少片变截面钢板弹簧的疲劳寿命计算分析
- 格式:pdf
- 大小:179.80 KB
- 文档页数:2
汽车钢板弹簧疲劳试验规程研究邹辅平〔市空港开发区鼎森机械制造〕就目前而言,在中国的汽车钢板弹簧行业,对钢板弹簧的使用寿命性能指标的衡量,都是采用台架疲劳试验机来进展来进展检测的,其唯一参考的国家标准是?GB/T 19844-2005? 钢板弹簧。
这个标准里面疲劳试验的规要求很粗放,而实际上,对于不同的试验者由于对标准的理解不同,会存在试验规程上的差异,还有试验设备的不同,都会对试验结果带来误差,其最终结果是:对同一产品的评价,会产生不同的结果!为了施行统一的钢板弹簧疲劳寿命检验标准,就应从如下几个方面进展分析,统一思想,形成规,以确保对钢板弹簧产品疲劳寿命的准确评价。
一、?GB/T 19844-2005? 钢板弹簧标准中的误区和盲点在4.6条中对疲劳寿命技术指标的描述中写到“在应力幅为323.62Mpa(3300kgf/cm²)、最大应力为833.5Mpa〔8500kgf/cm²〕的试验条件下,钢板弹簧的疲劳寿命应不小于8万次〞在这个表述中对试验条件一带而过,为此,该标准就增加了一个“附录A〔规性附录〕汽车用钢板弹簧台架试验方法〞。
即便如此,该标准对钢板弹簧的试验规的规定仍然存在如下忙点:1、在计算钢板弹簧的比应力时,如何规弹性模量E的取值?对于双槽钢材料截面而言,如何计算根部断面系数和惯性矩?由于大家的理解和认识的不同,计算出来的比应力值就会有差异,最后所得到的预加变形量和振幅就会不同,试验结果就会出现差异。
2、试验脉动频率未做规定,这显然会带来试验频率越高,试验结果越差,反之,频率越低,疲劳寿命就会越长,其结果是不能够真实的反映客观实际。
3、原标准中仅仅只对产品的试验温升不能超过150℃做出了规定,而没有对如何统一降温措施和方法做出规定,就会使得150℃这个参数形同虚设,因为,在实际操作过程中,根本没方法直接测出产品片间的实际温度。
另一方面,风冷与水冷的效果是会有很大差异的,因此,看似有规定的试验,如果采取了不同的降温措施,所得到的试验结果也是会有所不同的。
第28卷,第1期 中国铁道科学Vol 128No 11 2007年1月 C HINA RA IL WA Y SCIENCEJ anuary ,2007 文章编号:100124632(2007)0120071205新型货车转向架变刚度弹簧组的试验寿命估算及疲劳强度分析王 红,商跃进,孟广浦(兰州交通大学机电工程学院,甘肃兰州 730070) 摘 要:针对运用中偶有发生的转K2型、转K4型、转K6型3种货车转向架变刚度弹簧组的断簧问题进行计算分析。
试验载荷下的寿命估算表明:质量完好的这3种转向架变刚度弹簧组的各型弹簧的疲劳寿命均可达到3×106次;其中,转K2型转向架的减振内簧、转K4型转向架的减振外簧、转K6型转向架的承载外簧在对应的弹簧组中相对寿命较短。
疲劳校核表明:转K2型、转K6型转向架各型弹簧能基本满足疲劳强度要求,校核结果与寿命估算所得的结果一致;转K4型转向架弹簧的校核结果与其所采用的试验方案有关系,现行试验方案下,校核所得的转K4型转向架减振外簧的疲劳强度相对最弱。
分析认为,应该修正减振内簧的设计参数,从设计源头消除失稳及由此引发的其他问题;个别弹簧出现折断质量问题,主要原因是弹簧钢材质不够稳定,材料与产品的热处理工艺匹配不够完善。
建议立项研究60Si2CrVA T 材料的基础性能参数。
关键词:变刚度弹簧;试验寿命;疲劳强度;转向架;分析 中图分类号:U2721041;U2701331 文献标识码:A 收稿日期:2006202227;修订日期:2006208225 基金项目:国家自然科学基金资助项目(50675092);甘肃省中青年科技基金资助项目(3ZS0412A252004) 作者简介:王 红(1968—),男,青海乐都人,副教授。
为满足我国铁路货车提速和重载的要求,近年来,国内相关车辆工厂先后设计制造了运行速度为120km ・h -1的转K2型、转K4型、转K6型3种技术性能先进的新型货车转向架。
钢结构的疲劳寿命和评估疲劳是指物体在周期性加载下的循环应力作用下逐渐累积损伤的现象。
钢结构广泛应用于建筑、桥梁、船舶等领域,而对于钢结构的疲劳寿命和评估,对于保障结构的安全性和可靠性具有重要意义。
一、疲劳寿命的含义和评估方法疲劳寿命是指钢结构在不断受到循环应力作用下,能够保持结构完整性和性能的时间。
钢结构的疲劳寿命评估方法目前主要有试验方法和计算方法两种。
试验方法是通过搭建实验模型,给予不同频率和幅值的循环载荷加载,测量应变和应力的变化,然后评估结构的疲劳寿命。
试验方法的优势在于可直接观测和测量结构变形和受力情况,但其劣势是成本高昂且耗时较长。
计算方法是通过使用疲劳寿命的评估公式来预测结构的寿命。
常用的评估公式包括极限应力幅值公式、应力周期计数公式和应变幅值公式。
计算方法的优势在于成本较低且速度较快,但其劣势是需要可靠的材料性能数据和较为精确的工况分析。
二、影响钢结构疲劳寿命的因素1.循环载荷频率和幅值:循环载荷频率和幅值是影响钢结构疲劳寿命的重要因素。
载荷频率越高、幅值越大,结构的疲劳寿命就越短。
2.材料的疲劳性能:不同的钢材具有不同的疲劳寿命。
一般情况下,高强度钢材的疲劳寿命较短,而低强度钢材的疲劳寿命较长。
3.构件的形状和尺寸:构件的形状和尺寸对钢结构的疲劳寿命也有一定影响。
一般情况下,形状复杂的构件疲劳寿命相对较短,而较为简单的构件疲劳寿命相对较长。
三、钢结构疲劳寿命评估的重要性评估钢结构的疲劳寿命对于工程设计、结构检测和维护具有重要意义。
1.工程设计:在钢结构的设计阶段,进行疲劳寿命评估可以帮助工程师合理选择材料,优化结构形式和尺寸,预测结构的疲劳损伤,从而提高工程的安全性和可靠性。
2.结构检测:定期对钢结构进行疲劳寿命评估可以帮助监测结构的健康状况,及时发现潜在的疲劳问题,采取相应的维修和保养措施,延长结构的使用寿命。
3.维护管理:钢结构的疲劳寿命评估结果可以作为维护管理的依据,合理安排维修和保养周期,提高维护管理的效益和准确性。
公司网址: 电子邮箱:4612757@1为减轻整车重量,使车辆轻量化,改善汽车的平顺性,作为汽车钢板弹簧易损件来说,是实现车辆轻量化的一个不可忽视的零件。
因此,目前国内许多汽车越来越多地开始采用由一片或几片纵向变厚断面弹簧组成的少片弹簧。
(见图一)图一现就宽度不变的抛物线叶片弹簧和梯形变厚叶片弹簧的刚度及其有关应力的计算介绍如下:一、抛物线叶片弹簧(见图二)1、等应力梁实际上抛物线叶片弹簧是一种等应力梁少片变厚断面钢板弹簧的设计公司网址: 电子邮箱:4612757@2设弹簧端部的载荷为P ,弹簧宽度为B ,那么弹簧中央部位A —A 处的应力бA 则为:бA=6P e /Bh 〈1〉弹簧在任一截面ex 处的应力бx 则为:бx=6Pe x /Bh x 〈2〉因弹簧是等应力梁,所以弹簧在任一截面处的应力均相等,由公式:〈1〉和公式〈2〉相等条件得到:hx=h (ex/e ) 〈3〉由上式可看出,欲使弹簧在各截面处的应力相等。
叶片弹簧各点厚度必须沿长度×方向做成抛物线形状。
实际上,理想的抛物线弹簧是无法使用的,这种弹簧在端部不能承受剪应力,卷耳端部强度差,加工难。
所以考虑卷耳端部的强度和弹簧中部实际装车夹紧状况,抛物线叶片弹簧应制成如下:见图三2221公司网址: 电子邮箱:4612757@3图三图中:A 、B 、C 、D 部份弹簧厚度不变,而B 、C 、O 部份弹簧厚度按抛物线变化。
2、抛物线叶片弹簧的刚度: 弹簧在任一截面处的惯性矩分别是 在(O —e 1)范围内J 1为常数 J 1= 式中:n 弹簧片数在(e 1e 2)范围内,断面惯性矩J 2为X 的函数。
J 2= 由公式〈3〉得:J 2= ×( )×n 在(e 2 e 1)范围内,J 3为常数。
J 3= 由于在不同长度范围内惯性矩J 值不同,经整理后刚度值为: C= · ·a式中a 断面修正系数,通常取0.9结论:事实上,抛物线叶片弹簧,在现实的汽车钢板弹簧3 3 3 231 12 ×n ×nBh 1╳nxBh 12 32Bh 12e xe 3 2Bh6E J 3 e (1+( )·K ) e 2 e 3公司网址: 电子邮箱:4612757@4加工中,不能付诸实现,因此较多地采用的是梯形变厚断面代替抛物线变化的梁。
1.1单个钢板弹簧的载荷已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷:Fw1=(G1-Gu1)/2=1357.5 kg (1)进而得到:Pw1=Fw1×9.8=13303.5 N (2)1.2钢板弹簧的静挠度钢板弹簧的静挠度即静载荷下钢板弹簧的变形。
前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。
为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。
此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。
但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。
此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。
一般汽车弹簧的静挠度值通常如表1[2]所列范围内。
本方案中选取fc1=80 mm。
1.3钢板弹簧的满载弧高满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。
当H0=0时,钢板弹簧在对称位置上工作。
考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。
本方案中H01初步定为18mm。
1.4钢板弹簧的断面形状板弹簧断面通常采用矩形断面,宜于加工,成本低。
但矩形断面也存在一些不足。
矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。
工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。
因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。
除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。
汽车平衡悬架钢板弹簧设计东风德纳车桥有限公司2005年9月15日一、钢板弹簧作用和特点a.结构简单,制造、维修方便;b.弹性元件作用;c.导向作用;d.传递侧向、纵向力和力矩的作用;e.多片弹簧片间摩擦还起系统阻尼作用;f.在车架或车身上两点支承,受力合理;g.可实现变刚度特性;h.相比螺旋弹簧和扭杆弹簧而言,单位质量的储能量较小,在同样的使用条件下,钢板弹簧要重一些。
二、钢板弹簧的种类、材料热处理及弹簧表面强化1.目前,汽车上使用的钢板弹簧常见的有以下几种:1)普通多片钢板弹簧;2)少片变截面钢板弹簧;3)两级变刚度复式钢板弹簧;4)渐变刚度钢板弹簧2.钢板弹簧材料的一般要求钢板弹簧与其它弹性元件一样,弹簧使用寿命与材料及制造工艺有很大关系,因此选用弹簧材料时应考虑以下几个方面因素1)弹性极限弹簧在弹性极限范围内变形时,希望弹簧储存的弹性变形能要大,而弹簧在单位中单位体积内储存的弹性变形能是与材料的弹性极限平方成正比,而与弹性模量与反比,因此从提高材料贮存的弹性变形能角度看,希望提高材料的弹性极限。
一般说材料抗拉强度高,弹性极限也高。
弹性极限与材料的化学成分和金相组织有较大关系,在弹簧钢中如果提高碳、硅、锰元素含量,可以提高材料弹性极限。
弹簧采用中温回火处理,能够得到具有较高弹性极限的回火屈氏体组织。
2)弹性模量 弹性模量有两种,即拉伸弹性模量E 和剪切弹性模量G 。
材料弹性模量愈小,材料变形和贮存的弹性变形能愈大。
从这个角度看,国外采用了弹性模量较低的增强树脂材料弹簧(FRP 弹簧)。
3)疲劳强度 由于弹簧多在交变载荷下工作,所以要求材料应有较高的疲劳极限,疲劳强度与材料抗拉强度b 和屈服强度s σ成正比,因此为了提高弹簧的疲劳强度,应设法提高材料的抗拉强度b σ和屈服强度与抗拉强度之比(b s σσ)。
4)淬透性 对于断面较厚的或变截面钢板弹簧,希望用淬透性较好的材料。
材料如不能淬透,淬火组织中将含有较多的非马氏体组织,使淬火后硬度降低。
汽车钢板弹簧的性能、计算和试验东风汽车公司技术中心陈耀明1983年3月初稿2005年1月再稿目录前言(2)一.钢板弹簧的基本功能和特性(3)1.汽车振动系统的组成(3)2.悬架系统的组成和各元件的功能(6)3.钢板弹簧的弹性特性(7)4.钢板弹簧的阻尼特性(12)5.钢板弹簧的导向特性(14)二.钢板弹簧的设计计算方法(17)1.单片和少片变断面弹簧的计算方法(17)2.多片钢板弹簧的刚度和工作应力计算(24)3.多片弹簧各单片长度的确定(32)4.多片弹簧的弧高计算(36)5.钢板弹簧计算中的几个具体问题(43)三.钢板弹簧的试验(46)1.钢板弹簧的静刚度测定(46)2.钢板弹簧的动刚度测定(50)3.钢板弹簧的应力测定(52)4.钢板弹簧单片疲劳试验(53)5.钢板弹簧总成疲劳试验(54)前言本文是为汽车工程学会悬架专业学组所办的“减振器短训班”撰写的讲义,目的是让汽车减振器的专业人员对钢板弹簧拥有一些基本知识,以利于本身的工作。
内容分为三部分:钢板弹簧的基本功能和特性,设计计算方法,以及试验等。
因为这部分内容非本次短训班的重点,所以要求尽量简单扼要,也许有许多不全面的地方,只供学习者参考。
有关钢板弹簧较详细的论述,可参考本学组所编的“汽车悬架资料”。
一.钢板弹簧的基本功能和特性1.汽车振动系统的组成汽车在道路上行驶,由于路面存在不平度以及其它各种原因,必然引起车体产生振动。
从动态系统的观点来看,汽车是一个多自由度的振动系统。
其振源主要来自路面不平度的随机性质的激振,此外还有发动机、传动系统以及空气流动所引起的振动等等。
为改善汽车的平顺性,也就是为减小汽车的振动,关键的问题是研究如何对路面不平度的振源采取隔振措施,这就是设计悬架系统的根本目的。
换言之,就是在一定的道路不平度输入情况下,通过悬架系统的传递特性,使车体的振动输出达到最小。
当研究对象仅限于悬架系统时,人们往往把车体当为一个刚体来看待。
汽车变截面钢板弹簧的设计计算摘要本文介绍了汽车变截面钢板弹簧的设计计算,包括弹簧参数计算、弹簧形状设计及材料组成等方面。
通过对变截面钢板弹簧的物理特性进行分析,结合设计要求,以及材料及工艺的要求,采用MARC建模及软件进行非线性有限元分析,得出变截面钢板弹簧的设计结果。
关键词:变截面钢板弹簧,参数计算,形状设计,MARC建模1. IntroductionVariable-Cross-Section Steel Plate Spring (VCSSPS) is an important part in auto manufacture. VCSSPS can provide smooth and reliable force when it works in enclosed space because ofits advantages of light weight and small size. It has been widely used in body, chassis, engine and suspension systems. VCSSPS contains a variety of parameters such as material, shape, size and load. And its performance is greatly affected by these parameters. Thus, it is very important to design the VCSSPS in a reasonable way.In general, VCSSPS design includes three steps: parameters calculation, shape designing and material selection. First, parameters calculation must be done according to the design requirement. Then, shape should be designed according to parameters carefully. Furthermore, the material and processes should be carefully selected and applied.In this paper, we introduce the VCSSPS design process and analysis. We use MARC software to analyze the VCSSPS under nonlinear finite element environment and get the parameters’ design results. The main contributions include: 1) a conciseintrod uction of VCSSPS design process; 2) analysis of parameters’ effects on VCSSPS; 3) the optimization of geometry design and material selection; 4) the design results of VCSSPS.2 Parameter CalculationThe parameters of VCSSPS mainly include load, length,section size, curvature, number of plate and material. The calculation results of these parameters have significantinfluence on the performance of VCSSPS.2.1 LoadLoad is the product of spring force and displacement, which can be obtained from the static deflection and force performance data provided by the design requirements.2.2 LengthLength of VCSSPS is determined by the static performance. Generally, the distance between the mounting holes should be the same as that of the mating parts.2.3 Section SizeThe section size of VCSSPS can be obtained from the load and displacement provided by the design requirements. Generally, thesection size should be determined according to the static performance.2.4 CurvatureCurvature of VCSSPS is determined by the section size. Generally, the curvature should be designed according to thestatic performance.2.5 Number of PlateThe number of plate is determined by the dynamic performance. Generally, the number of plate should be designed according tothe dynamic performance.2.6 MaterialThe ideal material for VCSSPS is determined by the static, dynamic and temperature requirements. Usually, good strength and modulus of elasticity are preferred.3 Shape DesignThe shape of VCSSPS should be designed according to the parameters calculated above. In general, the shape of VCSSPS should be designed as follows:3.1 Section SizeSection size of VCSSPS should be designed according to the calculated parameters. Generally, the section size should be designed as uniform as possible.3.2 Number of PlateThe number of plate should be designed according to the calculated parameters. Generally, the number of plate should be designed as many as possible.3.3 Geometry。
【关键字】精品。
1.1单个钢板弹簧的载荷已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷:Fw1=(G1-Gu1)/2=(1)进而得到:Pw1=Fw1×9.8=13303.5 N (2)1.2钢板弹簧的静挠度钢板弹簧的静挠度即静载荷下钢板弹簧的变形。
前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。
为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。
此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。
但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。
此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。
一般汽车弹簧的静挠度值通常如表1[2]所列范围内。
本方案中选取fc1=80 mm。
1.3钢板弹簧的满载弧高满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。
当H0=0时,钢板弹簧在对称位置上工作。
考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。
本方案中H01初步定为18mm。
1.4钢板弹簧的断面形状板弹簧断面通常采用矩形断面,宜于加工,成本低。
但矩形断面也存在一些不足。
矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。
工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。
因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。
除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。
摘要随着汽车市场的火爆,汽车安全性的问题显的越来越重要,爆胎就是汽车的安全隐患之一,针对这一问题,市场上应用较多的措施是采用安全轮胎或者免充气轮胎,但是这两种轮胎都有其应用的局限性,有学者基于安全轮胎以及免充气轮胎的基础上提出了板簧轮胎的概念,本文以板簧轮胎中单一的S型零件为研究对象,在对S型结构进行静强度分析的基础上对其进行疲劳寿命的预测。
板簧轮是一种新型轮胎,S型弧面板弹簧是其中最为关键的部件,虽然结构简单,但是受载情况比较复杂。
在工作过程中受到循环载荷的作用而易产生疲劳破坏,但疲劳破坏前并没有明显的宏观现象。
当损伤达到临界值时,常常发生突然性的疲劳断裂,导致轮胎无法正常工作,甚至发生更严重的后果。
因此,对S型弧面板弹簧的疲劳分析有着重要的意义。
在理论计算方面,起筋板弹簧属于宽板弯曲的平面问题,基于弹性变形的基本公式,推导出起筋板料的曲率半径公式;起筋后的板料截面简化为工字梁,利用组合图形的特点求解出截面的惯性矩公式;板料在受载过程中要满足强度要求,在此基础上进一步推导出疲劳寿命估算公式。
在有限元数值模拟方面,利用PATRAN有限元分析软件建立几何模型,在创建材料、关联单元属性、划分网格、创建约束以及施加载荷后得到有限元模型,并对其进行静载荷分析,调用NASTRAN进行求解计算,得到弯板的等效应力图和最大应力节点区域。
结合应力的结果文件,利用FATIGUE疲劳分析软件对危险区域进行疲劳寿命分析,此过程中新建并修正了材料的S-N曲线,在设置材料信息和载荷信息后,最终得到结构的疲劳寿命云图,经换算后得到弯板的使用年限。
本文主要在基于材料力学、有限元计算和结果疲劳寿命理论等多门学科理论基础上,并与有限元软件和专业疲劳寿命分析软件相结合,对S型弧面板弹簧进行静力学有限元分析和疲劳寿命有限元分析,力图真实有效的计算、模拟和分析。
关键词:板簧轮胎;弹性变形;强度分析;疲劳寿命第1章绪论1.1引言近些年来,随着国家经济的持续快速发展,我国各种汽车保有量大幅度提升,正以越来越大的影响力改变着人们的生活与工作[1]。
钢板弹簧的计算1. 1 钢板弹簧的布置方案的选择钢板弹簧在汽车上可以纵置也可以横置纵向布置时还具有导向传力的作用并有一定的减震作用连得因而使的悬架系统结构简化。
而横向布置时因为要传递纵向力必须设置附加的导向传力装置使结构复杂、质量加大所以只在极少数汽车上应用。
如下图所示它中部用U型螺栓将钢板弹簧固定在车桥上。
悬架前端为固定铰链也叫死吊耳。
它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起前端卷耳孔中为减少摩损装有衬套。
后端卷耳通过钢板弹簧吊耳销与后端吊耳与吊耳架相连后端可以自由摆动形成活动吊耳。
当车架受到冲击弹簧变形时两卷耳之间的距离有变化的可能。
图4.1 1. 2 钢板弹簧主要参数的确定EQ1042轻型货车相关参数∶悬架静挠cf72mm悬架动挠度cf80mm轴距Z3300mm 单个钢板弹簧的载荷111509.8563522wmgFN 1. 2. 1 满载弧高af 满载弧高af是指钢板弹簧装到车轴桥上汽车满载时钢板弹簧主片上表面与两端不包括卷耳孔半径连线间的最大高度差。
常取af1020mm这里取af10mm.。
1. 2. 2钢板弹簧长度L的确定钢板弹簧长度L是指弹簧伸直后两卷耳中心之间的距离在总布置可能的条件下应尽可能将钢板弹簧取长些。
在下列范围内选用钢板弹簧的长度轿车L0.400.55轴距货车:前悬架L0.260.35轴距后悬架L0.350.45轴距。
应尽可能将钢板弹簧取长些原因如下1增加钢板弹簧长度L能显著降低弹簧应力提高使用寿命降低弹簧刚度改善汽车平顺性。
2在垂直刚度c给定的条件下又能明显增加钢板弹簧的纵向角刚度。
3刚板弹簧的纵向角刚度系指钢板弹簧产生单位纵向转角时作用到钢板弹簧上的纵向力矩值。
4增大钢板弹簧纵向角刚度的同时能减少车轮扭转力矩所引起的弹簧变形。
本设计中L0.35×3300mm1155mm 1.2.3 钢板断面尺寸及片数的确定 a.钢板断面宽度b的确定有关钢板弹簧的刚度、强度等可按等截面简支梁的计算公式计算但需引入挠度增大系数δ加以修正。
影响钢板弹簧使用寿命的原因分析赵艺新疆八钢板簧有限公司,乌鲁木齐 830022关键词:原材料 热处理 喷丸1 前 言我国目前载重车的悬架系统一般都采用钢板弹簧,客车多为变截面钢板弹簧和空气弹簧,钢板弹簧承载能力大,空载和满载情况下刚度变化也大,常影响汽车的平顺性和乘坐舒适性,表现为空车颠满载不颠,为此钢板弹簧又有渐变刚度簧、复合簧、变截面簧等以解决此类问题,钢板弹簧因其技术含量不高全国有大小板簧厂几百家,水平良莠不齐。
空气弹簧承载能力大,空载和满载情况下刚度变化不大,汽车的平顺性和乘坐舒适性都非常好,但技术含量高价格高,我国目前只有二汽等大型具有科研实力的企业在研究并试生产未形成规模,因此汽车配件市场目前仍是钢板弹簧占主导地位。
汽车钢板弹簧是汽车悬挂系统中主要零件之一,起着车轮和车架之间连接的作用。
它除了承受车厢及载荷的重量外,还要承受因路面不平所引起的冲击载荷和震动。
由此可见,钢板弹簧主要是作为减震、贮能零件使用的。
它既能吸收大量弹性功,又不允许发生任何永久变形。
为了获得汽车最佳的平顺性,良好操纵的稳定性,必须保证钢板弹簧的高强度和具有较高的使用寿命。
2 影响其寿命的主要因素2.1 原材料的选用对于板簧而言有了高的弹性极限后,在使用中才不易发生永久变形,而淬火时钢材获得全部为马氏体时,其机械性能沿截面分布均匀,钢材才能发挥出最大的弹性极限来。
钢材内如含有其他非马氏体组织,则其心部机械性能低,尤其是冲击韧性低,均能降低它的弹性极限,屈服极限。
因此首先要求钢材有适宜的淬透性,材质不同,淬透性不同。
我国板簧行业执行的是汽车行业标准QCn29035-91,规定疲劳寿命≥8万次为合格品,因此我们选用材料的标准为最终的疲劳寿命能否达到行标的要求,如最常用的材料60Si2Mn淬透厚度为≤12mm,但≤14mm 厚钢板疲劳寿命均能达到并超过8万次要求,组织中除马氏体外还有少量的贝氏体和未溶铁素体。
厚度>14mm钢板质量则达不到8万次要求,组织中除马氏体外有大量的贝氏体和未溶铁素体,用户对这种簧反映多为断裂较早。
等寿命曲线的变截面钢板弹簧可靠性分析方法张洁;卢剑伟;王翔宇;李海波【摘要】提出了一种适用于变截面钢板弹簧等的疲劳寿命分析评价方法.基于Timoshenko梁理论提出一种简化分析模型,快速求解变截面钢板弹簧弯曲簧片和平直簧片在不同载荷工况下的弯曲应力.通过算例与ANSYS计算结果进行对比,验证了所提计算模型的准确性.基于名义应力法和Miner损伤累计理论对钢板弹簧疲劳热点进行疲劳寿命预测,得出交变载荷下的等寿命值曲线图,经对比与有限元分析的相关结论吻合较好,验证了本文所述方法的有效性.【期刊名称】《汽车工程学报》【年(卷),期】2019(009)001【总页数】7页(P36-42)【关键词】变截面钢板弹簧;弯曲应力;疲劳可靠性;等寿命曲线【作者】张洁;卢剑伟;王翔宇;李海波【作者单位】合肥工业大学汽车与交通工程学院,合肥 230009;合肥工业大学汽车与交通工程学院,合肥 230009;合肥工业大学汽车与交通工程学院,合肥 230009;江淮汽车股份有限公司技术中心,合肥 230601【正文语种】中文【中图分类】TH135+.2钢板弹簧是汽车悬架中常见的弹性元件,由于其结构简单,成本较低,被广泛应用于载货汽车和部分采用非独立悬架的客车上[1]。
钢板弹簧主要分为普通多片钢板弹簧、变截面钢板弹簧、两级变刚度钢板弹簧和两级变刚度复式钢板弹簧等[2]。
同等质量下,变截面钢板弹簧能够储存更多的弹性势能,从而节省材料,使用更为广泛[3]。
为了研究变截面钢板弹簧的弯曲应力分布并预测其疲劳寿命,将有限元方法广泛用于钢板弹簧的分析和设计优化中[2-5]。
在不同的载荷工况下,簧片的几何特征可能会发生较大变化,其应力分布也将改变。
而且,结构参数对应力分布和疲劳寿命有很大影响,设计者要反复改变结构参数并建立有限元模型从中寻找最优簧片参数值,模型建立和计算的工作量大从而延长了研发周期[3,6]。
因此,提出简化计算模型对于研究变截面钢板弹簧的弯曲应力分布和预测其疲劳寿命具有重要意义。
传统的疲劳设计,是以材料的疲劳曲线或称S(应力)-N(寿命)曲线为根据的。
由于实验数据存在很大的离散性,因此只能用统计判断的方法绘制此曲线。
对于不稳定变应力,要用损伤累积假说来估算零件的疲劳破坏寿命。
各种材料对变应力的抵抗能力,是以在一定循环作用次数N下,不产生破坏的最大应力σN来表示的。
σN称为一定循环作用次数N的极限应力,也称为条件疲劳极限。
对于一种材料,根据实验,可得出在各种循环作用次数N下的极限应力,以横坐标为作用次数N、纵坐标为极限应力,绘成如图1所示曲线,则称为材料的疲劳曲线,或称S-N曲线。
从图中可以看出,应力愈高,则产生疲劳破坏的循环次数愈少。
变应力低于某一数值时,则材料不再产生疲劳破坏,此时的应力称为材料的疲劳极限。
出现疲劳极限的循环次数称为循环基数No,一般钢材No=106~107 左右,硬质合金(HRC38)> No=25×107 左右,有色金属没有水平线段,即没有绝对的疲劳极限。
一般工程上给出的疲劳极限是107 或108 。
在腐蚀介质的情况下,钢材也没有疲劳极限,如图2所示。
对应于循环基数No的疲劳极限,假如是对称循环的变应力,即r=—1,用σ-1或τ-1表示;如是脉动循环时,即r=0,则用σ0或τ0表示。
图1 疲劳(S-N)曲线图2 疲劳曲线对比图为了便于绘制疲劳曲线,往往采用半对数坐标lgN-σ(τ),有时也用对数坐标lgN-lgσ(τ)。
图3所示为几种合金弹簧钢的对数坐标疲劳曲线。
疲劳曲线左边的条件疲劳极限(倾斜段)可用下式表示。
此式称为疲劳曲线方程(或Wohler曲线方程)。
式中x为指数,与材料和应力形式有关,其值根据实验确定,在对数坐标中,此数即疲劳曲线的斜率。
对于钢材x为6~10,有应力集.中的取小值,表面光滑的取大值。
根据疲劳极限σ-1,按(1)式便可计算出任意循环作用次数N时的条件疲劳极限式中 ks——寿命系数。
由于应力循环作用次数N对疲劳强度影响较大,所以在制定弹簧的许用应力时,根据作用次数分为三类:弹簧受变载荷在1×106次以上的为I类;在1×103 ~1×106 次之间的为Ⅱ类;在1×103 次以下的为Ⅲ类。