催化裂化油浆的综合利用
- 格式:doc
- 大小:56.00 KB
- 文档页数:9
催化裂化在21世纪炼油工业中的地位和作用催化裂化是指将高分子碳氢化合物在催化剂的作用下裂解成低分子碳
氢化合物的一种化学反应,是炼油工业中重要的加工方式之一。
它的地位
和作用主要有以下几个方面。
1.催化裂化可以大幅提高油品的产率。
通过催化裂化,可以将重质油
转化成轻质油,从而使得单位原油的加工产出量增加,提高炼油厂的生产
效率和利润水平。
2.催化裂化可以改善油品的品质。
由于催化裂化可以降低油品的密度
和粘度,同时提高其抗爆性能和抗污染能力,因而可改善车用油品的使用
性能,提高市场竞争力。
3.催化裂化可以减少环境污染。
由于其加工过程相对较为简单和高效,因此在油品的生产过程中可以减少排放高污染物,降低炼油厂的环境压力。
4.催化裂化可以促进石油化工的发展。
催化裂化作为一种先进的石油
加工技术,对于石油化工行业的发展起着重要的推动作用。
同时,随着技
术的不断革新和发展,催化裂化还能够发掘更多可能性,为石油化工领域
的创新提供更多可能性。
催化裂化油浆脱固的方法与流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!催化裂化油浆脱固是指在催化裂化过程中,通过一系列物理和化学方法,从油浆中去除固体颗粒的过程。
催化催化裂化技术催化裂化技术是一种重要的炼油工艺,可以将重质石油馏分转化为高附加值的轻质产品。
本文将从催化裂化技术的原理、应用和发展前景等方面进行探讨,以期为读者提供对该技术的全面了解。
一、催化裂化技术的原理催化裂化技术是通过催化剂的作用将重质石油馏分分解为较轻的产品。
其主要原理是在高温和高压的条件下,将原料油与催化剂接触,使其发生裂化反应。
这种反应可以将长链烃分子裂解成短链烃分子,从而提高汽油和燃料油的产率。
催化裂化反应主要分为两个阶段:热裂化和催化裂化。
在热裂化阶段,原料油在高温下分解成烃气和液体烃。
然后,在催化剂的作用下,烃气和液体烃进一步反应,生成较轻的产品,如汽油、液化气和柴油等。
二、催化裂化技术的应用催化裂化技术在炼油行业中具有广泛的应用。
首先,它可以提高汽油的产率。
由于汽车的普及,对汽油的需求量不断增加。
催化裂化技术可以将重质石油馏分转化为轻质的汽油,从而满足市场需求。
催化裂化技术可以生产出高质量的柴油。
在催化裂化过程中,石油馏分中的硫、氮和金属等杂质可以得到有效去除,从而提高柴油的质量。
这对于减少柴油排放的污染物具有重要意义。
催化裂化技术还可以生产出液化气、石脑油和石化原料等产品。
这些产品在化工、冶金和化肥等行业中具有广泛的应用。
三、催化裂化技术的发展前景随着能源需求的增加和石油资源的日益枯竭,催化裂化技术在未来的发展前景十分广阔。
一方面,随着汽车工业的高速发展,对汽油的需求将持续增加,催化裂化技术将成为满足市场需求的重要手段。
另一方面,随着环境保护意识的提高,对燃料油质量的要求也越来越高。
催化裂化技术可以提高燃料油的质量,减少对环境的污染,因此在未来的发展中具有重要的作用。
随着科技的不断进步,催化剂的研发和改进也将推动催化裂化技术的发展。
新型的催化剂可以提高反应的选择性和活性,从而提高产品的产率和质量。
催化裂化技术作为一种重要的炼油工艺,在提高石油产品产率和质量方面具有重要的作用。
利用催化油浆生产沥青技术苏栋根(中石化长岭分公司信息技术管理中心)摘要:基质沥青生产质量的优劣和等级的高低在很大程度上取决于原油品种,国内对催化油浆的利用所做的研究工作较多,但利用催化油浆工业试生产及大批量生产沥青的案例很少,除生产工艺的成熟性因素外,很重要的一个因素是生产工艺的经济性问题。
催化油浆作为沥青调合组分主要解决两方面的问题,一是油浆中所含轻组分的经济利用问题,二是油浆中蜡含量高影响沥青的使用性能问题。
走油浆再次减压蒸馏工艺(增加拔头)可解决这两个问题。
国内炼厂同行的许多试验表明,催化油浆与减渣混合深拔后可直接生产普通道路沥青,油浆单独拔头后与硬质沥青组分调合可生产普通道路沥青和重交沥青。
关键词:催化油浆沥青调合1 前言在中石化总部支持和长炼的努力下,沥青产业已成为资产长岭分公司的主打产业,改性沥青和乳化沥青的生产规模、沥青新产品的开发都呈快速发展之势,并产生了可观的经济效益。
2008年长炼科技大会上,公司提出了催化油浆制沥青技术评议的计划,国内不少科研院所在此项技术的开发方面进行了许多工作,技术上取得了一定的进展。
基质沥青生产质量的优劣和等级的高低在很大程度上取决于原油品种,当然也可以通过后加工手段来提高质量和等级,只是经济上划不划算的问题。
中石化长岭分公司现加工的管输原油是中间—石蜡基原油,该混合原油是以胜利原油为主,同时掺合进口阿曼原油等。
生产石油沥青最好的油源为环烷基原油,其次为中间基原油,再次为石蜡基原油。
用中间一石蜡基原油生产石油沥青虽有较大难度,但通过改变生产工艺也可生产出合格的石油沥青产品。
催化油浆是催化裂化装置的副产品,长岭分公司两套催化装置年产油浆10万吨以上。
油浆的特点是密度高、氢含量低,残炭值高,主要由三环以上芳香烃组成。
利用催化油浆生产沥青技术一般来说要与减压渣油结合进行,催化油浆生产沥青有多种工艺路线,最常见的是溶剂脱沥青工艺,催化油浆与减压渣油混合后进溶剂脱沥青装置,所产脱沥青油进催化裂化装置,脱油沥青则是道路沥青的理想组分。
现阶段,在重质油轻质化主要采用催化裂化(FCC)的方式完成。
为了满足对轻质燃油的需求量,应适当提高原料中的掺渣比,一些装置直接加工常压渣油,还有些装置掺炼减压渣油。
在原料变重后,为FCC加工效果产生不良影响,尤其是结焦与结垢等装置常常运行困难。
对此,许多企业采用外甩油浆的方式缓解这一问题,并引入深加工技术促进油浆的高效利用。
一、FCC油浆产品加工工艺1.沉降技术该项工艺包括两种方式,一种是在高温状态下利用密度差异自然沉降,该工艺所用技术简单,运行成本较低,便于操作。
但因除渣效果不够理想,多应用于对灰分要求较低的预处理工艺中;另一种是采用沉降剂进行沉降,可促进油浆改质,当产品灰分达到某种要求后,便会产生针状焦、碳黑油等原料。
我国主要采用洛阳石化生产的FCC 油浆,在胺型沉降剂的促进下,使上层90%的油浆灰分均值从4560μm/g降低到743μm/g,脱灰分率可超过80%。
2.加氢技术该项技术主要是在特定氢压与催化作用下,使原料油与氢接触后发生反应,促进质量改变的过程。
通过该项技术的应用,可使大量高分子稠环芳烃与氢接触后达到饱和状态,促进油浆裂化性能提升。
在加氢处理后,油浆输入FCC设备之中不但可拓展原料渠道,还有助于增强产品质量与轻质油回收效率,促进催化剂活性延伸,使焦炭与气体收率得以降低。
3.延迟焦化技术该项技术是渣油热破坏加工的主要工艺之一,主要作用是从重质渣油中获取较多轻质油品,在当前国内外市场中得到广泛应用。
与以往的渣油加工技术相比,该项工艺操作较为简单、灵活性较强、加工效率高、投入较少且收益可观。
延迟焦化主要是将重质油为原料,在500℃的高温状态下深度缩合,从而生产出柴油、蜡油、汽油等产品。
该项技术的应用可有效缓解当前柴油与汽油的供需矛盾,与加氢技术相比,虽然在产品安定性方面存在劣势,但投入费用相对较少,仅为前者的50%,逐渐成为渣油轻质化的主要工艺之一。
二、FCC油浆产品的市场应用油浆分离后的产品适应于多个领域,如PVC增塑剂、橡胶软化剂、导热油等等,具有价格低廉、品质良好等特点,拥有庞大的市场需求,发展前景十分可观,各类产品的市场应用情况具体如下。
第二部分基础理论知识第二章炼油催化裂化理论知识2.1概述2.1.1催化裂化发展过程1938年4月6日年世界上第一套固定床催化裂化工业化装置问世,这是炼油工艺的重大发展,然而它存在一系列无法克服的缺点:设备结构复杂,操作繁琐,控制困难。
要克服固定床的缺点,需要两项革新,即催化剂在反应和再生操作之间循环和减小催化剂的粒径。
第一项革新结果出现了移动床,两项革新的结合得到了流化床。
本世纪40年代相继出现了移动床催化裂化和流化床催化裂化装置。
60年代中期出现的分子筛型催化剂带来了重大突破,成为催化技术发展的里程碑。
我国第一套移动床催化裂化装置是由前苏联设计并于1958年投产的。
1964年建成第二套,以后我国自己开发了流化催化裂化装置,故以后移动床催化裂化装置就不再建设了,这两套移动床催化裂化装置也于80年代改为流化催化裂化装置。
我国流化催化裂化的发展始于60年代,1965年5月5日,我国第一套0.6Mt /a同高并列式流化催化裂化装置在抚顺石油二厂建成投产,标志着我国炼油工业进入一个新阶段。
30多年来,我国流化催化裂化在炼油工业中一直处于重要地位,目前仍在发展。
到1993年底统计我国催化裂化装置的能力为5000余万吨/年,仅次于美国,位居世界第二。
随着石油资源的短缺和原油日趋变重,流化催化裂化在加工重质原料方面也取得了进展。
催化裂化掺炼渣油,提高轻质油收率最为显著,我国经过“六五”重大技术攻关,攻克了再生器的内外取热设施,渣油雾化技术,提升管出口快速分离技术,抗重金属污染催化剂等一系列技术难关。
目前,我国渣油催化裂化技术已发展成多种形式,有带内外取热的单段再生,不带取热的两段再生,带外取热的两段再生等。
到1993年底,石化总公司50套催化裂化装置,已有33套掺炼了渣油,掺炼量达到919万吨,渣油掺炼比达到了24.38%,已成为我国重要的渣油转化装置对提高轻质油收率,增加经济效益,起到非常重要的作用。
尽管催化裂化装置具有漫长的历史,但他远非一个完整的技术。
渣油加氢处理-催化裂化双向组合(RICP)技术中国石化石油化工科学硏究院开发的渣油加氢-催化裂化双向组合(RICP)技术是将催化裂化装置中回炼的重循环油(HCO)掺入渣油加氢原料中,作为渣油加氢原料的稀释油,和渣油一起加氢后作为催化裂化原料。
RICP技术对渣油加氢和催化裂化两套装置均有改善效果:对渣油加氢装置,高芳香性的HCO促进了渣油加氢反应;对催化裂化装置,因HCO加氢后再作为催化裂化原料,轻油收率可提高1~3百分点,焦炭收率下降。
本技术已获授权专利13件。
♦RICP技术将传统工艺中RFCC装置原本自身回炼的HCO改为输送到渣油加氢装置,和渣油一起加氢后再作为RFCC原料。
高芳香性的HCO掺入到渣油加氢原料中,促进了渣油加氢反应并抑制了渣油加氢催化剂结焦;加氢后的HCO再回催化裂化装置作为原料,提高了催化裂化处理量和轻油收率。
♦通过改变HCO抽出位置并增设精密过滤器除去HCO中催化剂颗粒,避免了HCO中催化剂颗粒对渣油加氢装置的影响。
♦装置改造费用低,工业上易实施。
氢气减压渣油固定床渣油加氢>350°C加氢渣油渣油催化裂化―干气―液化气―汽油―柴油HCO▲RICP技术工艺流程示意4气体»石脑油»柴油4油浆主要技术指标:♦渣油加氢装置进料中可掺入5%〜30%的HCO作为稀释油,相应可顶替同样比例的直馏蜡油。
♦RICP技术与常规渣油加氢-重油催化裂化组合工艺相比,催化裂化装置处理能力可提高4%〜5%,轻质油收率增加1〜3百分点,油浆产率下降1〜3百分点,焦炭产率降低0.1〜0.5百分点。
▲中国石化齐鲁分公司1.5Mt/a年渣油加氢和0.8Mt/a催化裂化装置与传统的渣油加氢-催化裂化单向组合技术(现有技术)相比,RICP技术的轻油收率高1〜3百分点,催化裂化处理量和掺渣量也有所提高,因此具有更高的经济和社会效益。
RICP技术于2006年5月在中国石化齐鲁分公司1.5Mt/a渣油加氢装置和0.8Mt/a催化裂化装置进行了工业应用试验。
石油催化裂化技术的原理和应用石油催化裂化技术是炼油行业中一项重要的工艺技术,它通过催化剂的作用将重质石油馏分转化为轻质产品,具有广泛的应用价值。
本文将从原理和应用两个方面来探讨石油催化裂化技术。
一、原理石油催化裂化技术的原理是通过将重质石油馏分与催化剂接触,在适宜的温度和压力条件下,进行化学反应,将长链烃转化为较短的烃链。
这一过程主要包括裂化和重整两个步骤。
裂化是指将长链烷烃分子断裂为较短的碳链烃分子,主要通过催化剂的酸性中心吸附和吸热裂化的方式进行。
在裂化过程中,催化剂的酸性中心能够提供活性吸附位,吸附长链烷烃分子,并将其断裂为较短碳链。
裂化反应生成的低碳数烷烃则被释放出来,形成轻质产品。
重整是指将低碳数烷烃进一步转化为稳定的芳烃化合物,提高汽油辛烷值。
重整反应通过催化剂的酸中心和金属中心的协同作用来进行,将低碳烷烃分子进行重排和重构,生成含有苯、甲苯和二甲苯等芳烃分子,提高汽油的辛烷值,并使其具备较高的抗爆震性能。
二、应用石油催化裂化技术在炼油行业有着广泛的应用,主要体现在以下几个方面:1. 生产高辛烷值汽油:催化裂化技术可以将重质石油馏分中的长链烷烃分子分解为较短的烷烃,使得产生的汽油具有较高的辛烷值,提高了汽油的质量和性能。
2. 产生丙烯等化工原料:催化裂化技术可以将重质石油馏分中的部分烷烃分子转化为丙烯等化工原料,具有重要的经济价值和应用前景。
3. 减少重质燃料的生产:石油催化裂化技术能够将重质石油馏分转化为轻质产品,减少了重质燃料(如柴油和燃油)的生产,从而提高了石油产品的利用效率。
4. 生产石化装置的补充燃料:催化裂化技术还可以生产具有较高热值的低碳数烷烃,作为石化装置的补充燃料,提高了整个炼油过程的能量利用效率。
总而言之,石油催化裂化技术的原理和应用具有重要的意义。
通过催化剂的作用,将重质石油馏分转化为轻质产品,既提高了石油产品的质量,又降低了能源消耗和环境污染,具有广阔的发展前景。
裂解C5、C9馏分的综合利用付宗燕摘要:来自裂解乙烯的C5、C9馏分含有非常有用的化工原料——异戊二烯、环戊二烯、戊间二烯。
它们可以用来合成许多高附加值的产品。
介绍了全球C5馏分综合利用的现状、市场和需求,以及C5、C9馏分综合利用的新动向。
关键词:C5馏分,异戊二烯,环戊二烯,戊间二烯,综合利用,市场,商机去年9月扬子石化65万吨乙烯改造工程全面建成投产,从而使我国的乙烯年生产能力达到了500多万吨。
如何利用好乙烯生产中的副产物,再次引起了人们的关注。
乙烯由石油烃类原料裂解而成,在裂解的过程中,会产生一系列副产物。
副产物在裂解产品中占了相当大的比重。
以柴油裂解为例,乙烯收率约为25%,副产物则为75%。
当然副产物中有丙烯、丁二烯等,一般把它们称之为乙烯的联产品,已经成为合成树脂、合成橡胶的重要原料。
但还有一些副产物,如C5在我国的综合利用率目前还不到20%,有相当一部分作为燃料白白烧掉了。
C5实际上是一种宝贵的资源,可以通过它生产一系列高附加值的化工产品,从而降低乙烯生产成本,提高企业的经济效益和竞争力。
由于C5潜在的经济价值及广阔的发展前景,其开发利用已引起世界各国的普遍关注,并进行了大量的研究开发工作。
日本是C5综合利用最好的国家,特别是在开发C5系列精细化学品方面更为显著。
他们将C5馏分的80%~85%用于分离异戊二烯,然后再将其用于生产合成橡胶和香料、化妆品、药品、杀虫剂。
他们还将C5馏分分离后用于生产石油树脂,制造路标漆、热熔胶、印刷油墨和橡胶增黏剂等。
瑞翁公司是日本C5综合利用的典型代表,其C5利用率达80%以上,是世界上C5利用率最高的企业。
1995年,该公司开发的各类C5下游产品年销售额达1.9亿美元,5年后的2000年这一数字翻了三翻,占该公司总销售额的37%。
根据市场的需求,该公司已投资220亿日元用于C5产品主要生产装置能力的扩大及其新型制品的生产,加强其C5化学在世界上的领先地位。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
利用催化油浆制沥青技术研究摘要催化裂化作为主要的重油加工技术在石油加工中的地位十分重要,催化油浆的有效合理利用是一个迫切需要解决的问题。
结合催化油浆富含芳香分和胶质的特点,对催化油浆和渣油经一定处理生产优质道路沥青的技术方案进行了研究。
结果表明,通过共混切割可明显降低原料性质变化对沥青性质的影响,选取适宜的油浆掺兑比、交联剂和增延剂的种类和添加量、工艺条件等,可以获得优质道路沥青。
关键词节能技术沥青催化油浆交联催化裂化(FCC)是当前重质油轻质化的主要炼制过程之一。
近10年来, FCC工艺和催化剂的研究取得了巨大进展。
由于原料变重,使装置的结焦和结垢加重,装置难以正常运行。
目前,对催化油浆主要采用2种处理方法:(1)全部或部分回炼,回炼比为0.3~0.7;(2)甩出装置,即外甩油浆,外甩量为原料油的5%~12%。
由于FCC油浆含有大量稠环芳烃,将其循环回炼将导致生焦,并污染催化剂,故许多炼厂采用后一种方法,即外甩油浆法。
甩出油浆有的作为废油以低价卖掉,有的则作为燃料烧掉,造成了很大的浪费。
也有炼厂将外甩油浆作为燃料油的调和油,但这种利用方法不仅损失了占甩出量40%~60%的FCC原料油,而且还会使炉嘴产生磨蚀和结焦[1]。
因此,利用FCC油浆开发高附加值的产品具有重大意义。
随着我国道路建设的加快,对高度级道路沥青的需求量大增。
国外优质沥青中芳香烃的质量分数一般为40%~55%,蜡质量分数小于3.0%。
我国原油80%以上为石蜡基原油,不宜生产高等级沥青。
因此,利用炼厂FCC油浆这一贫蜡富芳组分作改性剂,生产高等级道路沥青的研究十分活跃[2,3]。
但是,现有研究对催化油浆的利用率较低,一般作为少量组分调合[4,5]。
公司每年外甩油浆10万吨,主要作为燃料油出售,对本已紧缺的石油资源来说是一种巨大的浪费。
因此,研究以催化油浆为主要原料生产道路沥青具有十分重大的经济意义和社会意义。
本研究利用强化蒸馏即把催化油浆(强化剂)加入渣油中,再进行减压蒸馏,将饱和的、对沥青质量不利的组分蒸出,而将对沥青有利的组分留在沥青中,添加一定量的交联剂、增延剂,生产出优质沥青。
催化裂化油浆中存在饱和烃的原因综述周翔【摘要】催化裂化油浆是催化裂化过程中沸点大于350℃的未转化烃类,大部分催化裂化油浆中含有大量的饱和烃,接近或者超过原料油中饱和烃的组成,而且大部分是正构烷烃,因此这部分饱和烃是很好的裂化原料.探讨了部分能继续裂化的饱和烃类在催化裂化过程中未充分转化的原因:正构烷烃难以裂化、催化剂表面酸性中心数量和强度的影响、催化剂孔道扩散的限制,竞争吸附的影响,烃类之间的转化等.其中烃类转化的影响还需要实验和理论分析来证明.%The FCC slurry is the unconverted hydrocarbons with boiling point higher than 350 ℃.Most of FCC slurry contains large amount of saturated hydrocarbons,which are close to or exceed the saturated hydrocarbon compositions in the feedstock.Whereas,most of saturated hydrocarbons are normal alkanes,which are the good feedstock of FCCU.The causes of imcomplete conversion of saturated hydrocarbons in FCC process are studied,i.e.the impact of acid on FCC catalyst surfaces,the limitation of catalyst pore dissipation,impact of competitive absorption,and conversion between hydrocarbons.The impacts of other types of hydrocarbons need to be verified by testing and theoretical analysis.【期刊名称】《炼油技术与工程》【年(卷),期】2018(048)001【总页数】5页(P7-11)【关键词】催化裂化油浆;饱和烃;裂化原料;转化;述评【作者】周翔【作者单位】中国石化石油化工科学研究院,北京市100083【正文语种】中文催化裂化油浆是催化裂化过程中沸点大于350 ℃的未转化烃类,其组成特点是稠环芳烃含量较高,其各组分质量分数的一般范围:饱和烃30%~50%,芳烃50%~60%,胶质和沥青质不超过10%。
催化裂化油浆选择性加氢制备环保型芳烃橡胶油大部分炼油厂将FCC油浆与原料掺炼,但FCC油浆中含有大量中芳烃类化合物且最难裂化,故反应产物中稠环芳烃和胶质等越来越多。
国内炼厂都采取外甩部分油浆(5-10%)的措施,我国每年排放油浆总量达1000万吨左右。
油浆中大约含50%饱和烃,40%芳烃和稠环芳烃,10%胶质和沥青质,若将其有效地分离,进行深度加工,可以发挥巨大的经济效益.饱和烃是优质的催化裂化原料,芳烃、胶质、沥青质等是生产炭黑、针状焦、重质道路沥青、橡胶填充油、导热油等的优质原料。
我国目前使用的橡胶油, 主要有石蜡基、芳香基和环烷基橡胶油。
芳烃油( DAE ) 作为轮胎和某些非轮胎橡胶制品被广泛使用, 因为与橡胶的相容性良好, 可赋予轮胎良好的抗湿滑性能、耐磨性能和使用寿命。
2003年以前全世界DAE 消耗量为100 万t /年。
1环保芳烃油的含义使用的传统芳烃油(DAE)含有大量稠环芳烃(也叫多环芳烃),由于芳烃油的带入,轮胎和橡胶制品中或多或少含有稠环芳烃。
苯并芘(BaP)是一种典型的稠环芳烃,其已被毒性、生态毒性及环境科学委员会(CSTEE)科学证实具有致癌性、致突变性及生殖系统毒害性。
西方发达国家纷纷采取一系列措施减少稠环芳烃排放以降低其对人类健康和环境的危害。
在此形势下,欧洲轮胎工业贸易组织(BLIC)与国际合成橡胶生产者学会(IISRP)共同宣布将在轮胎中使用无毒性的芳烃油替代油品。
并对芳烃油替代油品要求如下:(1)替代油品稠环芳烃(PCA)含量(二甲基亚砜萃取法 IP346)< 3%;(2)替代油品单个稠环芳烃的含量要求小于10ppm;(3)替代油品中所有稠环芳烃含量小于50ppm;(4)油品的诱变指数 (ASTM E1687) <1;以上可以认为是环保芳烃油的官方要求和定义。
2 国内外环保芳烃油的开发情况2.1国外现状目前国内符合欧盟2005/69/EC规定的橡胶填充油完全依赖进口,价格昂贵。
催化裂化油浆的综合利用 谢立国 广东石油化工学院,广东 茂名 摘要:目前,催化油浆主要作为廉价的燃料油出厂,造成了这一宝贵资源的浪费。催化油浆作为催化裂化过程的副产物,其组成上的特点使之在某些特定的情况下具有较高的利用价值。对其进行开发利用,提高附加值,可以给炼油厂带来良好的经济效益。本文就催化裂化油浆的特点,分离,加工组合技术,以及其综合利用方式进行简单的阐述。 关键词:催化裂化油浆,分离,加工组合,应用 At present, the catalytic slurry oil mainly as a cheap fuel oil factory, cause the waste of valuable resources. Catalytic slurry oil as a catalytic cracking process by-products, the composition of the characteristics in some specific cases has high value in use. The development and utilization, improve the added value, can give oil refinery to bring good economic benefits. In this paper the characteristics of catalytic cracking slurry oil, separation, processing combination technology, and its comprehensive utilization ways of simple paper. Keywords: catalytic cracking slurry oil, separation, processing combination, application
引言 国外催化裂化装置主要用于生产汽油和液化气,一般不生产柴油,柴油和比柴油重 的馏分都作为燃料油出装置。我国催化裂化工艺是生产液化气、汽油和柴油的重要过程, 因此存在油浆的综合利用问题。 据统计,催化油浆产量一般占催化裂化处理量的 5% 10%,我国催化裂化油浆产 量现已达 7.5Mt/a。在催化原料日益重质化和劣质化的大背景之下,油浆的产量必然增 加。目前,催化油浆主要作为燃料油出厂,这种方案虽然可以有效解决油浆的出路问题, 但它对油浆这一宝贵资源的利用率低,不是油浆利用的最佳方案。在当前炼油的利润越 来越薄的情况下,催化油浆作为剩下的为数不多的―潜力股,探索其高附加值利用,对 提高催化装置的经济性具有重要意义。
1.催化裂化油浆的特点和分离技术 油浆是催化裂化的一种低附加值产品, 其稠环芳烃和胶质的含量高, 回炼过程中难裂化, 易生焦。目前主要作为燃料油的调和组分或用来掺入焦化原料, 但由于其含有少量的固体催化剂颗粒, 会对燃料油和焦炭的质量带来不利的影响。因此, 外甩 FCC油浆的处理和综合利用成为炼油厂急需解决的关键问题。 1.1催化油浆中催化剂粉末的分离 催化油浆中含有大量催化剂粉末,这些固体颗粒物会对油浆深加工产品和下游设备造成严重的影响,不利于油浆的综合利用。因此,使用前脱除固体催化剂粉末是催化油浆利用的必要性工作。脱除催化油浆中催化剂粉末的方法主要有五种:自然沉降法、离心分离法、静电分离法、过滤分离法和沉降助剂法。自然沉降法仅靠重力沉降,分离时间长,效率低,净化效果不高,难以在工业上大规模应用。离心分离法虽然可获得良好的分离效果,但不便于操作维护,处理量不大,尚无工业应用实例。静电分离法在国外用的很多,分离效率高,处理量大;缺点是设备投资大,操作费用高。过滤分离法净化效果稳定,操作费用不高,在工业应用中比较成功,但也存在装置投资较高等缺点。沉降助剂法分离效率高,成本低,经济效 益可观,目前国内正积极进行该法的研究。 1.2催化裂化油浆的组成和性质 要解决催化油浆的利用问题,首先要深入认识油浆的物理性质、化学组成特点及其分布规律。目前普遍采用实沸点蒸馏与超临界流体萃取分馏(SFEF)结合的方法,将催化油浆切割成多段窄馏分,进而深入了解催化油浆的物理性质、化学组成及其分布规律,并在这基础上开展了油浆的石油化工利用研究。SFEF[4]可以有效分离蒸馏残油,其分离原理是利用轻烃溶剂在临界状态下的溶解特性,将各类重质油进行有效的分馏,其平均沸点的预测值最高可达 850℃,SFEF 得到的数据与常规实沸点蒸馏数据结合,可以得到完整的实沸点蒸馏数据。 利用四组分分析法将油浆各段窄馏分分离成饱和分、芳香分、胶质和沥青质,然后用色谱-质谱分析窄馏分中饱和分、芳香分的各类化合物分布。文献研究表明[5],油浆含有 30~50%的饱和分,其中以环烷烃为主。且饱和分的分布有一定规律:环烷烃含量随馏出率的增加而迅速增加,链烷烃含量减少;绝大部分窄馏分中环烷烃的含量超过60%,超临界流体萃取馏分的环烷烃含量几乎都在 70%以上。油浆含有大量的芳香分,其中一环、二环芳烃含量相对较少,三、四环芳烃含量较多,并且芳烃侧链少且短。窄馏分中芳烃的分布规律为:随着馏出率的增加,一环、二环、三环芳烃的含量迅速下降,四环、五环芳烃和未鉴定芳烃的含量上升。 油浆的芳烃含量与催化原料的性质和转化率有关。相同条件下,石蜡基原油的减压馏分油或渣油进行催化裂化,油浆的芳香分含量就低。如加工大庆原油的催化油浆,芳香分可低至 35%左右。而催化装置加工的若是中间基或环烷基原油的减压馏分油或渣油,则油浆中的芳香分就要高得多。如加工环烷基原油的沙特原油,催化油浆的芳香分含量高达 67%。另外,随着催化裂化原料转化率的提高,油浆的密度、芳香分的含量都会升高。 总的来说,催化油浆密度大(1g/cm3左右),H/C 低(1.3 左右),相对分子量小(300 400 之间),芳烃、饱和烃含量高,胶质沥青质含量低,残碳值低,以及金属含量低等特点。 由上面的性质分析得出,油浆的利用可分为两部分,一是富饱和分进行催化裂化反应,二是富芳香分用于生产高附加值的芳香类产品。 近年来,针对油浆的组成特点,其利用技术归纳起来主要集中在两方面,一是将催化裂化和炼油厂中不同的工艺相结合,达到既改善加工工艺及产品的性质,又有效利用油浆的目的。另一方面主要集中在利用油浆生产不同的石油化工产品,如橡胶软化剂,导热油等。对油浆进行开发利用,可以给炼油厂带来良好的经济效益。
2催化裂化油浆加工组合工艺技术 目前国内外主要有以下催化油浆加工组合工艺技术。
2.1催化裂化-溶剂脱沥青组合工艺 催化裂化-溶剂脱沥青组合工艺,将催化油浆掺入减压渣油进行溶剂脱沥青,油浆中可裂化的组分进入脱沥青油中,脱沥青油然后返回到催化裂化装置;油浆中的稠环芳烃进入脱油沥青。此组合工艺一方面可以解决催化裂化原料不足的问题;另一方面可以提高脱油沥青的产率,并且可以改善其质量。 该组合工艺最大的优点是可以直接利用炼油厂现有的催化裂化、溶剂脱沥青装置,通过优化组合直接实施。近年来由于催化裂化掺渣率大幅度提高,作为溶剂脱沥青装置的减压渣油大大减少,采用此组合工艺将催化油浆作为溶剂脱沥青的进料,不仅扩大了溶剂脱沥青装置原料的来源,而且增加了 FCC 原料的来源,提高了催化裂化装置的处理量和轻质油收率。 国内多个炼油厂都采用了催化裂化-溶剂脱沥青组合工艺,江汉-阿曼混合原油[8]减压渣油中掺兑 30wt%的 FCC 油浆后,降低了脱油沥青的石蜡含量,明显改善了脱油沥青的低温延度,脱油沥青的各项性能均能满足 AH-70 或 AH-90 重交道路沥青标准。 2.2催化裂化-延迟焦化组合工艺 催化油浆含有大量稠环芳烃,难裂化的稠环芳烃是生焦的前躯体,是生产优质焦炭的理想组分。采用催化裂化-延迟焦化组合工艺,焦化装置掺炼催化油浆,可使高度缩合的稠环芳烃缩合为焦炭,增加焦炭的收率;而油浆中的低分子芳烃(主要为一环、二环芳烃)及饱和烃则进入焦化蜡油(CGO),CGO 直接掺入或经加氢后掺入催化原料中,不仅可以增加催化裂化原料的来源,而且可以提高催化裂化的生产能力和轻质油收率。焦化蜡油[9]中含有较多的芳烃、胶质和氮化物,其中碱性氮化物的危害最大。反应中碱性氮化物优先吸附催化剂,极易造成催化剂失活,使转化率降低,并严重影响产品分布。因此一般 CGO 需经加氢精制后才会明显改善催化产品分布和产品质量。因加氢消耗大量的氢气,增加了生产成本,使用范围有限。 针对催化裂化-延迟焦化组合工艺,石油化工科学研究院(RIPP)开发了吸附转化加工焦化蜡油(DNCC) 技术[10-11],该技术的特点是焦化蜡油与重油催化裂化原料油分开进入提升管反应器的不同部位,实现原料油和焦化蜡油按先后次序依次吸附裂化。DNCC 工艺降低了焦化蜡油中碱性氮对再生剂酸中心的毒害,同时焦化蜡油还起到了急冷油的作用,减少了热裂化反应和不必要的二次反应。可明显改善产品分布,提高轻质油收率,焦化蜡油、催化油浆可以得到合理的利用。此工艺解决了焦化蜡油加氢成本高、氢耗大的问题,降低了炼厂能耗,提高了效益。 2.3催化裂化-溶剂抽提组合工艺 催化裂化-溶剂抽提组合工艺利用溶剂对重质芳烃、胶质和沥青质有较强的溶解能力,使油浆中的烷烃与重质稠环芳烃得以分离。富含烷烃的抽余油是催化裂化的优质原料,可返回催化裂化装置;富含重芳烃的抽出油可根据其性质开发生产各类石油化工产品。抽余油[12]的残炭、S、N 以及 Ni、V 等重金属含量低于新鲜的催化原料,其 H/C 高于新鲜原料,使得催化原料的性质得以改善。由于催化裂化原料重质化、劣质化越来越严重,油浆中的稠环芳烃、胶质含量将越来越高,因此对抽出油的化工利用的困难也越来越大,重质芳烃的利用问题成为该技术推广的主要制约因素。目前,对于日益重质化的催化油浆,富含重芳烃的抽出油最常采用的方案是用在道路沥青的生产和改质上。 2.4催化裂化-加氢处理组合工艺 通过加氢处理对催化油浆进行脱硫、脱氮和脱金属杂原子,提高了 H/C,改善了其作为催化裂化原料的可裂化性,从而提高 RFCC 的转化率和改善了产品分布。 RIPP 研究结果表明[13]:将减压渣油与催化油浆按一定比例混合进行加氢处理,再经催化裂化装置,液体产品(液化气+汽油+柴油)提高了 3% 5%,FCC 重油收率降低了 2% 3%,焦炭产率降低了 1.5%。
3生产石油化工产品 通过溶剂抽提可以获得富含重质芳烃的抽出油,再经过进一步的深加工精制,可以制得高附加值产品,从而使油浆得到充分的利用。其生产石油化工产品归结起来主要有以下几个方面。