聚合物微球
- 格式:ppt
- 大小:700.00 KB
- 文档页数:12
核壳聚合物微球(cssp)是指由两种或者两种以上单体通过乳液聚合而获得的一类聚合物复合粒子。
核壳复合微球因其有序的结构及可以在粒子结构中引入特殊功能基团,具有特殊性能,并且粒子的内部和外部成分不同,显示出特殊的双层或者多层结构,核与壳分别具有不同的功能,尤其在药物缓释(空心微球)、医疗诊断和聚合物改性等应用领域中,核壳复合微球的拓展正在向纵深发展。
而空心微球就是由核/壳复合结构材料演变而来, 制备空心微球也是核壳聚合物微球的最重要的应用之一。
空心微球是20世纪70年代发展起来的一种新型材料,由于它具有保温隔热、耐腐蚀、比表面积大、自润滑、以及无毒等性质,并且拥有较大的内部空间,因而得到广泛应用。
由于这类结构的材料具有低密度、高比表面的特性,而且其空心部分可容纳大量的客体分子或大尺寸的客体,可以产生一些奇特的基于微观“包裹”效应的性质,使得空心微球材料在医药、生化和化工等许多技术领域都有重要的作用。
许多材料如无机材料、金属氧化物以及半导体材料等均已被制成空心球结构而呈现出常规材料所不具备的特殊功能,因而广泛地应用于药物缓释/控释系统、涂料等众多领域。
目前,制备空心微球的方法主要有喷雾反应法、模板法、微乳液聚合法以及界面缩聚法等。
科技资讯科技资讯S I N &T NOLOGY I NFORM TI O N2008N O .11SC I ENC E &TEC HN OLO GY I NFO RM ATI O N高新技术聚合物中空微球内部的空腔,可以直接封装气体或小分子物质,如水、烃类等挥发性溶剂,以及其他具有特殊功能的化合物[1]。
由于空气/聚合物界面处的折光指数的差异和中空结构的特殊性能,因而可用作优质的聚合物系遮盖性颜料、抗紫外填料和手感改性剂等。
鉴于聚合物中空微球的用途广泛,引起了人们越来越多的关注,并对其制备方法和工艺条件的研究也日益深入。
1W /O /W 乳液聚合法W/O /W 乳液聚合法制备中空结构聚合物微球的主要过程包括先通过强剪切如超声分散制成W /O 乳液,再将此乳液在搅拌作用下缓慢滴加入溶有第二乳化剂的水溶液中,从而制得W/O /W 乳液,并经聚合反应制得聚合物乳胶微球内包含有水相的水系乳液,然后将该乳液加以干燥后即可得到中空结构的聚合物微球。
P a r k 等[2]用W /O/W 法制备了封装有不同疏水性物质的微胶囊,如卵清蛋白/聚氨醋囊。
Hi l de br a nd 等[3]报道了W /O 型乳液聚合法结合诱导相分离技术制备封装有缩氨酸和蛋白质的微胶囊。
2封装非溶剂乳液聚合法M c Dnoal d 等[4,5]报道了通过封装烃类非溶剂乳液聚合法制得0.2um ~1um 粘度的中空P S t /P M M A 微球的方法,微球孔隙率可达50%。
Ti ar ks 和L andf es t er [6-8]采用直接将单体和非溶剂烃混合,然后在水溶液中应用超声乳化成微乳液,接着以自由基引发聚合使生成的聚合物不溶于非溶剂烃而在其表面成壳,反应一步完成,最后去除非溶剂烃后得到纳米级聚合物中空微球。
研究表明,聚合物乳液的形态由乳化剂的类型、单体的极性以及所选用的非溶剂烃决定。
由于该法对过程操作要求较高,体系容易失稳,目前尚未达到实际应用的程度。
聚苯乙烯微球测试参数(原创实用版)目录1.聚苯乙烯微球简介2.聚苯乙烯微球测试参数的种类3.聚苯乙烯微球测试参数的影响因素4.聚苯乙烯微球测试参数的实际应用正文【聚苯乙烯微球简介】聚苯乙烯微球是一种常见的聚合物微球,其主要特点是具有高度的球形、均匀的粒径分布以及良好的稳定性。
由于其独特的物理和化学性质,聚苯乙烯微球被广泛应用于各种科学研究和工业生产领域,如颗粒悬浮体系、乳液聚合、涂料添加剂等。
【聚苯乙烯微球测试参数的种类】聚苯乙烯微球的测试参数主要包括以下几个方面:1.粒径:聚苯乙烯微球的粒径是衡量其大小的重要指标,通常使用动态光散射法、激光粒度仪等仪器进行测量。
2.形状:聚苯乙烯微球的形状对于其应用性能有着重要影响,一般采用扫描电子显微镜(SEM)或透射电子显微镜(TEM)等方法进行观察。
3.表面性质:聚苯乙烯微球的表面性质包括表面粗糙度、表面电荷等,这些参数可以通过原子力显微镜(AFM)、电镜能量色散 X 射线光谱(EDS)等手段进行分析。
4.孔隙结构:聚苯乙烯微球的孔隙结构对于其内部的物质传输和反应过程具有重要意义,一般使用气体吸附法、压汞法等技术进行测量。
【聚苯乙烯微球测试参数的影响因素】聚苯乙烯微球测试参数的影响因素主要包括以下几个方面:1.聚合反应条件:聚合反应的温度、压力、时间等条件对聚苯乙烯微球的粒径、形状和孔隙结构等参数产生影响。
2.溶剂选择:在制备聚苯乙烯微球过程中,溶剂的选择会影响微球的形貌和粒径分布。
3.表面改性:通过表面改性,可以调节聚苯乙烯微球的表面性质,如表面粗糙度、表面电荷等。
【聚苯乙烯微球测试参数的实际应用】聚苯乙烯微球测试参数的实际应用主要体现在以下几个方面:1.选择合适的聚苯乙烯微球品种:根据实际应用需求,选择具有合适粒径、形状和表面性质的聚苯乙烯微球。
2.优化生产工艺:通过调整聚合反应条件、溶剂选择等,制备出性能优良的聚苯乙烯微球。
3.提高产品性能:通过表面改性等手段,进一步提高聚苯乙烯微球的应用性能。
聚苯乙烯微球的制备方法聚苯乙烯微球是一种在生物医学、材料科学、能源等领域应用广泛的微纳米材料。
制备聚苯乙烯微球不仅可以通过实验室和工业规模的方法进行,而且已经被广泛研究。
本文将介绍几种不同的方法,以及它们的优缺点。
一、乳液聚合法乳液聚合法是制备聚苯乙烯微球最常见的方法之一。
它的基本流程是在水相中加入单体丙烯腈(AN)和苯乙烯(St),并加入表面活性剂和十二烷基苯磺酸钠(SDBS),以及过氧化苯甲酰(BPO)作为引发剂进行聚合反应。
表面活性剂是用来降低微球的粘度和防止微球的凝聚,并有助于微球的均匀分布。
反应结束后,微球通过离心分离、洗涤、干燥等步骤进行纯化和收集。
优点:乳液聚合法制备的聚苯乙烯微球尺寸均匀,制备过程简便,且成本相对较低。
缺点:乳液聚合法的最大缺点是产生大量的废水,对环境有一定的污染。
二、辅助乳液法辅助乳液法是在乳液聚合法的基础上进行改进的方法,使用辅助表面活性剂来替代传统的表面活性剂,并使用单一引发剂来替代等量的两种引发剂,以减少废水的产生量。
辅助乳液法的基本步骤与乳液聚合法类似。
优点:与乳液聚合法相比,辅助乳液法可以减少废水的产生,对环境污染更小。
缺点:辅助乳液法的固相产率较低,微球的形态易发生变化,粘性较大,难以得到较大的微球。
三、反应溶剂剥离法反应溶剂剥离法是一种将单体反应所需的有机溶剂作为剥离剂的方法。
该方法的基本流程如下:将需要制备聚苯乙烯微球的有机溶剂、单体丙烯腈和苯乙烯混合,加入引发剂、表面活性剂和剥离剂进行聚合反应。
反应后,将微球分离、洗涤和干燥。
优点:反应溶剂剥离法可以制备规模较大的聚苯乙烯微球,而且微球的形态和尺寸分布较均匀。
缺点:反应溶剂剥离法的缺点是需要大量的有机溶剂,并且需要处理溶剂和废水。
微球的悬浮性较强,制备过程中难以调控聚合反应。
四、界面反应法界面反应法是指在水-油界面或水-空气界面上进行的聚合反应。
该方法的基本流程是在水相中溶解表面活性剂和单体丙烯腈、苯乙烯等单体,将油相浸入水相中。
可膨胀微球的化学成分
可膨胀微球的化学成分是热塑性聚合物和碳氢化合物(C4-C12烷烃)。
可膨胀微球是由气密的热塑性聚合物壳和碳氢化合物(C4-C12烷烃)为核芯所构成的具有核壳结构的高分子塑性微球。
可膨胀微球是一种热塑性空心聚合物微球,由热塑性聚合物外壳和封入的液态烷烃气体组成。
这些空心球的平均直径范围从10至50µm,真密度为1000至1300kg/m³。
当加热时,壳内气体压力增加并且热塑性外壳软化,从而使膨胀微球体积显著增加。
当冷却时,膨胀微球外壳再次变硬,体积固定。
经过轻微膨胀的微球,再次加热可二次膨胀。
完全膨胀后,膨胀微球直径和体积都会发生变化,例如直径从10增大到40µm,体积即增加4=64倍,最终真密度会小于70千克/米(可控,低至20千克/米)。
典型膨胀温度范围从80到230℃。
在实际应用中,物理膨胀微球可能会接触各种化学溶剂,每一种溶剂对于微球的作用都不尽相同,需要具体分析测试,可能会出现以下情况:溶胀,变色,发泡倍率改变等。
微球的制备方法微球是一种具有微米级尺寸的球形颗粒,具有广泛的应用。
本文总结了10种常见的微球制备方法,并对其进行详细的描述。
1. 静电喷雾法静电喷雾法是一种常用的微球制备方法。
通过将聚合物溶液喷雾成微小液滴,再利用静电作用将其在电场中成球状并固化。
该方法的步骤如下:首先将聚合物溶剂溶解于适当的溶剂中,在喷嘴处向溶液喷出液滴,通过静电复合作用将液滴形成球形颗粒,并利用干燥或交联等方法固化。
2. 水-油乳液法水-油乳液法是一种将水相聚合物溶液包裹在油相中并形成球形颗粒的制备方法。
该方法可通过调节水相和油相的特性、控制乳化剂的添加量、pH值和温度等因素来控制溶液的成球过程。
水-油乳液法的步骤如下:首先将聚合物溶液加入油相中,加入乳化剂并搅拌,调节pH值,通过加热或冷冻等方式将液滴成球,并使固化。
3. 模板法模板法是一种常用的制备孔径和形状可控的微球的方法。
该方法通过利用不同材料或形状的模板,调节成型溶液的自组织,在模板表面形成微球。
模板法的步骤如下:将聚合物溶液与模板接触,通过自组织形成球形颗粒,并经过干燥或交联等方法固化后,再将模板去除,得到孔径和形状可控的制备微球。
4. 真空喷涂法真空喷涂法是一种制备均匀性和密度可控的微球的方法。
该方法将聚合物溶剂通过喷涂设备喷涂在基片上,并干燥固化得到微球。
真空喷涂法的步骤如下:将聚合物溶剂加热至蒸汽态后,通过真空吸附将蒸汽喷涂在基片上,并形成微球。
此时,通过控制溶剂的加热温度和真空度,可以制备不同密度和尺寸的微球。
5. 热交联法热交联法是一种利用交联反应制备微球的方法。
该方法通过将聚合物分子在一定条件下通过化学反应交联成为球形颗粒。
热交联法的步骤如下:首先将聚合物溶液在交联剂和硬化剂的作用下形成微球,然后进行加热交联反应,使其具有较高的稳定性和强度,最后洗涤干燥得到微球。
6. 有机-水两相法有机-水两相法是一种将聚合物分散于有机溶剂中,然后通过加入水相形成微球的方法。
第28卷第6期张增丽,等:聚合物微球调驱研究文章编号:1001-3873(2007)06-0749-03收稿日期:2006-12-21修订日期:2007-03-28作者简介:张增丽(1984-),女,山东临沂人,在读硕士研究生,油气田开发,(Tel)0546-8391155(E-mail)zengliupc@163.com.聚合物微球调驱研究张增丽,雷光伦,刘兆年,徐慧,王霞(中国石油大学石油工程学院,山东东营257061)摘要:亚微米聚合物弹性微球具有在油层孔隙中不断运移、封堵、改变注入水渗流方向的特点,从而能提高注入水波及体积。
介绍了聚合物弹性微球调驱特点,实验研究了在不同矿化度和温度下微球的吸水膨胀规律以及微球在填砂管中的封堵效果。
研究表明,微球具有一定膨胀性,温度越高,矿化度越低,微球膨胀倍数越大;注入微球能显著提高阻力系数,微球含量越高,注入量越大,注入压力越高,后续注水阶段,微球仍能保持较高的残余阻力系数。
关键词:聚合物;波及系数;剖面调整;采收率中图分类号:TE357.43文献标识码:A调剖是目前应用较多的一种提高采收率的方法,主要有无机颗粒堵剂调剖、预交联体膨堵剂调剖、交联聚合物凝胶调剖等[1]。
目前的颗粒型调剖剂,由于其粒径较大,往往只在水井附近油层起到封堵作用,水会很快绕流再次进入高渗层;交联聚合物凝胶,当后继注入水突破凝胶层后,其对水的阻力会大幅降低,使有效期变短。
这些调剖方法,主要是改善了注水井附近渗流状况,提高了注水井附近的波及体积,而注水井附近剩余油饱和度小,因此提高采收率程度不大。
水驱或聚合物驱后的油田,需要阻力系数更大,提高波及能力更强的提高采收率新技术。
1聚合物弹性微球调驱技术1.1微球外观形态聚合物弹性微球是粒径在0.2 ̄20μm的活性聚合物凝胶球体。
采用显微镜照相技术对微球的外观形态进行直接观察(图1),由图1可以看出,微球粒度比较均匀,球度高,在溶液中分散性、悬浮性好。
acid-base condition can be changed obviously, which can be applied to colloidal crystal acid-base sensor. The monodisperse porous PMMA cross-linked microspheres were prepared by this method for the first time and have great application prospect in separating the hydrophilic amino acid as a column packing.The preparation of porous latex particles by acid/alkali treatment method, the assembly offunctionalized modified intelligent response colloidal crystal sensor, has a large application prospects.Keywords: colloidal crystals; pH-response; seed polymerization; liquid chromatography;acid/alkali treatment;目录引言 (1)第1章文献综述 (3)1.1聚合物微球简介 (3)1.2聚合物微球的制备 (3)1.2.1 乳液聚合 (3)1.2.2 分散聚合 (9)1.2.3 悬浮聚合 (10)1.2.4 沉淀聚合 (11)1.3 单分散聚合物微球的应用 (12)1.3.1 在医药和生物领域的应用 (12)1.3.2 在胶体晶体中的应用 (14)1.3.3在标准计量中的应用 (15)1.3.4 在分析化学中的应用 (16)1.4 pH响应聚合物材料 (16)1.4.1 pH响应型复合材料的制备 (17)1.4.2 pH响应型复合材料的应用 (18)1.5 课题研究的创新点及意义 (18)第2章气-液界面组装构建pH响应型P(St-MMA-SPMAP-AA)胶体晶体 (19)2.1 引言 (19)2.2 实验部分 (19)2.2.1实验所用原料及主要实验仪器设备 (19)2.2.2单分散的PSMSS和PSMSSA微球的制备 (20)2.2.3 结构及性能表征 (21)2.3结果与讨论 (21)2.3.1 PSMSS和PSMSSA微球的表面形貌 (21)2.3.2 PSMSS和PSMSSA微球的pH响应性能比较 (22)2.3.3 PSMSA pH响应胶体晶体的应用 (28)2.4 小结 (29)第3章种子聚合法制备多孔PMMA微球及其在液相色谱中的应用 (30)3.1 引言 (30)3.2 实验部分 (31)3.2.1实验所用原料及主要实验仪器设备 (31)3.2.2微米级单分散PMMA种子微球的制备 (31)3.2.3单分散PMMA多孔微球的制备 (32)3.2.4 结构及性能表征 (32)3.3 结果与讨论 (32)3.3.1 单分散PMMA种子微球的表面形貌 (33)3.3.2 单分散PMMA-EGDMA多孔微球的形貌 (33)3.3.3 致孔剂体系对单分散多孔微球的影响 (35)3.3.4单分散PMMA-EGDMA多孔微球的液相色谱应用 (36)3.4 小结 (39)第4章酸/碱处理法制备单分散多孔P(St-MMA-AA)/P(St-MMA-SPMAP)微球 (41)4.1 引言 (41)4.2 实验部分 (41)4.2.1实验所用原料及主要实验仪器设备 (41)4.2.2 SPMAP的水解 (42)4.2.3单分散的PSMA/PSMSS/PSMSA的制备 (42)4.2.4单分散的PSMA/PSMSS/PSMSA微球的酸/碱分步处理 (42)4.2.5 结构及性能表征 (43)4.3 结果与讨论 (43)4.3.1 PSMA/PSMSS/PSMSA微球的形貌表征 (43)4.3.2 酸碱处理后PSMA/PSMSS/PSMSA微球的结构表征 (44)4.4 下一步展望 (45)4.5 本章小结 (45)结论 (47)参考文献 (48)攻读学位期间的研究成果 (59)致谢 (61)学位论文独创性声明 (62)引言引言相对于其他微球而言,聚合物微球因其具有有机骨架,以及单体中丰富的官能团,具有独特的物理和化学性能。
摘要纳米聚合物微球由于其特殊的结构,具有比表面积大、吸附性强、凝集作用大及表面反应能力强等特性。
它在许多领域有着重要的作用,例如可作为粒度标准物质和制备胶粒晶体的原料,也可作为模板制备微胶囊及多孔材料。
本文采用乳液聚合法制备出了粒度在20~50nm的聚苯乙烯(PS)胶体微球,同时考察了单体浓度,乳化剂用量,温度等工艺条件对PS 微球的粒度及单分散性的影响。
研究发现,微球平均粒径随单体浓度升高而增大,随乳化剂用量的增加先增大后减小,随温度的升高而减小。
在苯乙烯的质量为4.025g,水的质量为56g,过硫酸钾的质量为0.0305g,苯乙烯磺酸钠的质量为0.403g,温度为80℃的实验条件下成功制备出平均粒径为42.23nm的单分散聚苯乙烯微球。
同时尝试超声乳液聚合法制备PS微球,考察了超声时间对PS微球的粒度的影响,研究发现,微球平均粒径随超声时间延长而增大。
关键词:乳液聚合;纳米;单分散;聚苯乙烯微球AbstractThe nano-polymer microsphere has large surface area, strong adsorption, aggregation, and surface reaction ability and so on due to its special structure. It plays an important role in many areas, for example ,it can be used as the size standard materials and materials of preparing colloidal crystals, and the template to prepare micro-capsules and porous materials.The monodispersed polystyrene(PS) colloidal microspheres were prepared by emulsion polymerization and the microspheres‟ average particle size are 20 ~ 50nm. At the same time ,some conditions such as the concentration of monomers, emulsifier content, temperature and other processing conditions on monodisperse and particle size of PS microspheres were investigated. that the average particle size increases as the monomer concentration increasess; the average particle size increases at first and then decreases as the emulsifier increases; the average particle size decreases as the temperature rises. The average particle size of 42.23nm monodisperse polystyrene microspheres was successfully prepared in the experimental conditions: the quality of styrene is 4.025g, the quality of water is 56g, the quality of The quality of potassium persulfate) is 0.0305g, the quality of Styrene sulfonate is 0.403g and the temperature is 80℃. At the same time we try to use ultrasonic dispersion method to prepare small particle size of PS microspheres, and investigate the impact of ultrasonic time on the PS microsphere particle size,we found that average particle size increases when we prolong the ultrasonic time .Key words: emulsion polymerization; nm; monodispersed; polystyrene microspheres目录摘要 (I)Abstract (II)第1章绪论 (1)第2章国内外文献综述 (2)2.1 聚合物微球的制备方法 (2)2.1.1 分散聚合 (2)2.1.2 乳液聚合 (5)2.1.3 超声辐射乳液聚合 (7)2.1.4 种子乳液聚合 (8)2.1.5 核壳乳液聚合 (9)2.1.6 无皂乳液聚合 (9)2.1.7 微乳聚合 (10)2.1.8 反相乳液聚合 (11)2.2单分散聚合物微球的应用 (11)2.2.1 单分散聚合物微球作为粒度标准物质 (11)2.2.2 单分散聚合物微球作为制备胶粒晶体的原料 (12)2.2.3 单分散聚合物微球作为模板制备微胶囊 (12)2.2.4单分散聚合物微球作为模板制备多孔材料 (12)2.3课题的研究意义与研究内容 (13)2.3.1 研究意义 (13)2.3.2 研究内容 (13)第3章实验部分 (14)3.1 试剂及仪器 (14)3.1.1 试剂 (14)3.1.2 仪器 (14)3.2 实验过程 (15)3.2.1 单体的处理 (15)3.2.2 聚苯乙烯微球的制备 (16)3.2.3 微球平均粒径的表征 (16)3.3实验结果与讨论 (17)3.3.1 温度对粒径大小的影响及结果分析 (17)3.3.2 乳化剂用量对粒径大小的影响及结果分析 (18)3.3.3 单体用量对粒径大小的影响及结果分析 (19)3.3.4 超声时间对粒径大小的影响 (20)3.4 小结 (20)第4章结论与展望 (21)4.1结论 (21)4.2 展望 (21)参考文献 (22)致谢 (24)第1章绪论聚合物微球即为高分子微球,指直径在纳米级至微米级,形状为球形或其他几何体的高分子材料或高分子复合材料,其形貌可以是多种多样的,包括实心、空心、多孔、哑铃形、洋葱形等。
交联聚甲基丙烯酸甲酯微球是一种常用的生物材料,具有广泛的应用前景。
它是由甲基丙烯酸甲酯单体通过自由基聚合反应形成的聚合物微球,经过交联处理后具有良好的力学性能和稳定性。
交联聚甲基丙烯酸甲酯微球的制备方法有多种,其中最常用的是悬浮聚合法。
该方法是将甲基丙烯酸甲酯单体、交联剂和引发剂等混合后加入水中,通过搅拌使其形成微小的颗粒,然后通过加热或光照等方式引发聚合反应,最终得到交联聚甲基丙烯酸甲酯微球。
交联聚甲基丙烯酸甲酯微球具有许多优点。
首先,它的表面光滑度高,可以用于制备各种高附加值的产品,如药物载体、生物传感器等。
其次,它的孔隙结构可以通过调节制备条件进行调控,从而满足不同应用的需求。
此外,它还具有良好的生物相容性和可降解性,可以在体内逐渐分解并被吸收利用。
交联聚甲基丙烯酸甲酯微球在医学领域有着广泛的应用前景。
例如,它可以作为药物载体用于治疗癌症、心血管疾病等疾病;也可以作为生物传感器用于检测体内的生理参数;还可以作为组织工程支架用于修复受损的组织器官等。
总之,交联聚甲基丙烯酸甲酯微球是一种重要的生物材料,具有广泛的应用前景。
随着科学技术的不断进步和发展,相信它将会在更多的领域中发挥重要的作用。