生产以及成品皮革当中的Cr(Ⅲ)以及Cr(Ⅵ)的含量分别进行了测定。
讨论了皮革在生产以及使用过程中造成Cr(Ⅵ)含量超标的原因。
另外,本文在研究过程中发现了铝元素对于鲁米诺-过氧化氢- Cr(Ⅲ)化学发光体系的发光强度具有明显的抑制作用,并且研究了采用铝抑。
题目:化学法对皮革化学品可生化性的影响思路:我国皮革工业发展迅速,部分皮革化学品会不可避免地残留在制革废水中产生污染。
皮革化学品可生化性较差,需要预处理来提高其可生化性,降低皮革化学品废水中的难降解有机物含量,提高后续生化处理的效率。
基于皮革化学品的不同生物降解特性,本论文以几类制革生产中普遍使用的化学品的为对象,研究Fenton氧化和微电解法对皮革化。
题目:皮革废水分质脱氮除铬工艺研究思路:目前皮革废水在经过传统的生化处理后,大部分污染指标均可达到《综合污水排放标准》(GB8978-1996)中规定的相关排放标准,唯有NH-N、总铬值难以达标。
皮革生产工序中大量使用氨盐和铬盐,而日制革原料中的动物皮革带有许多NH-N,本论文对此原因进行了分析。
针对皮革废水产生的特点,结合对不同工序,本论文提出了分。
题目:制革工业中含铬污水的处理思路:铬是人体中不可缺少的微量元素之一,但如果过多摄入铬,对皮肤、呼吸系统和消化系统都会产生极大地伤害。
目录摘要 (1)1 前言 (4)2 设计总则 (5)2.1设计范围 (5)2.2设计依据 (5)2.3设计原则 (6)3 工程规划资料 (6)3.1简阳市概况 (6)3.2自然条件 (7)3.3城市污水排放规划 (8)4 工程设计概况 (12)4.1设计规模 (12)4.2设计水质 (12)4.3设计水量 (13)4.4厂址选择 (13)4.5工艺流程的选择 (15)4.6工艺流程 (23)5 污水处理构筑物设计计算 (24)5.1中格栅 (24)5.2污水提升泵房 (27)5.3细格栅 (29)5.4沉砂池设计及计算 (32)5.5A2O生化反应池 (36)5.6辐流式二沉池 (50)5.7接触池和加氯间 (58)5.8计量设备 (60)6 污泥处理构筑物设计计算 (63)6.1污泥量计算 (64)6.2污泥浓缩池 (65)6.3污泥脱水机房 (70)7 主要附属建筑设计 (72)8 污水处理厂总体布置 (76)8.1污水处理厂平面布置 (76)8.2污水处理厂高程布置 (79)9 组织管理 (87)9.1生产组织 (87)9.2人员编制 (87)9.3安全生产和劳动保护 (89)10 工程投资及成本估算 (90)10.1工程投资 (90)10.2成本估算 (91)10.3工程效益分析 (92)11 结论 (93)总结与体会 (94)谢辞 (95)参考文献 (96)摘要本设计是在简阳市新市镇新伍村拟建一座工程规模为6.09万m3/d的污水处理厂。
通过综合考虑简阳市概况及本工程的规模、进水特性、处理要求、运行费用和维护管理等情况,经技术经济比较分析,确定采用A2O生物脱氮除磷处理工艺。
A2/O工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。
厌氧池主要功能是释放磷,同时部分有机物进行氨化。
缺氧池的主要功能是脱氮。
好氧池是多功能的,能够去除BOD、硝化和吸收磷。
此外该工艺还具有高效、节能的特点,且耐冲击负荷较高,出水水质好。
皮革废水随着皮革工业的迅速发展,制革废水已经成为主要的污染源之一。
目前我国有大中小型皮革厂20000余家,年排放废水量达8000~12000万吨,约占全国工业废水总量的0.3%。
这些废水中排放的C约3500吨,SS悬浮物12万吨,COD为18万吨/0D为7万吨。
因此,如何治理制革废水,优化生态环境,促进皮革工业的可持续发展是皮革行业亟待解决的迫切问题。
1、皮革废水的来源及特点1.1皮革废水的来源皮革生产过程中产生的废水主要来自鞣前工段(包括浸水去肉、脱毛浸灰、脱灰软化工序)、鞣制工段(包括浸酸、鞣制工序)、整饰工段(包括复鞣、中和、染色、加脂工序)。
鞣前工段是皮革污水的主要来源,污水排放量约占皮革废水总量的60%以上,污染负荷占总排放量的70%左右;鞣制工段污水排放量约占皮革废水总量的5%左右,整饰工段污水排放量则占30%左右。
皮革废水主要来源于这三个工段,产生各环节主要污染物如下表:COD:化学需氧量又称化学耗氧量ChemicalOxygenDemand。
利(用化学氧化剂(如高锰酸)钾)将水中可氧化物质(如有机物、亚硝酸盐、亚铁盐、硫化物等)氧化分解,然后根据残留的氧化剂的量计算出氧的消耗量。
BOD:生化需氧量或生化耗氧量【五日化学需氧量】(BiochemicalOxygenDemand)。
水中有机物等需氧污染物质含量的一个综合指示。
即水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。
SS:即水质中的悬浮物,(SuspendedSubstance)。
1.2皮革废水的主要特点含有高浓度的S2-和Cr3+,S2-全部来自脱毛浸灰,含量一般在2000~3000mg/L之间;Cr3+有70%来自铬鞣,其余一般来自复鞣,废水中Cr3+的含量一般在60~100mg/L之间。
皮革废水pH值在8~10之间,含有大量的氯化物、硫酸盐等中性盐,废水中含盐量可达2000~30000mg/L。
制革工业废水处理设计说明1.制革工业废水的产生和特点皮革加工是以动物皮为原料,经化学处理和机械加工而完成的。
加工工艺大致由浸水、去肉、浸灰脱毛、脱毛软化、浸酸鞣制、复鞣、中和染色、加脂等工序组成。
原料加工和加工工艺均会对环境产生不同的污染。
总体来看,制革工业的污染之——是来自于其加工过程中产生的废水。
在皮革加工的过程中,大量的蛋白质、脂肪转移到废水、废渣中。
在加工过程中采用的大量化工原料,如酸、碱、盐、硫化钠、石灰、铬鞣剂、加脂剂、染料等,其中有相当一部分进入废水之中。
制革废水主要来自于鞣前准备、鞣制和其他湿加工工段,这些加工过程产生的废液多是间歇排出,其排出的废水是制革工业污染的最重要来源。
皮革生产中,为防腐败,新鲜的原皮都是要用食盐裸存,在浸皮时食盐溶入废水中。
在生皮的预处理中,生皮中蛋白质和油脂也成为污染物而进入废水。
为了使毛皮和生皮分离。
浸灰脱毛大量使用了石灰和硫化钠,结果是使大量碱性化合物,硫化物,毛皮和蛋白质进入废水。
脱灰使用弱酸盐,如氯化铵和硫酸铵来中和石灰,又使大量氨进入废水。
浸酸和铬鞣对环境的直接危害是大量硫酸和Cr3+进入废水。
在加脂、染色等工艺又将有机溶剂、偶氦染料和金属铬合染料等合成有机会带入废水。
制革废水的特性表现在以下几个方面:1.水量水质波动大:水量总变化系数达到2左右,而水质的变化系数更大,达到10左右。
2.可生化性好:废水中含有大量原皮上可溶性蛋白、脂肪等有机会和甲酸等低分子添加有机物,BOD5/COD比值通常在0.40~0.45之间。
3.悬浮物浓度高,易腐败,产生污泥量大。
大量原皮上的去肉和渣进入废水,废水中悬浮固体浓度高达数千毫克/升。
4.废水含S2-和总铬等无机有毒化合物。
Cr3+会对微生物带来抑制作用;硫化物进入生物处理还会影响活性污泥的沉降性能,使固液分离效果下降。
2.数据及工艺流程2.1数据牛皮制革厂间歇性排放废水排放量:1800m3/d(其中70%为高浓度废水,30%为低浓度废水)进水水质COD:600~15000mg/L、BOD5:60~3000mg/L、Ph:8.5~10、Cr3+:2~800mg/L、SS:300~3000mg/L、色度:300~1200倍、S2-:2~300mg/L出水水质:COD:300mg/L、BOD5:30mg/L、Ph:6、Cr3+:1.5mg/L、SS:200mg/L、色度:30倍、S2-:1.0mg/L2.2处理工艺比选、确定2.2.1制革废水处理工艺制革废水的处理主要为物化法和生化法。
污水处理,就到污水宝!制革废水处理制革废水由强碱性的浸灰脱毛废水和弱酸性的鞣革废水组成,废水中含有高浓度的鞣料、氯化物、硫化物、表面活性剂、化学助剂、油脂、蛋白质及SS 等污染物;混合废水呈碱性,外观浑浊,有难闻气味, 水质水量随时间变化很大。
一般情况下,综合废水的COD 3000~4000 mg/L、BOD 1500~2000 mg/ L、SS 2000~4000 mg/L、S2-50~100 mg/L、Cr3+80 ~100 mg/L。
一、制革废水处理技术传统的制革废水处理技术是将各工序废水收集混合,采用物理、化学、生物等手段集中处理,把废水中的油脂、蛋白质和各种化工材料作为废物处理掉,浪费资源,投资高,且生皮加工过程中脱毛浸灰工段产生的高浓度含硫废水和铬鞣工段产生的废铬液,对处理废水是非常不利的。
故比较合理的是“原液单独处理、综合废水统一处理”,工艺路线,将脱脂废水、浸灰脱毛废水、铬鞣废水分别进行处理并回收有价值的资源,然后与其他废水混合统一处理。
但对于小型制革厂采用这种方法,工艺流程长、费用高,仍可进行集中处理。
1 单项处理技术1.1 脱脂废水脱脂废液中的油脂含量、CODcr和BOD5等污染指标很高。
处理方法有酸提取法、离心分离法或溶剂萃取法。
广泛使用的是酸提取法,加H2SO4调pH值至3~4进行破乳,通人蒸汽加盐搅拌,并在40~60 t下静置2—3 h,油脂逐渐上浮形成油脂层。
回收油脂可达95%,去除CODcr90%以上。
一般进水油的质量浓度为8—10g/L,出水油的质量浓度小于0.1 g/L。
回收后的油脂经深度加工转化为混合脂肪酸可用于制皂。
1.2 浸灰脱毛废水浸灰脱毛废水中含蛋白质、石灰、硫化钠、固体悬浮物,含总CODcr的28%、总S2-的93%、总SS的70%。
处理方法有酸化法、化学沉淀法和氧化法。
生产中多采用酸化法,在负压条件下,加H2SO4调pH值至4—4.5,产生H2S气体,用NaOH溶液吸收,生成硫化碱回用,废水中析出的可溶性蛋白质经过滤、水洗、干燥变成产品。
某合成革生产企业生产废水处理工程设计方案一、工程概述合成革生产企业废水处理工程是为了解决生产过程中产生的污水问题,确保排放的废水达到国家相关标准,同时尽可能地回收利用资源。
本设计方案针对合成革生产企业的废水特点和处理要求,提出了全面的处理方案,包括废水预处理、生化处理和深度处理等环节。
二、废水特点和排放要求根据对合成革生产企业的调查和分析,得出以下废水特点和排放要求:1.废水特点:(1)废水的主要组成成分为有机物污染物、悬浮物、油脂及少量的重金属离子等;(2)废水流量较大,每天产生约1000立方米;(3)废水含有大量的COD(化学需氧量)和BOD(生物需氧量),需要进行充分降解和处理。
2.排放要求:(1)废水排放要求符合国家相关标准,COD和BOD需控制在规定范围内;(2)尽可能地回收利用废水中的资源。
三、工程方案根据废水特点和排放要求,本设计方案分为三个环节进行处理:废水预处理、生化处理和深度处理。
1.废水预处理:废水预处理的目的是去除废水中的悬浮物、油脂和砂石等大颗粒物质,以减少对后续处理设备的影响。
预处理设备包括格栅和沉砂池。
格栅用于去除废水中的大颗粒物质,沉砂池用于沉淀废水中的沉积物,保证后续的处理设备不被堵塞。
2.生化处理:生化处理是通过生物活性污泥对废水中的有机物进行降解和去除。
本设计方案采用A/O(好氧/厌氧)工艺。
好氧生化池中的微生物可以降解污水中的COD和BOD,厌氧生化池中的微生物可以进一步降解有机污染物,并产生可用于反应的有机物质。
生化处理设备包括好氧生化池、厌氧生化池和二沉池。
好氧生化池和厌氧生化池通过连通管道相连接,废水依次流经好氧生化池和厌氧生化池,然后进入二沉池沉淀。
生化处理后的废水中的COD和BOD的去除率可达到80%以上。
3.深度处理:深度处理是为了进一步去除废水中的有机污染物和重金属离子,提高废水的水质,以达到国家相关标准。
本设计方案采用活性炭吸附和反渗透技术。
制革工业废水的处理制革工业废水是一种对水源生态环境严重污染的废水。
它的生化需氧量高,悬浮物多,带有色泽及臭味,并含有硫化物、铬、植物鞣剂及酚类合成鞣剂等有害物质,是一种较难治理的工业废水。
我国制革工厂目前有500多家(不包括乡镇企业),以生产猪、羊、牛皮产品为主。
猪皮生产占80%,每年生产猪皮6000-8000(万张),牛皮800-900(万张),羊皮2000-3000(万张)。
制革行业每年排放废水7000万吨,约占全国工业废水总排放量的0.3%。
据调查统计,目前只有30%的制革企业不同程度的简单处理了废水,其余的70%产生的废水未经任何处理,自然排放。
对环境造成严重污染,对生态带来破坏[9]。
制革工艺主要包括腌制、浸灰(回软、脱脂、脱毛)、鞣制、以及后整理工序。
大多数的废物和污染物是在湿加工过程(浸灰、鞣制)产生。
我国大多数制革厂采用石灰脱毛和铬鞣技术,少数制革厂采用酶脱毛和铬鞣技术。
制革废水的处理方法,可归纳为物理方法、化学方法和生物处理方法。
文献中介绍的生化处理方法适用于大中型制革厂的废水治理。
本文比较了几种常用的生化法在处理制革废水中的应用,建议采用SBR法作为处理制革废水的工艺,具有其实用性和先进性。
几种常用制革工业废水生化处理方式及特点制革废水经过适当预处理废水中的硫化物、铬等对生化有抑制物质均可以降至要求以内,BOD/COD值约在0.35~0.40左右,生物降解性较好。
因此生物处理技术广泛用于制革废水处理。
1.传统活性污泥法:活性污泥法创建于1917年,是利用河川自净原理的人工强化高效处理工艺,已成为有机性污水生物处理的主体。
在制革废水的处理中,活性污泥法的应用是相当普遍的,如西德的Wam 制革污水处理厂、Lonis Sonwe-izer皮革厂,日本“室”皮革株式会社,国内北京东风制革厂、常州皮革厂、哈尔滨制革厂等采用活性污泥法,该法对生化需氧量去除率在90%以上,化学需氧量在60%-80%之间。
某合成革生产企业生产废水处理工程设计方案一、项目背景和目标合成革生产过程中,会产生大量的废水,其含有高浓度的有机物、重金属离子和色素等有害物质,对环境造成严重污染。
为了达到国家和地方相关的环境保护标准,并促进企业的可持续发展,设计了该废水处理工程方案。
本项目的目标是对合成革生产企业的废水进行处理,达到国家和地方的排放标准,同时实现资源的回收利用,减少对环境的危害。
二、处理工艺流程本工程采用综合处理工艺,包括预处理、生物处理和混凝沉淀处理三个部分。
1.预处理合成革生产过程中的废水经过机械过滤,去除大颗粒悬浮物质,然后进入调节池。
调节池主要用于平稳调节水质的波动、大量的废水缓冲、过流过程的平滑、比例等因素,达到稳定投放到生物处理单元的目的。
2.生物处理生物处理采用活性污泥法。
废水通过进水管道进入曝气反应器,加入适量的活性污泥和空气,通过曝气装置提供的氧气,进行好氧降解反应。
废水中的有机物会被污泥中的生物菌种降解为二氧化碳和水,减少有机物的污染。
3.混凝沉淀处理经过生物处理的废水,含有一定的悬浮物、有机物和重金属离子。
为了进一步减少废水中的污染物,采用混凝剂进行处理。
将混凝剂注入混合污泥槽,通过搅拌等方式将混凝剂与废水中的悬浮物、有机物等污染物结合形成絮凝体。
然后将絮凝体经过沉淀槽沉淀,沉淀后的污泥以固体形式进行分离,清水经过净水槽的净化后可再利用。
三、设备选型和布置1.机械过滤器:采用网状过滤器,能够有效去除大颗粒悬浮物。
2.调节池:采用圆形混合式调节池,具有良好的缓冲和平稳水质的作用。
3.曝气反应器:采用立式桶形曝气反应器,提供充足的氧气供给,并与混合池相连,便于操作和维护。
4.混凝沉淀池:采用矩形沉淀池,配有搅拌装置,保证混凝效果和混凝物的沉淀。
5.固液分离设备:采用离心机,将沉淀后的污泥和清水分离,使得污泥能够更好地进行处理和利用。
四、运行管理及效果评价1.运行管理:废水处理工程需要建立完善的监控系统,对进水和出水进行监测,及时调整处理工艺参数,确保处理效果。
人生最大的幸福,是发现自己爱的人正好也爱着自己。
目录引言 11 设计任务及概况 21.1 设计任务及依据 21.1.1 设计任务 21.1.2 设计依据及原则 21.1.3设计范围 31.2设计水量及水质 31.2.1设计水量 31.2.2设计水质 31.3.3设计人口 32 工艺设计方案的确定 42.1方案确定的原则 42.2污水处理工艺流程的确定 42.2.1厂址及地形资料42.2.2气象及水文资料52.2.3可行性方案的确定 52.2.4工艺流程方案的确定62.2.5污泥处理工艺流程82.3主要构筑物的选择82.3.1格栅82.3.2泵房92.3.3沉砂池92.3.4初沉池、二沉池102.3.5曝气池102.3.6接触池112.3.7计量槽122.3.8浓缩池122.3.9消化池122.3.10污泥脱水133污水处理系统工艺设计133.1格栅的计算133.1.1粗格栅133.1.2格栅的计算143.1.3选型173.2泵房173.2.1泵房的选择173.2.2泵的选择及集水池的计算173.2.3扬程估算183.3细格栅183.3.1细格栅的计算:183.3.2格栅的计算193.3.3选型213.4沉砂池的计算223.4.1池体计算223.4.2沉砂室尺寸计算233.4.3排砂253.4.4出水水质263.5初沉池263.5.1池体尺寸计算263.5.2中心管计算293.5.3出水堰的计算303.5.4集配水井计算313.5.5出水水质313.5.6选型323.6曝气池323.6.1池体计算323.6.2曝气系统设计与计算353.6.3供气量363.6.4空气管道系统计算393.6.5空压机的选择423.6.6污泥回流系统423.7二沉池433.7.1池体尺寸计算433.7.2中心管计算463.7.3出水堰的计算473.7.4集配水井计算473.7.5出水水质493.7.6选型493.8接触池493.8.1接触池尺寸计算493.8.2加氯间503.9计量槽514 污泥的处理与处置514.1 污泥浓缩池514.2 污泥消化池554.2.1 一级消化池池体部分计算554.2.2 一级消化池池体各部分表面积计算57 4.2.3二级消化池584.3贮气柜584.4 污泥控制室594.4.1污泥投配泵的选择594.4.2污泥循环泵604.4.3污泥控制室布局614.5脱水机房614.5.1采用带式压滤机除水614.5.2选型624.6 事故干化场624.7压缩机房635 污水处理厂总体布置635.1平面布置635.1.1平面布置的一般原则635.1.2 平面布置 635.2污水处理厂高程布置645.2.1高程布置原则645.2.2污水污泥处理系统高程布置65 总结66参考文献68致谢69附录701 设计任务及概况1.1 设计任务及依据1.1.1 设计任务30万吨城市污水处理厂初步设计1.1.2 设计依据及原则1.1.2.1 设计依据《给水排水工程快速设计手册》1-5 给排水设计规范《污水处理厂工艺设计手册》《三废设计手册废水卷》1.1.2.2 设计原则(1)执行国家关于环境保护的政策符合国家地方的有关法规、规范和标准;(2)采用先进可靠的处理工艺确保经过处理后的污水能达到排放标准;(3)采用成熟、高效、优质的设备并设计较好的自控水平以方便运行管理;(4)全面规划、合理布局、整体协调使污水处理工程与周围环境协调一致;(5)妥善处理污水净化过程中产生的污泥固体物以免造成二次污染;(6)综合考虑环境、经济和社会效益在保证出水达标的前提下尽量减少工程投资和运行费用1.1.3设计范围设计二级污水处理厂进行工艺初步设计1.2设计水量及水质1.2.1设计水量污水的平均处理量为=30=12500=3.47;污水的最大处理量为=15125=4.2;污水的最小处理量为日变化系数取为1.1时变化系数取K为1.1总变化系数取为1.211.2.2设计水质设计水质如表1.1所示表1.1 设计水质情况项目入水()200200出水()≤25≤30去除率(%)87.5851.3.3设计人口(1)按SS浓度折算:式中:Css--废水中SS浓度为200mg/LQ --平均日污水量为30万m3/dass--每人每日SS量一般在35-55/人g.d则:(2)按浓度折算式中:--废水中浓度为200mg/LQ --平均日污水量为30万m3/d --每人每日BOD量一般在20-35/人gd取30/人g.d则:2 工艺设计方案的确定2.1方案确定的原则(1)采用先进、稳妥的处理工艺经济合理安全可靠(2)合理布局投资低占地少(3)降低能耗和处理成本(4)综合利用无二次污染(5)综合国情提高自动化管理水平2.2污水处理工艺流程的确定2.2.1厂址及地形资料该污水处理厂厂址位于某市西北部厂址所在地区地势比较平坦污水处理厂所在地区地面平均标高为40.50米地震基本烈度为7度2.2.2气象及水文资料某市位于东经北纬属温带半湿润季风型大陆性气候多年平均温度7.4冬季长气候寒冷多偏北风最冷月(一月)平均气温-12.7;夏季多偏南风非采暖季节主导风向为东南风最热月(七月)平均气温24.6降雨集中在7-8月约占全年降雨的50%多年平均降雨量75毫米地面冻结深度1.2-1.4米2.2.3可行性方案的确定城市污水的生物处理技术是以污水中含有的污染物作为营养源利用微生物的代谢作用使污染物降解它是城市污水处理的主要手段是水资源可持续发展的重要保证城市二级污水处理厂常用的方法有:传统活性污泥法、AB法、氧化沟法、SBR法等等下面对传统活性污泥法和SBR法两种方案进行比较(工艺流程见图2.12.2)以便确定污水的处理工艺传统活性污泥法的方案特点:(1)工艺成熟管理运行经验丰富;(2)曝气时间长吸附量大去除效率高90~95%;(3)运行可靠出水水质稳定;(4)污泥颗粒大易沉降;(5)不适于水质变化大的水质;(6对氮、磷的处理程度不高;(7)污泥需进行厌氧消化可以回收部分能源;SBR法的方案特点:(1)处理流程简单构筑物少可不设沉淀池;(2)处理效果好不仅能去除有机物还能有效地进行生物脱氮;(3)占地面积小造价低;(4)污泥沉降效果好;(5)自动化程度高基建投资大;(6)适合于中小水量的污水处理工艺从上面的对比中我们可以得到如下结论:从工艺技术角度考虑普通曝气法和SBR法出水指标均能满足设计要求但是SBR法对自动化控制程度要求较高且处理规模一般小于10万立方米/天这与实际情况不符(污水厂自动化水平不高且本设计规模属大型污水处理厂)故普通曝气法更适合于本设计对污水进、出水水质的要求(对P、N去除要求不高水质变化小)故可行性研究推荐采用普通曝气法为污水处理厂的工艺方案2.2.4工艺流程方案的确定SBR法是间歇式活性污泥法或序批式活性污泥法的简称相对于传统活性污泥法SBR法工艺是一种正处于发展、完善阶段的技术因为从SBR法的再次兴起直至应用到今天只不过十几年的历史许多研究工作刚刚起步缺乏科学的设计依据和方法以及成熟的运行管理经验SBR法现阶段在基础研究方面、实践应用方面、工程设计方面仍存在问题例如:SBR的适宜规模、合理的设计和运行参数的选择建立完整的运行维护和管理方法运行模式的选择于设计方法脱节等等污水工艺流程的确定主要依据污水水量、水质及变化规律以及对出水水质和对污泥的处理要求来确定本着上述原则本设计选传统活性污泥法作为污水处理工艺图2.1 传统活性污泥法图2.2 SBR法2.2.5污泥处理工艺流程目前污泥的最终处置有污泥填埋污泥焚烧污泥堆肥和污泥工业利用四种途径该厂的污泥主要来源于城市污水完全可以再利用只需在厂内进行预处理将重金属去除该厂的污泥用于农业是完全可能的目前暂时有困难也可将污泥用于园林绿化使污泥中的肥分得以充分利用污泥也可得以妥善处置根据上述原则决定污泥采用中温厌氧二级消化再经机械脱水后运出厂外处置这时的污泥已基本实现了无害化不会对环境造成二次污染污泥消化产生的沼气用于烧锅炉和发电热量可满足消化池污泥加热需要电能供本厂使用2.3主要构筑物的选择2.3.1格栅格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质以保证后续处理单元和水泵的正常运行减轻后续处理单元的负荷防止阻塞排泥管道本设计中在泵前和泵后各设置一道格栅泵前为粗格栅泵后为弧形细格栅由于污水量大相应的栅渣量也较大故采用机械格栅栅前栅后各设闸板供格栅检修时用每个格栅的渠道内设液位计控制格栅的运行格栅间配有一台螺旋输送机输送栅渣螺旋格栅压榨输送出的栅渣经螺旋运输机送入渣斗打包外运粗格栅共有三座两座使用一台备用栅前水深为1.4m过栅流速0.9m/s栅条间隙为50mm格栅倾角为60°细格栅有四座三台使用一台备用栅前水深为1.05m过栅流速0.9m/s栅条间隙为20mm格栅倾角为60°2.3.2泵房考虑到水力条件、工程造价和布局的合理性采用长方形泵房为充分利用时间选择集水池与机械间合建的半地下式泵房这种泵房布置紧凑占地少机构省操作方便水泵及吸水管的充水采用自灌式其优点是启动及时可靠不需引水的辅助设备操作简便泵房地下部分高6.2m地上部分6.3m共高12.5m2.3.3沉砂池沉砂池的形式有平流式、竖流式、辐流式沉砂池其中平流式矩形沉砂池是常用的形式具有结构简单处理效果好的优点其缺点是沉砂中含有15%的有机物使沉砂的后续处理难度加大竖流式沉砂池是污水自下而上由中心管进入池内无机物颗粒借重力沉于池底处理效果一般较差曝气沉砂池是在池体的一侧通入空气使污水沿池旋转前进从而产生与主流垂直的横向环流其优点:通过调节曝气量可以控制污水的旋流速度使除砂效果较稳定;受流量变化的影响较小;同时还对污水起预曝气作用而且能克服平流式沉砂池的缺点综上所述采用曝气沉砂池池子共有六座;尺寸:12m×16.8m×4.59m;有效水深为2.5m2.3.4初沉池、二沉池沉淀池主要去除依附于污水中的可以沉淀的固体悬浮物按在污水流程中的位置可以分为初次沉淀池和二次沉淀池初次沉淀池是对污水中的以无机物为主体的比重大的固体悬浮物进行沉淀分离二次沉淀池是对污水中的以微生物为主体的、比重小的、因水流作用易发生上浮的固体悬浮物进行分离沉淀池按水流方向可分为平流式的、竖流式的和辐流式的三种竖流式沉淀池适用于处理水量不大的小型污水处理厂而平流式沉淀池具有池子配水不易均匀排泥操作量大的缺点辐流式沉淀池不仅适用于大型污水处理厂而且具有运行简便管理简单污泥处理技术稳定的优点所以本设计在初沉池和二沉池都选用了辐流式沉淀池初沉池共有六座直径为40m高为6.83m有效水深为3.6m为了布水均匀进水管设穿孔挡板穿孔率为10%-20%出水堰采用直角三角堰池内设有环形出水槽双堰出水每座沉淀池上设有刮泥机沉淀池采用中心进水周边出水周边传动排泥二沉池九坐直径为36m高为6.79m有效水深为3.5m也采用中心进水周边出水排泥装置采用周边传动的刮吸泥机其特点是运行效果好设备简单污泥回流设备采用型螺旋泵2.3.5曝气池本设计采用传统活性污泥法(又称普通活性污泥法)该法对BOD的处理效果可达90%以上传统活性污泥法按池形分为推流式曝气池和完混合曝气池推流式曝气特点是:废水浓度自池首至池尾是逐渐下降的由于在曝气池内存在这种浓度梯度废水降解反应的推动力较大效率较高;推流式曝气池可采用多种运行方式;对废水的处理方式较灵活;由于沿池长均匀供氧会出现池首供气不足池尾供气过量的现象增加动力费用的现象完全混合式曝气池的特点是:冲击负荷的能力较强;由于全池需氧要求相同能节省动力;曝气池与沉淀池合建不需要单独设置污泥回流系统便于运行管理;连续进水、出水可能造成短路;易引起污泥膨胀;适于处理工业废水特别是高浓度的有机废水综上根据各自特点本设计选择推流式活性污泥法在运行方式上以推流式活性污泥法为基础辅以分段曝气系统运行曝气系统采用鼓风曝气选择其中的网状微孔空气扩散器共有6座曝气池池型采用折流廊道式分五廊道池长为66m高为5.7m宽6m有效水深为5.2m污泥回流比R=30%2.3.6接触池城市污水经二级处理后水质改善但仍有存在病原菌的可能因此在排放前需进行消毒处理液氯是目前国内外应用最广泛的消毒剂它是氯气经压缩液化后贮存在氯瓶中氯气溶解在水中后水解为Hcl和次氯酸其中次氯酸起主要消毒作用氯气投加量一般控制在1-5mg/L接触时间为30分钟接触池总长为312.5m分14个廊道每廊道长23m宽4m2.3.7计量槽为提高污水厂的工作效率和运转管理水平并积累技术资料以总结运转经验为今后处理厂的设计提供可靠的依据设计计量设备以正确掌握污水量、污泥量、空气量以及动力消耗等本设计选用巴式计量槽设在污水处理系统的末端2.3.8浓缩池浓缩池的形式有重力浓缩池气浮浓缩池和离心浓缩池等重力浓缩池是污水处理工艺中常用的一种污泥浓缩方法按运行方式分为连续式和间歇式前者适用于大中型污水厂后者适用于小型污水厂和工业企业的污水处理厂浮选浓缩适用于疏水性污泥或者悬浊液很难沉降且易于混合的场合例如接触氧化污泥、延时曝起污泥和一些工业的废油脂等离心浓缩主要适用于场地狭小的场合其最大不足是能耗高一般达到同样效果其电耗为其它法的10倍从适用对象和经济上考虑故本设计采用重力浓缩池形式采用连续式的其特点是浓缩结构简单操作方便动力消耗小运行费用低贮存污泥能力强采用水密性钢筋混凝土建造设有进泥管、排泥管和排上清夜管浓缩池二座直径为24米浓缩时间14h2.3.9消化池消化池的作用是使污泥中的有机物得到分解防止污泥发臭变质且其产生的沼气能作为能源可发电用本设计采用二级中温消化池形采用圆柱形消化池优点是减少耗热量减少搅拌所需能耗熟污泥含水率低一级消化池六座直径为24m消化温度为35℃二级消化池三座且尺寸与一级相同2.3.10污泥脱水污泥机械脱水与自然干化相比较其优点是脱水效率较高效果好不受气候影响占地面积小常用设备有真空过滤脱水机、加压过滤脱水机及带式压滤机等本设计采用带式压滤机其特点是:滤带可以回旋脱水效率高;噪音小;省能源;附属设备少操作管理维修方便但需正确选用有机高分子混凝剂另外为防止突发事故设置事故干化场使污泥自然干化3污水处理系统工艺设计3.1格栅的计算3.1.1粗格栅选用三个规格一样的粗格栅并列摆放两台工作一台备用图3.1 格栅示意图3.1.2格栅的计算(1) 栅条间隙数式中:--栅条间隙数个;--最大设计流量=4.2;--格栅倾角取= 60;--栅条间隙取=0.05;--栅前水深取=1.4;--过栅流速取=0.9;--生活污水流量总变化系数根据设计任务书=1.21则:(2) 栅槽宽度式中:--栅条宽度取0.01则: =0.01(31-1)+0.0531=0.3+1.55=1.85(3) 通过格栅的水头损失式中:--设计水头损失;--计算水头损失;--重力加速度取=9.8;--系数格栅受污物堵塞时水头损失增大倍数一般采用=3;--阻力系数其值与栅条断面形状有关;--形状系数取=2.42(由于选用断面为锐边矩形的栅条)则: ==0.28==0.01(4) 栅后槽总高度式中:--栅前渠道超高取=0.3则: =1.4+0.3+0.03=1.73(5) 栅槽总长度式中: --进水渠道渐宽部分的长度;--进水渠宽取=1.7;--进水渠道渐宽部分的展开角度取=20;--栅槽与进水渠道连接处的渐窄部分长度;--栅前渠道深.则:==(6) 每日栅渣量式中:--栅渣量取=0.01则: >0.2宜采用机械清渣(7) 校核式中:--栅前水速;一般取0.4m/s-0.9m/s--最小设计流量;=2.87--进水断面面积;--设计流量取=则:在之间符合设计要求3.1.3选型选用型链式旋转格栅除污机其性能如表3.1所示表3.1 粗格栅性能表项目型号安装角过栅水速电机功率性能型链式旋转格栅除污机600.91.53.2泵房3.2.1泵房的选择选择集水池与机械间合建的半地下矩形自灌式泵房这种泵房布置紧凑占地少机构省操作方便3.2.2泵的选择及集水池的计算(1) 平均秒流量(2) 最大秒流量(3) 考虑3台水泵每台水泵的容量为(4) 集水池容积采用相当于一台泵6分钟的容量集水池面积3.2.3扬程估算(1) 集水池最低工作水位与所需提升最高水位之间的高差=45-(35+2.0×0.75-0.03-2)=10.53其中:--集水池有效水深取;--出水管提升后的水面高程取;--进水管管底高程取;--进水管管径由设计任务书;--进水管充满度由设计任务书;--经过粗格栅的水头损失取h=0.03由于资料有限出水管的水头损失只能估算设总出水管管中心埋深0.9米局部损失为沿线损失的30%则泵房外管线水头损失为0.558m泵房内的管线水头损失假设为1.5米考虑自由水头为1米则水头总扬程: Hz=1.5+0.558+10.53+1=13.588m选用型污水水泵三台每台扬程集水池有效水深吸水管淹没深度喇叭口口径取泵房地下部分高6.2m地上部分6 .3m共3.3细格栅3.3.1细格栅的计算:设四台机械格栅三台运行一台备用3.3.2格栅的计算(1) 栅条间隙数式中:--栅条间隙数个;--最大设计流量=4.2;--格栅倾角取= 60;--栅条间隙取=0.02;--栅前水深取=1.05;(一般栅槽宽度B是栅前水深h的二倍)--过栅流速取=0.9;--生活污水流量总变化系数由设计任务书=1.21则:取70个(2) 栅槽宽度式中:--栅条宽度取0.01则:=0.01(70-1)+0.0170=2.10(3) 通过格栅的水头损失式中:--设计水头损失;--计算水头损失;--重力加速度取=9.8;--系数格栅受污物堵塞时水头损失增大倍数一般采用=3;--阻力系数其值与栅条断面形状有关;--形状系数取=2.42(选用迎背水面均为半圆形的矩形栅条);则:==0.96==0.034(4) 栅后槽总高度式中:--栅前渠道超高取=0.3则:=1.05+0.3+0.103=1.453(5) 栅槽总长度式中: --进水渠道渐宽部分的长度;--进水渠宽取=1.9;--进水渠道渐宽部分的展开角度取=20;--栅槽与进水渠道连接处的渐窄部分长度;--栅前渠道深则:==(6) 每日栅渣量式中:--栅渣量取=0.07则: >0.2 宜采用机械清渣(7) 校核式中:--栅前水速;--最小设计流量;A--进水断面面积;--设计流量取=则:在之间符合设计要求3.3.3选型选用型弧形格栅除污机其性能如表3-2所示表3.2 细格栅性能表项目圆弧半径栅条组宽重量安装角过栅水速电机功率性能5001200600600.90.30.73.4沉砂池的计算3.4.1池体计算(1) 池子总有效容积式中:--最大设计流量=4.2;--最大设计流量时的流行时间一般为1min~3min此处取=2则:(2) 水流断面面积式中:--最大设计流量时的水平流速取一般为0.06m/s-0.1m/s则:(3) 池子总宽度式中:--设计有效水深取=2.5一般值为2m-3m则:(4) 池子单格宽度式中:--池子分格数个取=6则:(5)校核宽深比:b/ =2.8/2.5=1.12在1-2范围内符合要求(6) 池长则:(7) 校核长宽比:L/B=12/2.8=4.37>4 符合要求(8) 每小时所需空气量式中:--每污水所需空气量取=0.2则:3.4.2沉砂室尺寸计算(1) 砂斗所需容积式中:--城市污水沉砂量取=30;--两次清除沉砂相隔的时间取=2;--生活污水流量总变化系数由设计任务=1.21则:(2) 每个砂斗所需容积式中:--砂斗个数设沉砂池每个格含两个沉砂斗有6个分格沉砂斗个数为12个则:(3) 砂斗实际容积式中:--砂斗上口宽;--砂斗下口宽取=1;--砂斗高度取=0.8;--斗壁与水平面倾角取=55则:>=1.5(4) 沉砂池总高度(采用重力排砂)式中:--超高取=0.3;--砂斗以上梯形部分高度;--池底坡向砂斗的坡度取=0.1一般值为0.1-0.5则:(5) 最小流速校和式中:--设计流量取=;--最小设计流量;2.87--最小流量时工作的沉砂池格数个取=2;--最小流量时沉砂池中的水流断面面积为7.0则:>0.15符合设计要求3.4.3排砂采用重力排砂排砂管直径在沉砂池旁设贮砂池并在管道首端设贮砂阀门(1) 贮砂池容积则:(2) 贮砂池平面面积式中:--贮砂池有效水深取=2.5则:3.4.4出水水质查《给排水设计手册》2经曝气沉砂池去除率10%则:=3.5初沉池3.5.1池体尺寸计算(1) 沉淀部分水面面积式中:--最大设计流量=12500;--池数个取=6;--表面负荷取=1.8则:(2) 池子直径则:取40(3) 实际水面面积则:核算表面负荷:<1.8符合要求.(4) 沉淀部分有效水深式中:--沉淀时间取=2.0则:(5)校核径深比:D/=40/3.6=11.11在6-11内符合要求(6) 沉淀部分有效容积则:(7) 污泥部分所需的容积式中:--每人每日污泥量查《给排水设计手册》5取=0.6;一般范围为(0.3-0.8)--设计人口数人取=人;为SS的设计人口因为此处主要去除的就是SS--两次清除污泥相隔时间取=4则:(8) 污泥斗容积式中: --污泥斗高度;--污泥斗上部半径取=2.0;--污泥斗下部半径取=1.0;--斗壁与水平面倾角取=60则:(9) 污泥斗以上圆锥部分污泥容积-式中:--圆锥体高度;--池子半径i──坡度此处取i=0.05则:(10) 沉淀池总高度式中:--超高取=0.3;--缓冲层高度取=0.3一般值为0.3-0.5──有效水深为3.6m──圆锥体高度为0.9m──污泥斗高度为1.73m则:(11) 沉淀池池边高则:(12) 污泥总容积V=V1+V2=12.7+418.3=430.9m3>20m3(13)校核径深比:D/h=40/3.6=11.23在6~12之间符合要求3.5.2中心管计算(1) 进水管直径:取=900 则在0.91.2之间符合设计要求(2) 中心管设计要求图3.2中心管计算图(3) 套管直径取 =2.2则:在0.150.20之间符合要求(4) 设8个进水孔取则:(5)取则:(6)取则:在之间符合设计要求3.5.3出水堰的计算(1) 出水堰采用直角三角堰过水堰水深取一般为0.021-0.2之间(2) 堰口流量:(3) 三角堰个数:个(4) 出水堰的出水流速取:则:断面面积(5) 取槽宽为0.8水深为0.8出水槽距池内壁0.5则:(6) 出水堰总长(7) 单个堰堰宽(8) 堰口宽0.10堰口边宽0.155-0.10=0.055(9) 堰高(10) 堰口负荷:在1.52.9之间符合设计要求3.5.4集配水井计算(1) 设计三个初沉池用一个集配水井共两座(2) 配水井来水管管径取=1500其管内流速为则:(3) 上升竖管管径取其管内流速为则:(4) 竖管喇叭口口径其管内流速为取则:(5) 喇叭口扩大部分长度取=则:(6) 喇叭口上部水深其管内流速为则:(7) 配水井尺寸:直径取则:(8) 集水井与配水井合建集水井宽集水井直径3.5.5出水水质查《给排水设计手册》2经初沉池、去除率分别取25%、60%==3.5.6选型选用ZG型周边传动刮泥机六台每座初沉池一台其性能如表3.3所示表3.3 型周边传动刮泥机性能表项目池径电动机功率滚轮与轨道型式重量性能402.2钢滚轮、钢板轨道160003.6曝气池3.6.1池体计算(1) 水中非溶解性含量式中:--微生物自身氧化率一般在0.050.10之间取=0.08;--微生物在处理水中所占的比例取=0.4;--水中悬浮固体浓度取=25则:(2) 出水中溶解性含量式中:--出水中的总含量则:(3) 的去除率式中:--的去除效率%;--进水的浓度取=150则:>83% 符合要求(4) --污泥负荷率式中:--污泥负荷;--系数取=0.0185;--系数一般为0.70.8取=0.75则:在0.20.4之间符合设计要求(5) 混合污泥浓度式中:--污泥体积指数取=120;一般为(100-120)mg/L--污泥回流比取=30%;--考虑污泥在二沉池中停留时间、池深、污泥厚度等因素的有关系数取=1.2;则:(6) 曝气池容积式中:--进水设计流量取=则:(7) 单个池容积式中:--曝气池个数共设三组曝气池每组两座共六座=6则:(8) 单个池面积式中:H--池深则:核算宽深比取池宽则: 在12之间符合设计要求(9) 池总长则:(10) 单廊道长式中:--廊道条数个取=5则:取(11) 池总高式中:--超高取=0.5则:3.6.2曝气系统设计与计算(1) 曝气池平均需气量式中:--氧化每公斤需氧公斤数取;--污泥自身氧化需氧率取;。
毕业设计(论文)任务书设计(论文)题目××皮革制品高档鞋面革项目污水处理工程工艺设计学院名称资源与环境工程学院专业(班级)环境工程10-2班姓名(学号)掌权(20104553)指导教师周元祥系(教研室)负责人氧消化过程控制在水解和酸化两个阶段的方法。
水解酸化主要利用水解细菌和产酸菌将废水中不溶性的有机污染物分解转化为溶解性的有机物,可将长链大分子有机污染物分解成易利用的小分子有机物,这些反应产物有利于后续生化处理工序中的微生物更好地摄取废水中的有机物。
同时,水解酸化池中的水解细菌和产酸菌为兼性细菌,其生长和繁殖对废水中氧气的含量要求不高,代强度很高,对废水环境的适应力强。
与单一好氧生物法相比,水解酸化具有有效去除固体悬浮物、改善废水可生化性以及节省工艺运行费用等优势;与单-?厌氧生物法相比, 水解酸化又具有操作简单、运行管理方便、反应器体积要求较小等优点。
因此,采用水解酸化作为预处理工序能够很快适应进水负荷的变化,有效地提高废水的可生化性,为后续的生化处理提供较好的条件。
5.2.3 CASSCASS(Cyclic Activated Sludge System)是周期循环活性污泥法的简称,又称为循环活性污泥工艺CAST(Cyclic Activated Sludge technology),是在SBR的基础上发展起来的,即在SBR池进水端增加了一个生物选择器,实现了连续进水(沉淀期、排水期仍连续进水),间歇排水。
设置生物选择器的主要目的是使系统选择出絮凝性细菌,其容积约占整个池子的10%。
生物选择器的工艺过程遵循活性污泥的基质积累--再生理论,使活性污泥在选择器中经历一个高负荷的吸附阶段(基质积累),随后在主反应区经历一个较低负荷的基质降解阶段,以完成整个基质降解的全过程和污泥再生。
经分析选择工艺如下:图1.1 综合废水处理流程(教师填写)备注:指导教师应按要求和时间段及时填写,该表格由学生保管,留在毕业设计(论文)现场随时接受校、院两级督导组检察。
某制革废水处理厂废水处理改造方案某х有限公司二○○九年七月目录1 总论 (3)1.1概述 (3)1.2 采用规范及标准 (3)1.3 编制原则 (4)2 废水水量水质及工程规模 (5)2.1 设计废水水量 (5)2.2 设计废水水质 (5)2.3废水特点 (5)2.3.1废水来源 (5)2.3.2废水水量特点 (8)2.3.3废水水质特点 (9)2.4设计处理要求 (9)3 处理工艺 (10)3.1污水处理厂改造前工艺简介 (10)3.2 目前运行存在的主要问题: (12)3.3改造后的工艺流程: (14)3.3.1预处理系统 (14)3.3.2生物处理 (14)3.4改造后废水处理各工段进出水数据预测 (19)4 工艺设计 (19)4.1 综合废水(5000m3/d) (19)4.2 辅助用房 (26)4.3 总排口 (26)5 主要设备材料表 (27)6 结构设计 (28)6.1 结构形式 (28)6.2 建筑材料选用 (28)7 电气、仪表监控系统 (29)7.1电气设计及用电负荷估算 (29)7.2仪表及监控系统 (30)8 防腐、防渗及节能设计 (31)8.1防腐对象 (31)8.2防腐措施 (31)8.3防渗措施 (32)8.4节约能耗措施 (32)9 工程估算 (33)9.1编制依据 (33)9.2工程费用表及概算书 (34)9.2.1新增土建工程投资概算 (34)9.2.2新增主要设备投资概算 (34)9.2.3新增工程建设总费用: (36)10 运行费用 (36)10.1电费 (37)10.2加药费 (37)1 总论1.1概述某某镇某某村位于某某省某某市西部,是一个某某居住村,皮革加工是该村的传统产业,制革集中区正常生产的企业多达82家,并共同组建了某某省某某市某某皮革有限公司(以下简称业主)。
由于该村地处区域为淮河流域,位于清溢河上游,制革废水严重污染河流,直接影响了下游群众的生产、生活和某某市出境断面水质。
皮革废水处理方案皮革工业是一个重要的经济领域,它不仅提供了大量就业机会,还创造了丰富的商品。
然而,随着皮革生产的快速增长,废水处理问题也越来越引起人们的关注。
皮革废水中含有大量的有机物、酸性物质和重金属,如果不得当地处理,将对环境和人类健康造成极大危害。
因此,探索有效的皮革废水处理方案变得尤为重要。
首先,传统的废水处理方法中常用的是化学氧化和沉淀法。
化学氧化法通过添加氧化剂将废水中的有机物氧化,然后进行沉淀处理。
这种方法能够去除废水中的有害物质,但同时也会产生大量的废泥,并且对环境造成二次污染。
因此,在实际应用中,我们需要改进这些传统方法。
近年来,生物处理技术逐渐成为皮革废水处理的一种有前景的选择。
采用生物处理方法处理废水可以将有机物转化为无害的氨氮、二氧化碳和水,同时产生少量的污泥。
此外,生物处理过程中产生的污泥可以进一步转化为沼气或有机肥料,实现资源的再利用。
但是,在实际应用中,我们还面临着一些挑战,比如生物膜的稳定性、细菌菌株的选取以及处理效果的可靠性等问题。
因此,在探索生物处理方法时,有必要对细菌菌株的筛选、反应器设计和操作条件进行深入研究。
此外,还有一种新兴的废水处理技术——电化学方法,也被广泛应用于皮革废水处理中。
电化学方法通过利用电流和电极上的化学反应降解废水中的有机物和重金属。
与传统方法相比,电化学方法具有操作简单、废水处理效果好、无需添加化学药剂等优点。
但是,这种技术还面临着电极材料的选择和寿命问题。
因此,在电化学废水处理中,我们需要进一步研发高效、稳定的电极材料,以提高处理效率和经济性。
除了技术的探索,对于皮革废水的管理也至关重要。
皮革工业企业需要建立健全的废水排放制度,并加强监测和管理。
对于不合格的废水排放,应采取相应的处罚措施,以约束企业的行为。
此外,政府和企业还应积极推动绿色生产和循环经济理念,在源头控制废水的产生,减少对环境的影响。
最后,值得注意的是,皮革废水处理是一个系统工程,需要多方合作共同推进。
物化-水解酸化-CAST工艺处理制革废水(1)本文介绍了采用物化-水解酸化-CAST工艺在制革废水中的应用。
运行结果表明,当进水BOD5为960~1250mg/l,CODcr为2250~2780mg/l,出水达到《污水综合排放标准》(GB8978-1996)二级标准。
该工艺具有适应性强、稳定效果好、有机物去除率高等特点,因此在制革废水处理中具有良好的前景。
关键词:制革废水水解酸化 CAST工艺制革工业是我国国民经济中的重工业部门。
进入90年代后,皮革工业的发展给我国生态环境造成很大压力,尤其是其废水排放量大,成分复杂,治理费用高,一直是国内外废水处理的难题。
本文将对制革工业废水处理技术及应用中的一些问题进行探讨。
1. 废水的水质水量浙江某制革工业区,有多家加工猪皮、牛皮的专业制革生产企业。
该工业区的废水主来自于准备、鞣制和其他湿加工工段,日排放废水4500~6000m3,故设计日最大进水流量6000m3/d。
在制革过程中,大量的蛋白质、脂肪转移到废水废渣中,另外在加工过程中采用的大量化工原料,如酸、碱、盐、硫化钠、石灰、铬鞣剂、加脂剂、染料等,相当一部分进入废水之中。
该工业区的废水排放浓度见表1。
表1 废水水质指标(mg/l)CODcr(mg/l)BOD5SS(mg/l)总Cr(mg/l)S2-(mg/l)pH值2500~30001000~15001200~210010~4525~756.5~10.5根据该工业区的位置及及环保求,废水经处理后应达到《污水综合排放标准》(GB8978-1996)二级标准,即CODcr ≤300mg/l, BOD5≤100mg/l,SS≤150mg/l, S2-≤1.0mg/l, 总Cr≤1.5mg/l。
2. 处理工艺2.1 工艺流程本制革废水的BOD5/CODcr的比值在0.30~0.55之间,可生化性较好,但由于其含有对于生化处理有毒有害的物质S2-和Cr3 ,并且悬浮物也很高,采用“物化生化”处理工艺,工艺流程如图1所示。
皮革废水处理工艺探讨1 皮革废水介绍1.1 废水产生环节与主要污染物皮革生产可分为湿操作和干操作两部分,湿操作主要为准备工段和鞣制工段,干操作主要为整饰工段[1]122-136,皮革废水主要来源于这3个工段,产生环节及其主要污染物见表1。
表1 皮革废水产生环节及其主要污染物工段主要污染物准备工段原皮水洗SS、COD、Cl-浸水COD、Cl-去肉脱脂S2-、COD、油脂脱毛、浸灰S2-、COD、油脂鞣制工段脱灰pH、SS、COD、Cl-、NH3-N软化SS、COD、盐水洗COD、油脂浸酸、脱脂pH、COD、脂肪鞣制pH、COD、Cr(Ⅲ)、中性盐、色度复鞣pH、COD、三价铬、中性盐中和COD染色SS、COD、色度加脂COD、油脂整饰工段挤水COD、油脂喷涂COD1.2 废水水量与水质情况1.2.1 废水水量情况皮革用的原料一般为羊皮、猪皮和牛皮,根据传统的制革,加工1张牛皮耗水量为1 t,加工1张猪皮耗水量为0.5 t,加工1张羊皮耗水量为0.2 t[1]125-127,根据一些大企业的统计数据,皮革企业的耗水量如表2所示。
近年来,国内一些大型的皮革企业改进或引进了生产工艺,耗水量得到一定程度的降低。
表2 每t原皮皮革耗水量统计(t)原料皮猪皮牛皮羊皮耗水量范围30~60 40~140 110~7401.2.2 皮革废水的组成与水质情况按照生产工艺过程皮革废水由以下几部分组成:高浓度Cl-的原皮洗涤水,含Ca(OH)2、Na2S的碱性脱毛浸灰废水,含油脂及其皂化物的脱脂废水,含Cr(Ⅲ)的铬鞣废水和加脂染色废水,其中以脱脂废水、脱毛浸灰废水和铬鞣废水污染最为严重。
根据浙江海宁和温州平阳多家牛皮制革企业的环评统计资料,牛皮的废水水质浓度一般高于猪皮,一般牛皮革废水水质如表3所示。
1.3 皮革废水主要特点(1)因为使用大量的有机原料,皮革废水是1种高浓度有机废水;(2)皮革废水具有较高的色度,主要由染料和鞣剂及其助剂造成的;(3)皮革废水具有较浓的臭味,主要由硫化物和蛋白质分解造成的;(4)皮革废水具有较强的毒性,主要由于使用硫化物和铬盐造成的;(5)制革准备阶段废水油脂含量较高,需要进行预处理。
制革废水不仅水量大,而且成分复杂、污染物浓度高,处理比较困难。
设计一套运行成本较低、处理效果较好的废水处理工艺,是制革业急需解决的问题。
本文选定了物化——生物氧化综合制革废水处理工艺处理皮革厂的废水。
废水处理厂设计的出质应达到国家《污水综合排放标准》(GB8978 ——1996)的一级标准,废水处理厂的工艺设计合理,抗冲击负荷能力强、连续自动运行、工艺可靠、技术经济可行,具有重要的实践意义。
关键词:综合制革废水,污水处理,污水厂设计1.概述 (3)2. 工艺设计参数 (4)2.1设计水量 (4)平均设计水量Q=1000m3/d (4)2.2进水水质 (4)2.3出水水质 (4)3.处理工艺流程 (5)3.1含铬废水处理流程 (5)3.2综合废水处理流程 (6)4.综合污水处理主要设备及构筑物 (7)4.1细格栅: (7)4.2曝气调节池 (7)4.3设备操作工房: (8)4.4一次提升泵: (8)4.5水解酸化池 (8)4.6沉淀池 (9)4.7污泥浓缩池 (9)4.8生物接触氧化池 (10)4.9二沉池 (10)5含铬废水处理部分 (11)5.1含铬废水蓄水池 (11)5.2反应沉淀池 (11)5.3碱液配液池 (11)5.4板框压滤机 (12)6污水处理厂的高程布置 (12)6.1高程布置的一般原则 (12)6.2污水高程计算 (12)1.概述制革业是产生大量污水的行业,制革污水不仅量大,而且是一种成分复杂、高浓度的有机废水,其中含有大量石灰、染料、蛋白质、盐类、油脂、氨氮、硫化物、铬盐以及毛类、皮渣、泥砂等有毒有害物质。
COD Cr、BOD5、硫化物、氨氮、悬浮物等非常高,是一种较难治理的工业废水。
皮革生产可分为湿操作和干操作两部分,湿操作主要为准备工段和鞣制工段,干操作主要为整饰工段,皮革废水主要来源于这三个工段,产生各环节主要污染物有:(1)色度:制革废水的色度较大,一般为600-3500倍,主要有色度高达3000-5000倍的植鞣废液、色度1000-3000倍的染色废液、色度200倍左右的浸灰废液和废铬液造成的。
合成革生产企业生产废水处理工程设计方案一、废水处理工程方案概述根据合成革生产企业废水特点和排放达标要求,本方案采用生化处理、物理化学处理和深度处理相结合的方法进行废水处理。
主要工艺包括沉淀池、生化反应池、曝气池、絮凝剂投加系统、厌氧处理系统、曝气系统、草本植物处理系统、臭氧处理系统、沉淀池等。
二、废水处理工艺流程废水首先经过初沉池对废水中的大颗粒悬浮物进行去除,然后进入生化反应池,通过生物降解将有机物转化为无机物。
同时,通过曝气系统和絮凝剂投加系统,促进生化反应过程的进行。
接下来,经过曝气池和厌氧处理系统,将废水中的有机物进一步降解。
最后,经过草本植物处理系统、臭氧处理系统和沉淀池的处理,去除废水中残留的污染物,并达到排放标准。
三、设备选择和布置1.初沉池:采用圆形钢筋混凝土结构,内衬防腐材料,设置搅拌装置和排泥装置。
2.生化反应池:采用玻璃钢结构,具有耐腐蚀、耐高温的特性,内部设有曝气装置和搅拌装置。
3.曝气池:采用圆形混凝土结构,内衬防腐材料,装有曝气装置。
4.绮凝剂投加系统和厌氧处理系统:根据实际情况选择适当的物理化学设备和药剂投加系统。
5.草本植物处理系统:根据实际情况选择适当的湿地植物,进行废水的生物处理。
6.臭氧处理系统:根据实际情况选择适当的臭氧发生器和高压风机。
7.沉淀池:采用矩形混凝土结构,设有泄水管和清淤装置。
四、操作控制和运行管理1.定期对设备进行维护、保养和清洗,确保设备的正常运行和耐用性。
2.监测废水处理工艺的关键指标,如COD、BOD、SS、NH4+-N等,通过调节药剂投加量和曝气量等参数,保持工艺的稳定性和处理效果。
3.完善废水处理设施的记录管理制度,及时保存和更新处理数据和操作记录,为后续的环保验收提供有效数据支持。
4.培训操作人员,提高他们的技能和意识,加强对废水处理工艺的理解和掌握,促进企业的环境保护工作。
综上所述,合成革生产企业生产废水处理工程设计方案主要包括废水处理工艺流程、设备选择和布置、操作控制和运行管理等内容。
毕业设计(论文) - I - 摘 要 废水处理厂设计规模 3000m3/d,设计水质水量为:Q=3000m3/d ,CODcr=1800~3000mg/L, PH=7.5~10,SS=700~1000 ㎎/l ,BOD=800~1200㎎/l,色度200~400 倍。经处理后,应达到下列出水水质:COD≤300mg/L,色度≤80倍,SS≤150mg/L, BOD达≤100 mg/L,即达到《污水综合排放标准》(GB8978-1996)中制革行业的二级标准。 本工程方案设计依据有关环境保护在污水中的要求,采用混凝沉淀—接触氧化工艺处理制革废水,在详细方案比较的基础上,选择了如下处理工艺流程:
经设计可知COD的去除率为93.6%, SS的去除率为90.4%,色度去除率为82%。
格栅 初沉池 调节池 混凝沉淀池 接触氧化池 二沉池 集泥井 污泥浓缩池 脱水间 泵房 污泥外运 出水
制革废水 毕业设计(论文)
- II - 经技术经济分析,此方案投资总额 457 万元,废水处理成本为1.53元/ m3,有着良好的经济效益和社会效益。且节约用地、提高绿化、降低能耗的理念在设计中得到充分的实践,符合新时代环保的要求。
关键词: 制革废水 混凝沉淀 接触氧化
Abstract The designing scale of waste water treatment plant is 3000 m3/d, the designing quality and quantity of water are: Q=3000m3/d ,COD=1800~3000mg/L , BOD=800~1200㎎/l ,PH=7.5~10 ,SS=700~1000 ㎎/l , Chroma =200~400 times. After disposing of it, the quality of water should attain the following standards: COD≤300mg/L,SS≤150mg/L,Chroma ≤ 80 times,BOD ≤100 mg/L ,reaching the second standard (GB8978-1996)of 《integrated wastewater discharge standard》. The designment of this project is in accordance with requirements of the environmental protection in the wastewater. It uses the contact oxidation process - coagulating sedimentation process to deal with the 毕业设计(论文) - III - wastewater in tanning industry. Based on comparison of the detailed program, we select the following processes: tannery wastewater →Grids→primary sedimentaion tank →balance pond→contact oxidation process→ coagulating sedimentation→secondary clarifier→Drainage sludge treatment process:enrichment→sludge dewatering→outbound logistics Through designing, we can know that the result of COD is 90.6%,ηSS is 90.4%, Chroma is 82%. After technical and economic analyzing, the investment amount of this project is 4.57million Yuan, and the cost of disposal of waste water is 1.53 Yuan/ m3. It not only gains good economic and social benefits, but also fully puts the ideas of saving land economically, improving virescence and reducing energy consuming into the practice while designing, which is in conformity with new era environmental needs.
KEY WORDS: tannery wastewater ,contact oxidation process,coagulating sedimentation 毕业设计(论文)
- IV - 目录 前 言 ................................................ 1 第一章 绪论 ......................................... 2 1.1 制革废水的产生及特点 .......................... 2 1.2 制革废水的水质及水量分析 ...................... 4 1.2.1不同工序排放的废水水质 .................... 4 1.2.2废水水量 .................................. 4 1.3 制革废水的危害 ................................ 5 1.4设计任务 ...................................... 6 1.4.1 本毕业设计课题的目的和要求 ............... 6 1.4.2本毕业设计课题的技术要求与数据 ............ 7 第二章 工艺流程确定 ................................. 8 2.1 制革废水概况 .................................. 8 2.2工艺流程比选、确定说明 ......................... 8 2.2.1方案设计原则 .............................. 8 2.2.2制革废水处理工艺 .......................... 9 2.2.3制革废水处理工艺组合 ..................... 10 2.3工艺方案分析选择: ........................... 10 2.3.1混凝沉淀法 ............................... 10 毕业设计(论文) - V - 2.3.2接触氧化法 ............................... 11 2.4达标分析 ..................................... 13 第三章 构筑物设计计算 .............................. 13 3.1进水渠道 ..................................... 13 3.2格栅 ......................................... 14 3.2.1 设计概述 ................................ 14 3.2.2 设计参数 ................................ 15 3.2.3 设计计算 ................................ 15 3.2.4 设计说明 ................................ 18 3.2.5格栅机的选型 ............................. 18 3.3初沉池 ....................................... 19 3.3.1各种沉淀池的比较 ......................... 19 3.3.2设计要点 ................................. 19 3.3.3设计计算 ................................. 23 3.4曝气调节池 ................................... 26 3.4.1调节池有效容积 ........................... 26 3.4.2调节池尺寸 ............................... 26 3.4.3空气管计算 ............................... 27 3.4.4孔眼计 ................................... 28 3.4.5 潜污泵 .................................. 28 3.4.6鼓风机 ................................... 29 3.5 混凝沉淀池 ................................... 29