当前位置:文档之家› 机械毕业设计1224汽车起重机伸缩臂系统设计

机械毕业设计1224汽车起重机伸缩臂系统设计

机械毕业设计1224汽车起重机伸缩臂系统设计
机械毕业设计1224汽车起重机伸缩臂系统设计

毕业设计(论文)

题目汽车起重机伸缩臂系统设计

目录

前言 (1)

摘要 (2)

1 绪论 (2)

1.1国内外汽车起重机发展概况及趋势 (2)

1.2伸缩臂结构发展现状 (4)

1.3伸缩臂机构形式介绍 (6)

1.4本课题内容及重要意义 (7)

2 QAY50汽车起重机主要技术参数和工作级别 (7)

2.1QAY50起重机主要技术参数 (7)

2.2QAY50汽车起重机的工作级别 (9)

3伸缩臂传动方案和臂架截面的确定 (12)

3.1伸缩臂传动方案的确定 (12)

3.2伸缩臂架截面的确定 (14)

4伸缩臂设计计算 (17)

4.1起重机伸缩臂尺寸的确定 (17)

4.2臂架伸缩液压缸的计算及选择 (22)

4.3伸缩臂受力计算 (25)

5伸缩臂有限元分析 (31)

5.1伸缩吊臂有限元模型建立 (32)

5.2计算结果与分析 (34)

总结 (37)

致谢 (38)

参考文献 (39)

汽车起重机伸缩臂系统设计

摘要:臂架是起重机的主要承载构件。起重机通过臂架直接吊载,实现大的作业高度与幅度。臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。本文主要根据QAY50吨汽车起重机工作要求来确定伸缩机构的结构和传动方案,进而采用传统的设计方法对主臂的三铰点、主臂的长度、及每节臂的长度、臂架的结构、液压缸尺寸进行确定,对臂架进行受力分析,利用有限元对臂架进行分析。

关键词:伸缩臂;液压缸;臂架结构,有限元分析

Design of truck crane Telescopic boom system

Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Mainly based on XCMG truck crane 50 tons of requests to determine the structure and transmission expansion program, and then using the traditional design method is the main arm of the three nodes, the main arm length, arm length, and each section, Boom structure, determine the size of hydraulic cylinders.

Keywords:Telescopic boom; hydraulic cylinder; Structure of boom ;ansys

前言

近年来,随着社会的发展,社会生活中对起重机的需求越来越大,但是,与国外汽车起重机相比,国外汽车起重机技术得到了飞速发展,所以国内起重机的研发越来越紧迫。然而对于汽车起重机整机而言,汽车起重机伸缩机构设计的好坏直接影响整机的性能。因此汽车起重机的伸缩臂架设计技术被作为目前汽车起重机急需解决的主要关键技术之一。本课题针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。目前伸缩臂机构有两种形式,绳排系统和单缸插销式。绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。而单缸插销式伸缩臂技术是典型的机、电、液一体化系统.而本课题的汽车起重机伸缩臂采用的是双缸双绳排系统,槽形截面,通过传统的设计方法对主臂的三铰点、主臂的长度、及每节臂的长度、液压缸尺寸进行确定,对臂架进行受力分析,利用有限元对臂架进行分析。

1 绪论

1.1国内外汽车起重机发展概况及趋势

1.1.1国内汽车起重机发展概况及趋势

中国的汽车式起重机诞生于上世纪的10年代,经过了近30年的发展,期间有过3次主要的技术改进,分别为70年代引进苏联的技术,80年代引进日本的技术,90年代引进德国的技术。但是总体来说,中国的汽车式起重机产业始终走着自主创新的道路,有着自己清晰的发展脉络,尤其是进几年,中国的汽车式起重机产业取得了长足的发展,虽然与国外相比还有一定的差距,但是这个差距正在逐渐的缩小。而且我国目前在中小吨位的汽车式起重机的性能已经完好,能够满足现实生产的要求。在不久的将来,我国的汽车式起重机行业一定会发展成为一个发展稳定,市场化程度高的成熟产业。

许多专家认为,高速发展的市场,是中国汽车式起重机产业各个厂商有利的技术创新基础和环境。近几年,中国汽车式起重机产业除了一家较小的公司与日本起重机品牌厂家合资以外,其余厂家一直在追赶国外先进水平的进程中,一直坚持自主的技术创新道路,基本上没有整体引进国外技术的做法,也使的中国汽车式起重机产业在达到和接近国际先进水平的同时,在产品技术上有明显的中国特质。

中国汽车式起重机已经大量使用PLC可编程集成控制技术,带有总线接口的液压阀块,液压马达,油泵等控制和执行元件已较为成熟,液压和电器已实现了紧密的结合。

可通过软件实现控制性能的调整,大幅度简化控制系统,减少液压元件,提高系统的稳定性,具备了实现故障自动诊断,远程控制的能力。

当前我国新一代汽车起重机产品,起重作业的操作方式,大面积应用先导比例控制,具有良好的微调性能和精控性能,操作力小,不易疲劳。通过先导比例手柄实现比例输送多种负荷的无级调速,有效防止起重作业时的二次下滑现象,极大的提高了起重作业的安全性、可靠性和作业效率。

部分大型汽车式起重机还在伸缩臂上使用了单缸插销的伸缩技术,通过液压销作用,以单个液压油缸可完成多节伸臂的运动,并达到各种工况的程度控制和自动伸缩,改变了以往能不油缸加内部绳排的作业方式,使起重机相对更轻,拓展了起重机向更高工作高度发展的空间。

在走向国际市场的过程中,我国汽车式起重机产业近几年品质水平的快速提高,也得到了国际拥护的高度肯定,由于产品使用规范,用户的专业素质较高,出口产品的质量反馈比在过内有了明显的减少,产品反映较好。这都为中国汽车式起重机行业的发展打下了良好的基础。

1.1.2国外汽车起重机发展概况及趋势

目前世界上约有百余家企业生产汽车起重机,但著名的也就右十余家,如美国的格鲁夫、德国的利勃海尔、徳马克、日本加藤、多田野等。生产的汽车起重机品种有数百种,90年代以来,生产,销售各种吨位的起重机万余台。

汽车起重机的市场主要集中在东亚、北美和欧洲。东亚约占销售量的40%,北美和欧洲各约占20%。国外汽车起重机发展的主要特点可以归纳为:多品种生产,标准化程度高和一机多用。

目前,世界汽车起重机的生产,从技术上讲,德国利勃海尔公司略占优势,但从企业规模上讲,美国格鲁公司居世界首位。而生产量则是日本的多田野和藤加最多。市场总的趋势式供大于求,面对激烈竞争,国外各大公司除了纷纷增加投资、扩大生产、提高自身的竞争能力外,还通过联合或兼并来提高在国际市场的份额。如1984年,美国格鲁夫公司收购了英国老牌企业科尔斯公司。1987年,德国克虏伯公司收购了格的瓦尔德公司,称为当时德国最大的起重机公司,但该公司1995年又被美国格鲁夫公司收购。1990年,日本多田野兼并了德国法恩公司等。

在起重机行业内,国外的大型汽车起重机的发展比我国迅速,在技术和运用上已相

当成熟,目前国际市场对汽车起重机的需求在不断增加,从而使国外各大汽车式起重机制企业在生产中更多的应用优化设计,机械自动化和自动化设备,这对起重机行业的发展造成了很大的影响。目前国外的起重机企业主要是生产大吨位的起重机,而且有完善的设计体系,和一批先进的研发人员,不断的进行创新和完善。国外的制造企业现在已经达到规模化的生产,技术含量比较高,而且液压技术和电子技术在汽车起重机的设计中也已广泛的应用,很多企业的品牌在用户的心中已经打上了坚实的烙印,这也使的国外起重机的继续发展占有了更大的优势。

1.2伸缩臂结构发展现状

伸缩臂作为轮式起重机的主要受力构件,其重量一般占整机的13%~20%,而其在大型起重机的重量中所占的比例则更大。因此,伸缩臂的性能对大吨位轮式起重机在大幅度、高起升高度情况下性能的影响至关重要,而伸缩臂的关键技术在于伸缩机构的形式和臂架截面形式。

目前我国生产的轮式起重机以中、小吨位为主,普遍采用伸缩油缸加绳排的伸缩机构的形式,只是在细节上各具特点。该伸缩机构的特点是最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末节伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能。同时采用该形式的起重机在五节以上伸缩臂应用时难度较大。西方发达国家生产50吨以上的中、大吨位轮式起重机时,普遍采用单缸插销形式的伸缩机构。该形式伸缩机构的采用大幅度提高了起重机的起重性能。

从B~aChina2007年博览会上可以看出,椭圆形伸缩臂、单缸插销式伸缩机构、自动伸缩臂系统构成了以德国利勃海尔(UEBHERR)代表的西方先进伸缩臂技术的核心,代表当前世界最高水平,是轮式起重机伸缩臂技术的发展方向。LTM1300起重臂的截面也采用了椭圆形截面,其截面上弯板为大圆弧槽形板,下弯板为椭圆形槽形板,且由下向上收缩,其重量优化,抗扭性能显著,具有固有的独特稳定性和抗屈曲能力。

GROVE和TADANO采用大圆弧六边形截面,根据需要,腹板上设计横向和纵向加强筋,提高腹板的抗屈曲能力。KATO采用四边形截面,也采用加筋解决腹板的抗屈曲能力,大圆弧六边形截面在国内己广泛使用。

目前国内仅徐工集团徐州重型机械厂一家推出QAY130、QAY160、QAY200、QAY240、QAY300五种吨位单缸插销式伸缩臂技术的全地面起重机,并采用进口高强度钢板,双缸加双绳排的伸缩机构,在吊臂伸缩时,臂节之间有宽大的滑块,保证了主臂的同心度,使重量和受力较好的传递,增大起重能力。独特的吊臂对中装置,使伸缩更方便,但国内其它厂家目前还没有使用这种截面形式。

高强度钢四板拼焊,腹板

薄,制有大量密集重孔,

孔边镶固,孔之间加筋,

自重轻,承载力大,垂直

方向及侧向绕度小轮式起重机的伸缩式吊臂是一个双向压弯构件,除受有整体强度、刚度、稳定性的约束外,主要受局部稳定性约束,因此把伸缩臂制成为箱形截面是合理的。归纳起来,伸缩臂可以制成几种典型箱形截面:矩形、梯形、倒置梯形、五边形、六边形、八边形、大圆角矩形以及椭圆形截面等。目前,

利勃海尔推出的椭圆形截面是全地面起重机针对不同机型,它所设计的截面形状也有一定的差异。表1.2列举了国外一些主要的起重机制造厂商所选用的吊臂截面形状。

表1.2 国外主要起重机制造厂商选用的吊臂截面形式及特点

公司截面形式截面特点

Grove

F.M.C

Gottwald

P.P.M

KATO

Liebherr

σc=700Mpa调制合金

钢,八角形压型后焊接

五边形,“V”型底部

突缘,重量轻而坚固,

受压稳定性好,侧向移

动小

σ1=700Mpa,高强钢,

焊接工艺先进

两块不同厚度板压制

成大圆角槽形,在中线

拼焊,受力合理

高强钢四角钢加固,侧

板较薄,大强度/重量

比,吊臂垂直于侧向绕

度较小

1.3伸缩臂机构形式介绍

1.3.1绳排系统

绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。现在在100吨以下的起重机上应用的比较广泛,其原理如图,就是简单的滑轮原理。对于四节臂以上起重臂的伸缩机构又分为以下两种:多缸或多级缸加一级绳排、单缸或多缸加两级绳排。DEMAG和TADANO部分产品采用第一种伸缩机构,这种伸缩机构的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用液压缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。在过去,徐重、浦沅、长起跟随LIEBHERR技术多年,普遍使用第二种伸缩机构,使用单缸或双缸加绳排实现四节或五节臂的伸缩。这种伸缩方式在国内最先进,但解决五节臂以上起重臂的伸缩难度很大。北起、泰起、锦重等厂家采用第一种伸缩机构(多个单级缸加一级绳排),但由于技术落后,第二缸、第三缸的进回油依靠软管卷筒输送。现在,大多数5节臂的起重机使用的是双缸双绳排的技术,一般为第2节臂独立伸缩,第3.4.5节臂同步伸缩;4节臂的一般单缸双绳排为2.3.4节同步伸缩。其局限性在于最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能;同时,对于大吨位的起重机,对钢丝绳的要求也非常高,符合要求钢丝绳非常难加工。虽然有些日本企业有将绳排技术发展到6节甚至更多,但是对于中大吨位起重机,一般企业还是优先考虑单缸插销技术。

1.3.2单缸插销系统

单缸插销式伸缩臂技术是典型的机、电、液一体化系统.以较典型的德国利勃海尔为例,作为伸缩臂伸缩的执行机构,主要由(见图)1.伸缩缸、2.拔销机构、3.缸销等组成,为保证伸缩臂伸缩过程的安全性、可靠性,该机构采用内置式互锁系统即在伸缩油缸上装的弹簧驱动缸销销定伸缩臂后,才机械释放该节臂和其他节臂的连接。该方式确保某一节伸缩臂和伸缩油缸互相锁定后才能释放该节臂和其它节臂的联接。利勃海尔将拔销装置置于伸缩机构上方,其优点是结构简单,自锁性强,便于实现;格鲁夫GROVE、德马格(DEMAG)、多田野(TADANO&FAUN)将拔销装置置于伸缩机构两侧,结构布置上比较困难,对加工、装配精度要求高,插拔销难度相对较大。缸销则都布置在伸缩机构的侧方。单缸伸缩机构要求动作灵活、可靠性高、响应速度快、互锁性好,否则,很难实现吊臂的可靠伸缩。此技术采用单缸、互锁的缸销和臂销、精确测长电子技术,优点是重量最轻,对整机稳定性的影响最小,但技术难度大、成本较高、臂长种类少、

伸缩时间长、臂长变化时麻烦。现在,徐重和浦沅等国内企业也成功研制出了此项技术,采用的是和LIEBHERR相似的拔销装置置于伸缩机构上方的形式。由于此技术对于电液的要求较高,尤其是在自动伸缩的PLC控制和伸缩系统的液压回路的设计上,国内企业的技术还不是太成熟,可靠性还不是太高,还有较长的路去走。

1.4本课题内容及重要意义

近年来,随着社会的发展,社会生活中对起重机的需求越来越大,所以起重机的研发越来越紧迫,由于汽车式起重机转场灵活,从而方便快捷,所以进几年我国的汽车式起重机发展很快。但是,与国外汽车式起重机相比,国外汽车式起重机技术得到了飞速发展,为了降低整机成本,提高性能,整机质量越来越小,在起重性能相同的情况下,自重约比十年前降低了20%左右,由于车辆自重的减小,使车辆采用尽可能少的轴数(尤其是大吨位起重机),这样,大大简化了车辆的结构,成本降低,同时提高了起重机的作业能力及使用经济性,所以,同等吨位的销售价较前十年有大幅下降,对中国国内市场造成了很大冲击,因此,对我国的汽车式起重机的生产者来说是一个严峻的考验。臂架是起重机的主要承载构件。起重机通过臂架直接吊载,实现大的作业高度与幅度。臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。

根据QAY50汽车起重机工作要求来确定伸缩机构的结构和传动方案,进而采用传统的设计方法对主臂的三铰点、主臂的长度、及每节臂的长度、臂架的结构、液压缸尺寸进行确定,对臂架进行受力计算,采用ANSYS对臂架进行有限元分析。

2 QAY50汽车起重机主要技术参数和工作级别

2.1 QAY50起重机主要技术参数

起重机的技术参数表征起重机的作业能力,汽车式起重机的主要技术参数包括起重量、起升高度、幅度、起重力矩等。这些参数表名起重机工作性能和技术经济指标,它是设计起重机的技术依据,也是生产使用中选择起重机技术性能的依据。

(1)起重量

起重机起吊重物的质量称为起重量,通常以Q表示,单位为kg或t。起重机的起重参数通常是以额定起重量表示的。所谓额定起重量是指起重机在各种工况下安全作业所容许的起吊重物的最大质量的值,它是随着幅度的加大而减小的。带有吊钩的起重机的额定起重量不包括吊钩和滑轮组的自重。

汽车式起重机的额定起重量随着吊臂的方位(侧方、后方、前方三个基本作业方位)不同而有所变化。汽车式起重机的额定起重量还分支腿全伸、不用支腿吊臂行驶3种情况。起重机吊重行使时,起重臂必须前置。起重机不用支腿作业和吊重行使时的额定起重量决定于轮胎、车桥(或轮对转向架)的承载能力。

如上所术,由于汽车式起重机的各种工况比较复杂,考虑的因素较多,额定起重量不只一个时,通常称额定起重量为最大起重量。此次设计的是50吨汽车式起重机的主臂,所以取起重量为Q=50t。

(2)起升高度

起升高度是指从地面或轨道顶面至取物装置最高起生位置的铅垂距离(吊钩取取钩环中心),单位为米。如果取物装置能下落到地面或轨面以下,从地面或轨面至取物装置最低下放位置间的铅垂距离称为下放深度。此时总起升高度H为轨面以上的起升高度h2和轨面以下的下放深度h3之和,H=h2+h3。

由于汽车式起重机的起升高度随着臂架仰角和臂架长度变化,在各种臂长和不同臂架仰角时可得相应的起升高度曲线。汽车式起重机起升高度的选择按作业要求而定。在确定起升高度时,应考虑配属的吊具、路基和汽车高度保证起重机能将最大高度的物品装入车内。

汽车式起重机的最大起升高度的确定是根据起重机作业要求和起重机总体设计的合理性综合考虑。参见《起重机设计手册》汽车式起重机技术参数表,如表2.1所示,50吨汽车式起重机的基本臂的范围为11.0∕9.0(米),最长主臂范围为38∕32(米),及QAY50吨汽车起重机的参考值,选择起升高度为基本臂作业10.4米,重机的参考值,选择起升高度为基本臂作业10.2米,最长主臂作业38米。图2.1所示为汽车起重机起升高度图

图2.1汽车起重机起升高度图

(3)幅度

旋转臂架式起重机处于水平位置时,回转中心线与取物装置中心线垂直之间的水平距离称为幅度(R)。幅度的最小值Rmax和最大值Rmin根据作业要求而定。在臂架变幅平面内起重机机体的最外边至取物中心铅垂线之间的距离称为有效幅度,有效幅度可为正值或副值。

汽车式起重机有效幅度通常是指使用支腿工作,臂架位于侧向最小幅度时,取物装置中心铅垂线至该侧两支腿中心连线的水平距离,它表示汽车式起重机在最小幅度时工作的可能性。汽车式起重机的幅度R如图2.1所示。参见表2.1,此次汽车式起重机的幅度R=3m。

(4)起重力矩

起重力矩是臂架类起重机主要技术数据之一,它等于额定起重量Q和其相对应的工作幅度R的乘积,即M=Q×R,起重力矩一般用t·m为单位。参见表1,Q=50t,R=3m,此次设计的汽车式起重机的起重力矩为M=Q×R=50×3=150t·m。同时参见表1可知,基本臂起重力矩为150 t·m,最长主臂的起重力矩为85 t·m。

2.2 QAY50汽车起重机的工作级别

(1)起重机利用等级

起重机在有效工作期间有一定总工作循环数,起重机作业的工作循环是从准备其吊物品开始到下一次其吊物品为止的过程。工作循环次数表征起重机的利用程度,是起重

机分级的基本参数之一。确定适当的使用寿命时要考虑经济,技术和环境等因素,同时还要考虑设备老化的影响。工作循环次数除了可根据经验确定,还可根据下式进行计算:

53600B 360013()300Q= 3.7410300Y H T ??????==?年(天)8(小时)(次)(秒)

(2.1) 式中 : Y —起重机的使用寿命以年计算,与起重机的类型、用途、环境、技术、经济因素有关。 由于本设计为50吨,参见《起重机设计手册》不同类型起重机使用寿命表,如表2.3所示,可知Y=13年。

B —起重机一年中的工作天数,取B=300天。

H —起重机每天工作小时数,取H=8小时。

T —起重机一个工作循环的时间,设定为T=300秒。

根据以上计算所得出的数据,5Q=3.7410?(次)

参见《起重机设计手册》起重机利用等级表,如表2.2所示,可以选择起重机的利用等级为5U ,起重机的 使用情况为 ,经常中等的使用。

表2.2 起重机利用等级 利用等

级 总的工作循环次数N

起重机使用情况 利用等级 总的工作循环次数N 起重机使用情况 0U 1.6410? 5U

5510? 经常中等的使

用 1U 3.2410? 6U 1510? 不经常繁忙使

2U

6.3410? 不经常使用 7U 2510? 3U

1.25510? 8U 4510? 繁忙的使用 4U

2.5510? 经常清闲的使

用 9U 4510?

表2.3 几种不同类型的起重机的使用等级

起重机类型 使用寿命

(年)

汽车起重机(通用汽车底盘) 10

小于16 11

轮胎起重机和汽车

起重机(专用底盘)

起 重 量 (t ) 16~40 12 >40~100 13 大于100 15 塔式起重机 小于10

10 等于和大于

10

16 桥式和门式起重机 工作级别 1A 、2A 30

3A 、4A 、5A 25

6A 、7A 20

履带起重机 10

门座和铁路起重机

25

(2) 起重机的载荷状态

载荷状态是起重机分级的另一个基本参数,它表明起重机的主要机构—起升机构受载的

轻重程度。载荷状态与两个因素有关:一个是实际起升载荷1Q ,与额定起升载荷max Q 之比,令一个是实际起升载荷1Q 的作用次数N1,与工作循环次数N 之比。

此次设计根据实际情况及汽车式起重机实际的使用情况,,可根据表 2.4选择Q K =0.125,即很少吊起额定载荷,一般起吊轻载荷。

表2.4 起重机的载荷状态及其名义载荷谱系数Q K

载荷状态 名义载荷谱系数

说明 1Q —轻

0.125 很少起升额定载荷,一般起升轻微载

荷 2Q —中 0.25 有时起升额定载荷,一般起升中等载

3Q —重

0.5 经常起升额定载荷,一般起升重载荷 4Q —特重

1.0 频繁的起升额定载荷

(3) 起重机工作级别的确定 划分起重机的工作级别,示为了对起重机金属结构和机构设计提供了合理的基础,它能使起重机胜任它需要完成的工作任务,起重机的工作级别使根据起重机的利用等级

和起重机的载荷状态而确定,根据《起重机设计手册》中,起重机工作级别的划分,如表2.5所示,可以确定,此汽车式起重机的工作级别为A4。

表2.5 起重机工作级别的划分

载荷状态

名义载荷谱系数Q K 利用等级 0U 1U 2U 3U 4U 5U 6U 7U 8U 9U

1Q —轻

0.125 1A 2A 3A 4A 5A 6A 7A 8A 2Q —中

0.25 1A 2A 3A 4A 5A 6A 7A 8A 3Q —重

0.5 1A 2A 3A 4A 5A 6A 7A 8A 4Q —特重 1.0 2A 3A 4A 5A 6A 7A 8A

3 伸缩臂传动方案和臂架截面的确定

3.1 伸缩臂传动方案的确定

主臂的伸缩机构很多,可以从两种角度进行分类,即按驱动形式的不同,以及各节臂间的伸缩次序关系不同进行分类。

按驱动形式的不同,可分为液压、液压—机械和人力三种。采用液压驱动时,执行元件选用液压油缸,利用缸体和活塞杆的相对运动推动,推动下节臂的伸缩,在设计三节臂伸缩机构时,为了减轻重量,还可以利用吊臂之间的伸缩比例,采用钢丝绳和滑轮组实现第三节臂的伸缩,以实现第三节臂的伸缩,这就形成了液压机械驱动。在某些情况下可以取消伸缩机构,代之采用人力驱动,或采用推杆和绳索的器件,而辅之以人工安装插销等方法伸缩吊臂,这就形成了人力驱动。这几种方法往往在小于等于三节臂的情况下使用。

对于拥有三节或三节以上的吊臂来讲,各节臂的伸缩方式可以由不同的选择,但是,由前面提到的大致可以分为三类。

(1)顺序伸缩:指吊臂在伸缩过程中,各节伸缩臂必须按一定先后顺序,完成伸缩动作。

(2)同步伸缩:指吊臂在伸缩过程中,各节伸缩臂同时以相同的形成比例进行伸缩。

(3)独立伸缩:指吊臂在伸缩过程中,各节臂均能独立进行伸缩。显然,独立伸缩构,

同样也可以完成顺序伸缩或同步伸缩的动作。

在现实中,三节伸缩臂或三节以上的伸缩机构,往往式上述几种伸缩机构的中和,而很少单独采用某一种伸缩机构。在三节伸缩臂时,基本上采用一个液压缸加一个滑轮组的同步伸缩机构。超过三节臂时,常用两个液压缸加一个滑轮组的伸缩机构,或采用三各液压缸的伸缩机构,五节臂时为两个液压缸加两个滑轮组,或最后一节的伸缩可用手动的或简单的插销式伸缩机构。

本次设计的四节臂伸缩,采用后种方法过于落后,顾采用第一种方法。即,用一个液压缸加两个滑轮组的伸缩方式。传动方案如图3.1

图3.1 伸缩臂传动方案图

传动过程:液压缸2向外伸出带动第2节臂伸出,同时由于钢丝绳的长度是不变的,而液压缸2向外伸出时钢丝绳1变长,从而钢丝绳6变短,使得第三节臂通过固定在液压缸2上的滑轮3向外伸出,当第三节臂向外伸出的时候由于钢丝绳的长度是不变的,钢丝绳8变长,从而钢丝绳9变短,使得第四节臂通过固定在三节臂上的滑轮向外伸出,最终按顺序的伸长,反之缩回过程同理。

基本臂二节臂三节臂四节臂

液压缸

3.2 伸缩臂架截面的确定

3.2.1伸缩臂架的截面形式分类

伸缩臂是受弯为主的双向压弯构件,除受有整体强度、刚度、稳定性的约束限制外,主要受局部稳定性约束。因此采用何种截面形式使吊臂的自重较小、材料的利用充分,是伸缩式吊臂设计的关键技术。

以下是目前伸缩式吊臂常见的截面形式(如图2.2所示):

.

归纳起来,伸缩臂可以制成几种典型箱形截面:矩形、梯形、倒置梯形、五边形、六边形、八边形、大圆角矩形以及椭圆形截面等。

其中,矩形截面是由翼缘板和腹板焊接而成的,它是目前轮式起重机伸缩臂中用得最多的截面形式。与其他截面形式相比,矩形截面的制造工艺简单,具有较好的抗弯能力和抗扭刚度,因此,中、小吨位轮式起重机的伸缩臂通常都采用这一形式,但是这种截面没有充分发挥材料的承载能力,为了使伸缩臂各节之间能很好地传递扭矩和横向力,需设附加支承。

梯形截面的上翼缘板窄,下翼缘板宽,截面中性层靠下能发挥上翼缘板的机械性能,提高腹板的稳定性,前部滑块可接近腹板布置,后部滑块传递给上翼缘板的集中力,因上翼缘板窄,产生的弯曲力矩减小。梯形截面的扭转刚度和横向刚度均较矩形截面大,但是,这种截面的下翼缘板宽,对局部稳定不利,材料性能得不到充分发挥,且需设侧向支承装置,这是梯形截面的缺点。

倒置梯形的下翼缘板窄,上翼缘板宽,对提高下翼缘板的局部稳定性很有好处,材料能得到充分利用,且和梯形截面一样,具有较大的横向刚度和扭转刚度,倒置梯形伸缩臂对安装变幅油缸较为有利,但是这种截面对上翼缘板的局部弯曲和腹板的稳定性不是很有利,亦需设侧向支承。

梯形和倒置梯形截面的伸缩臂通常用于大吨位的轮式起重机。八边形和大圆角矩形截面的下翼缘板和腹板的实际计算宽度较小,有利于提高抗失稳的能力。前后滑块均支承在四角处,伸缩臂各板不产生局部弯曲,且能较好地传递扭矩与横向力,因此这两种截面形式的伸缩臂能较好的发挥材料机械性能,减轻结构自重。对大吨位轮式起重机采用这种截面形式是合适的。制造这两种截面形式的吊臂,需要大型轧床,但是随着工业的发展,这两种形式的吊臂应用会逐渐增多。

LIEB班RR的LTM1300起重臂的截面采用了椭圆形截面,其截面上弯板为大圆弧槽形板,下弯板为椭圆形槽形板,且由下向上收缩,其重量优化,抗扭性能显著,具有固有的独特稳定性和抗屈曲能力。DEMAG也使用椭圆形吊臂截面形式。GROVE和TADANO采用大圆弧六边形截面,根据需要,腹板上设计横向和纵向加筋,提高腹板的抗屈曲能力。KATO采用四边形截面,也采用加劲筋解决腹板的抗屈曲能力。大圆弧六边形截面在国内己广泛使用,泰起在其新品QY50A上也首次使用,其它厂家目前还在使用四边形截面。目前,椭圆形起重臂的技术代表最高水平,其优势很明显,由于不需采用加筋,因而每节臂截面的变化很小,有利于减轻起重臂的重量,提高起重机的起重能力。但是截面的成型难度大,生产周期长。。

3.2.2吊臂截面的确定

对吊臂截面的设计是本次毕业设计的重点内容,因此参阅了国内外大量的资料,伸缩吊臂是轮式起重机中至关重要的部件,其重量一般占整机的13%~20%,而大型起重机这个比例则更大,这就导致起重机在大幅度下的起重量和大起重量下的起升高度急剧降低。因此,在满足各项设计指标的前提下,采用优化设计,尽可能降低吊臂自重,尤其对大吨位起重机具有十分重要的意义。减轻吊臂重量,增大吊臂刚度是改善起重性能的重要途径。因此我从这个角度来确定吊臂截面,下面是我确定截面为U型截面的过程。

首先是选择吊臂的材料,是最直接的减轻吊臂重量的途径,全地面起重机伸缩臂的材料一般是16Mn,最好采用高强度的低合金钢。但在材料确定的条件下,只能改进吊臂的形状,也就是吊臂截面的形状,来改进吊臂的性能。吊臂的截面形状是决定吊臂重量的主要因素,近几年来,随着吊臂材料强度级别的提高,如何充分利用材料的性能,结构专家提出了如何解决强度安全储备与薄板局部失稳安全储备均衡的问题,从而推动吊臂截面从四边形向六边形、多边形、椭圆形、U形发展。根据吊臂材料的发展趋势,

在最近几年内,材料强度级别的提高将受到限制,更高强度级别的材料将很难面世,U 形吊臂技术将是最近几年内的最高水平。然而,吊臂是一个可以伸缩的阶梯梁,目前,除基本臂可以加强外,许多生产厂家将伸缩臂设计成等截面梁,根据吊臂的受力特点,变截面伸缩臂将使吊臂更轻,性能更强。为了提高起重作业性能,减轻自重,起重臂截面形状采用“U”形截面。该种截面是经过优化计算得出的最优的截面形式,从而能最大限度地发挥材料的力学性能。

作为吊臂来说,总希望在不发生局部失稳的前提下,壁厚设计得薄一点,截面设计大一些。但由于受整机尺寸的限制,吊臂外形尺寸不能增大,因而只能在截面总高和总宽保持不变的条件下进行截面的优化,伸缩臂的箱形截面采用U型。其高宽比在1.3~1.8范围之内。侧板一般选用薄钢板,厚度在3.2~8mm范围内,侧板薄一些对于减轻吊臂重量极为有效,但必须认真考虑其局部失稳的问题,有的在钢板上隔一定距离轧一条横向筋,以增加其强度。有的为了减轻重量也可在侧板上开大孔,并卷边加强。下底板一般做得比上盖板厚些,一方面满足下底板局部稳定性的需要,为了减轻自重,吊臂应尽量做成等强度梁。具体到每节臂的优化设计问题,我们考虑两个非常重要的工况:基本臂工况和全伸臂工况。由基本臂工况通过优化设计确定基本臂截面尺寸和壁厚,并由各节臂之间的间隙确定其余各节臂的截面尺寸,然后再由全伸臂工况确定其它节臂的壁厚。

U型的截面最危险处为四角焊缝处,该处应力最大,也是最易产生应力集中的地方。U型截面有大的抗弯模量和较高的抵抗局部失稳的能力。确定U型为较合理的形状。U 型截面的横向抗弯刚度和抗扭刚度比其他形式好。U型侧板的上半部拉应力较大,提高了侧板的稳定系数。下底板做成圆形,是为了提高下底板的抗局部失稳的能力,和减少侧板的计算宽度。这样以来可以采用更薄钢板,而充分利用钢板的厚度,特别在采用高强度钢材时。因为高强度钢材的抗局部失稳的能力并不比普通钢板高。吊臂不同部位可以采用不同强度的钢材,以充分发挥钢材作用,如上盖板才高强度,下盖板采用普通钢。

根据以上阐述的理论,在以下的设计中,将采用焊接方式为主(各种焊接方式应用到合适的位置),螺纹连接以及铰接为辅方式进行臂架的连接。QAY50全地面起重机的举升臂主体材料为合金结构钢适当的选取16Mn进行加固。上下底板和腹板承受不同的载荷有的弯矩大,有的正应力大,故采用不同的材料。在选取材料时应遵循性价比最高选择,以优化减轻臂架重量为最终目的。以达到对臂架乃至起重机性能的优化的目的。

图3.2.2臂架截面尺寸图

根据公式1l = 2l +0.142l ,四节的尺寸依次为:455×660、420×600、

385×540、350×480 (mm )见图3.2.2

4伸缩臂设计计算

4.1起重机伸缩臂尺寸的确定

此次设计的50吨汽车式起重机的起升高度为38米,臂架材料选用HG6O 。参见表

4.1,选择吊臂的节数为4。主臂尺寸的的确定包含以下的的内容:一、 吊臂根部铰点位置的确定,二、吊臂各节尺寸的确定,三、变幅液压缸铰点的确定,四、臂架的受力计算和分析,五、伸缩臂结构的校核。

表4.1 起重机吊臂节数

最大起升高度

H(m)

10~15 16~19 20~29 30~40

吊臂节数K 3 2~3 3~4 4~5 4.1.1 吊臂跟部铰点位置的确定

设e 为吊臂根部铰点O 至回转中心线的水平距离,h 为铰点O 到回转支承装置上表面的垂直距离,则铰点O 的坐标为(e ,h )见图5.1.1。设0e 是铰点O 至基本臂截面中心线距离,设下标i 表示不同位置的0e 值的序号(i=1,2,…,n )当第i 个0e 值为i 0e 时,铰点O 的位置为)

,(i i h e 。i 0e 带有符号,在吊臂中心线以下为负,反之为正。则:2i 002i 1i h e h h h h -+=-=

R sin e e cos l e 21i 02i i -++=θθ)(

图4.1.1 三铰点有关尺寸图

吊臂根部铰点的位置与吊臂长度,起升高度和幅度有关。设吊臂的工作长度为lw 。即: ()01()()sin (10.2 1.5) 2.410.2cos sin 56

H b h e e m θθ?+--+-==(4.1) 从而得出0l =10.2m 。

式中:H —基本臂的起升高度,H=10.2m 。

b —吊头距滑轮组的最短距离,b=1.5m 。

0e 、1e —根部铰点和头部滑轮轴心离吊臂基本截面轴心的距离,并带有正负号,在中心线以下者为正,以上为负。由于01()cos e e θ-此项数值较小,所以在计算时可以不计。

h —根部铰点离地距离,参见QAY50的h 值,取h=2.4m 。

θ—吊臂仰角,其值小于最大仰角max θ=80°即'θ=0.7amax 。即'θ=56°。

吊臂根部离铰点的距离e

''0min 01cos ()sin 10.2cos563 1.73()e l R e e m θθ=---=?-=(4.2)

得出吊臂根部离铰点的距离e=1.73m 。所以取距离e=1.73m 。

吊臂根部铰点离回转平面的高度0h 为

021h h h h =--=2.4-0.16-1.4=0.84m

式中:2h ——为回转支承装置的高度,2h = 0.16m 。

1h ——为起重机汽车底盘的高度,1h =1.4m 。

将最大起升高度H1带入公式得出主吊臂最大长度max l 。

毕业设计20~25TM自升式塔式起重机液压系统设计

前言 (3) 第一章设计任务书 (4) 1.设计题目 (4) 2.设计任务 (4) 第二章液压缸各部分尽寸计算和结构设计 (5) 第一节:计算液压缸的主要结构尺寸 (5) 第二节:缸筒壁厚计算 (10) 第三节:液压缸结构设计 (14) 1.缸体缸的连接形式 (14) 2.活塞杆与活塞的连接结构 (16) 3.活塞与活塞杆处密封选用 (16) 4.液压缸的缓冲装置 (17) 5.液压缸的排气装置 (17) 第三章液压系统主要参数分析计算 (19) 第一节:工况分析 (19) 1、液压缸载荷的组成与计算 (19) 第二节:初选系统工作压力 (20) 第四章液压元件的选择 (22) 第一节:液压泵工作压力的泵定 (22) 第二节:计算液压缸或液压马达所需流量 (22) 第五章拟定液压系统回路 (29) 第一节:调速方案拟定 (29) 1、进油节流调速回路 (29) 2、回油节流调速回路 (30) 3、旁路节流调速 (30) 第二节:方向控制回路拟定 (32) 第三节:液压动力源选择 (33) 第四节:液压系统的组合 (34) 第五节:绘制液压系统图 (35) 第六章、液压系统主要性能估算 (36) 第一节:液压系统压力损失 (36) 第二节:液压系统发热温升计算 (39) 参考文献 (45) 中文摘要

本设计是依据现场收集的数据资料而进行的液压系统设计,针对原始数据对液压系统的工况进行了分析,并确定了系统的工作压力和主要元件的结构参数。对液压元件进行了选择,拟定了液压系统图。对液压缸各部分尺寸进行了计算,各部分结构进行了设计。 关键词:液压系统,工况分析,元件选择,系统图确定,液压缸尺寸计算,结构设计

桥式起重机毕业设计

桥式起重机毕业设计 由于工业生产规模不断扩大生产效率日益提高以及产品生产过程中物料装卸搬运费用所占比例逐渐增加促使大型或高速起重机的需求量不断增长起重量越来越大工作速度越来越高并对能耗和可靠性提出更高的要求。起重机已成为自动化生产流程中的重要环节。起重机不但要容易操作容易维护而且安全性要好可靠性要高要求具有优异的耐久性、无故障性、维修性和使用经济性,起重机的出现大大提高了人们的劳动效率以前需要许多人花长时间才能搬动的大型物件现在用起重机就能轻易达到效果尤其是在小范围的搬动过程中起重机的作用是相当明显的。在工厂的厂房内搬运大型零件或重型装置桥式起重机是不可获缺的。桥式起重机作为物料搬运机械在整个国民经济中有着十分重要的地位。经过几十年的发展我国桥式起重机制造厂和使用部门在设计、制造工艺设备使用维修、管理方面不断积累经验不断改造推动了桥式起重机的技术进步。本论文主要通过电气系统的设计使5t桥式起重机规定的各种运动要求。现根据起重机的新理论、新技术和新动向结合实例简要论述国外先进起重机的特点和发展趋势。 1.1起重机的特点和发展趋势现根据起重机的新理论、新技术和新动向结合实例简要论述国外先进起重机的特点和发展趋势。1.1.1大型化和专用化由于工业生产规模的不断扩大生产效率日益提高 以及产品生产过程中物料装卸搬运费用所占比例逐渐增加促使大型或高速起重机的需求量不断增长。起重量越来越大工作速度越来越高并对能耗和可靠性提出更高的要求。起重机已成为自动化生产流程中的重要环节。起重机不但要容易操作容易维护而且安全性要好可靠性要高要求具有优异的耐久性、无故障性、维修性和使用经济性。目前世界上最大的浮游起重机起重量达6500t最大的履带起重机起重量达3000t最大的桥式起重机起重量为1200t集装箱岸边装卸桥小车的最大运行速度已达350m/min堆垛起重机最大运行速度是240m/min垃圾处理用起重机的起升速度达100m/min 。工业生产方式和用户需求的多样性使专用起重机的市场不断扩大品种也不断更新以特有的功能满足特殊的需要发挥出最佳的效用。例如冶金、核电、造纸、垃圾处理的专用起重机防爆、防腐、绝缘起重机和铁路、船舶、集装箱专用起重机的功能不断增加性能不断提高 适应性比以往更强。德国德马格公司研制出一种飞机维修保养的专用起重机在国际市场打开了销路。这种起重机安装在房屋结构上跨度大、起升高度大、可过跨、停车精度高。在起重小车下面安装有多节伸缩导管与飞机维修平台相连并可作360度旋转。通过大车和小车的位移、导管的升降与旋转可使维修平台到达飞机的任一部位进行飞机的维护和修理极为快捷方便。 1.1.2模块化和组合化用模块化设计代替传统的整机设计方法将起重机上功能基本相同的构件、部件和零件制成有多种用途有相同联接要素和可互换的标准模块通过不同模块的相互组合形成不同类型和规格的起重机。对起重机进行改进只需针对某几个模块。设计新型起重机只需选用不同模块重新进行组合。可使单件小批量生产的起重机改换成具有相当批量的模块生产实现高效率的专业化生产企业的生产组织也可由产品管理变为模块管理。达到改善整机性能降低制造成本提高通用化程度用较少规格数的零部件组成多品种、多规格的系列产品充分满足用户需求。目前德国、英国、法国、美国和日本的著名起重机公司都已采用起重机模块化设计并取得了显著的效益。德国德马格公司的标准起重机系列改用模块化设计后比单件设计的设计费用下降12% 生产成本下降45%经济效益十分可观。德国德马格公司还开发了一种KBK柔性组合式悬挂起重机起重机的钢结构由冷轧型轨组合而成起重机运行线路可沿生产工艺流程任意布置可有叉道、转弯、过跨、变轨距。所有部件都可实现大批量生产再根据用户的不同需求和具体物料搬运路线在短时间内将各种部件组合搭配即成。这种起重机组合性非常好操作方便能充分利用空间运行成本低。有手动、自动多种形式还能组成悬挂系统、单梁悬挂起重机、双梁悬挂起重机、悬臂起重机、轻型门式起重机及手动堆垛起重机甚至能组

汽车起重机毕业设计

摘要 随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。本文通过对徐工50吨汽车起重机主臂进行研究,进一步进行主臂设计,通过计算对主臂的三铰点、主臂的长度、及每节臂的长度、液压缸尺寸进行确定,选择零部件,确定主臂伸缩方式及主臂内钢丝绳的缠绕方法,通过SOLID WORKS软件对主臂进行三维建模。 关键词:50吨汽车起重机、主臂设计、三铰点、伸缩方式、三维建模

Abstract With the rapid development of economic construction, China's infrastructure is gradually increase the intensity, road traffic, airports, ports, water conservancy and hydropower, municipal construction of infrastructure such as the scale of construction is also growing, crane truck crane market demand with the increase. Based on the Xu Gong 50 tons of truck crane boom study, further boom design, by calculating the main arm of the three hinges, the main arm length, and the length of each arm, hydraulic cylinder size identify, select Parts and components, identify the main telescopic arm and the boom in the way of winding rope method, SOLID WORKS software on the main arm for three-dimensional modeling. Keywords: 50-ton truck crane,the boom design,the three hinge points ,stretching,three-dimensional modeling

20t75桥式起重机毕业设计

20t75桥式起重机毕业设计 摘要 桥式起重机主要应用于大型加工企业,如钢铁、冶金和建材等行业,完成生产过程中的起重和吊装等工作。其中用于生产车间的桥式起重机,是起重机的一个主要类型,由于起重机行驶在高空,作业范围能扫过整个厂房的建筑面积,具有非常重要的和不可替代的作用,因而深受用户欢迎,得到了很大发展。 桥式起重机主要由机械部分、金属结构和电气三大部分所组成。机械部分是指起升、运行、变幅和旋转等机构,还有起升机构,金属结构是构成起重机械的躯体,是安装各机构和支托它们全部重量的主体部分。电气是起重机械动作的能源,各机构都是单独驱动的。 构成桥式起重机的主要金属结构部分是桥架,它横架在车间两侧吊车梁的轨道上,并沿轨道前后运行。除桥架外,还有小车,小车上装有起升机构和运行机构,可以带着吊起的物品沿桥架上的轨道运行。于是桥架的前后运行和小车沿桥架的运行以及起升机构的升降动作,三者所构成的立体空间范围是桥式起重机吊运物品的有效空间。通用桥式起重机一般都具有三个机构:起升机构(起重量稍大的有主副两套起升机构)、小车运行机构和大车运行机构。另外还包括栏杆、司机室等。 本论文研究的是电动双梁桥式起重机,额定起重量75/20t。设计的主要内容是小车运行机构和小车的起升机构的设计计算,大车的起升机构的主要计算。

目录 第一章背景技术 (1) 第二章文献评估 (6) 第三章起重机的技术与说明 (11) 3.1主起重小车起升机构计算 (11) 3.2主起重小车运行机构计算 (20) 3.3副起重小车起升机构计算 (29) 3.4副起重小车运行机构计算 (38) 3.5大车运行机构计算 (47) 致谢 (56) 参考文献 (56)

双立柱巷道物流堆垛起重机的毕业设计

摘要 随着世界经济的持续发展和科学技术的突飞猛进,现代物流作为现代经济的重要组成部分和工业化进程中最为经济合理的综合服务模式,正在全球范围内得以迅速发展。自动化立体仓库作为现代物流系统的重要组成部分,是一种多层存放货物的高架仓库系统,它是在不直接进行人工干预的情况下自动地存储和取出物流的系统。它是现代工业社会发展的高科技产物,对提高生产率、降低成本有着重要意义。 本文以设计了一台能在仓库中运输、堆取货物的机械设备——双立柱式巷道堆垛起重机,并着重分析了其升降机构、伸叉机构、行走机构等机构的工作原理,并对各机构进行分析设计、选取与尺寸计算。内容包括:总体运动方案设计和结构分析、起升机构的设计、伸叉机构设计、行走机构设计、机体支架设计及其他装置设计等内容。各机构以电机的选取入手,通过对钢丝绳、卷筒、链轮链条、皮带轮皮带的工作性能的分析设计计算与选取,从而设计合适的双立柱式巷道堆垛机起重机的机架,进而设计一台性能完备的双立柱式巷道堆垛起重机。 关键词:双立柱;自动化仓库;巷道;物流;堆垛起重机;设计

ABSTRACT Along with continuously develop of the science technology and world economy, modern logistics which are an important part in the modern economy and a most economic reasonable comprehensive service mode in the process of industrialization, develops quickly in the global scope. Automated three-dimensional storehouse as an important composition part in logistics, is one kind of multilayered depositing cargo high structure warehouse systems. It dose not directly carries on the manual intervention in the situation automatically to save and to take out the system which the thing flows. It is the high tech product out of the development of modern industry society, which have the vital significance to enhance the productivity and reduce the cost. This paper is taking designing a machine named double pillar alley Stacking Crane of engaging in piling things or transportation in storehouse. It analyses it’s hoisting mechanism, stretch fork mechanism , walk mechanism, working principle, and it’s aimed at each mechanism to design, select , and size’s calculate of double post alley stacking crane. Overall sport scheme’s design and analyze of structure, the design of hoisting mechanism , stretch fork’s mechanism design , walk mechanism’s design, organism frame design and other installation designs. Each mechanism with generator select to start, through calculating and selecting of the character of service of wire rope, reel, sprocket chain and the ship leather belt of leather belt to analyze and design, so to design the suitable frame of double pillar alley stacking crane, and then to design a double pillar alley stacker of complete natural capacity Keyword: Double Pillar; Automated Three-dimensional Storehouse; Alley; Logistics; Stacking Crane; Design

桥式起重机毕业设计论文

DQ型吊钩桥式起重机三维结构设计 摘要 随着我国制造业的发展,桥式起重机越来越多的应用到工业生产当中。在工厂中搬运重物,机床上下件,装运工作吊装零部件,流水线上的定点工作等都要用到起重机。起重机中种数量最多,在大小工厂之中均有应用的就是小吨位的起重机,小吨位的桥式起重机广泛的用于轻量工件的吊运,在我国机械工业中占有十分重要的地位。但是,我国现在应用的各大起重机还是仿造国外落后技术制造出来的,而且已经在工厂内应用了多年,有些甚至还是七八十年代的产品,无论在质量上还是在功能上都满足不了日益增长的工业需求。如何设计使其成本最低化,布置合理化,功能现代化是我们研究的课题。本次设计就是对小吨位的桥式起重机进行设计,主要设计内容是QD型吊钩桥式起重机的三维造型结构设计,其中包括桥架结构的布置计算及校核,主梁结构的计算及校核,端梁结构的计算及校核,主端梁连接以及大车运行机构零部件的选择及校核。 关键词:起重机;大车运行机构;桥架;主端梁;小吨位

ABSTRACT As China's manufacturing industry, more and more applications crane to which industrial production. Carry a heavy load in the factory, machine parts up and down, the work of lifting parts of shipment, assembly line work should be fixed on the crane is used. The largest number of species of cranes, both in the size of the factory into the application is small tonnage cranes, bridge cranes small tonnage of lightweight parts for a wide range of lifting, in China's machinery industry plays a very important position. However, our current application, or copy large crane behind the technology produced abroad, and has been applied in the factory for many years, and some 70 to 80 years of products, both in quality or functionality are not growing to meet the industrial demand. How to design it the lowest cost, rationalize the layout, function modernization is the subject of our study. This design is for small tonnage bridge crane design, the main design elements are QD crane structure and operation of institutions, including the bridge structure, calculation and checking the layout, the main beam structure calculation and checking , end beams calculation and checking, the main end beam connect and run the cart and checking body parts of choice. Keywords: Crane;The moving mainframe;Bridge;Main beam and end beam;Small tonnage

塔式起重机设计毕业设计

塔式起重机设计毕业设计 目录 第一章关于塔式起重机…………………………………… 1.1 设备特点与安全装置 (1) 1.2 塔式起重机的安全使用与管理…………………(1-4) 1.3 塔式起重机的检验要点 (5) 第二章塔机小车吊臂设计………………………………… 2.1吊臂的主要结构形式及主要寸 (5) 2.2 吊臂的主要材料 (5) 2.3 吊臂的机构形式 (5) 2.4 吊臂的尺寸…………………………………………(5-6) 2.5 吊点位置的确定 (6) 2.6 吊臂运输单元划分…………………………………(6-7) 2.7 吊臂计算简图、载荷、内力计算及在和组合 (7) 2.8 吊臂自重小车及变幅机构引起的内力………… (7-8) 2.9 吊重引起的内力……………………………………(8-10) 2.9.1 水平反力HA(HB)产生的偏心弯矩…………… (10-11) 2.9.2 风载引起的内力…………………………… (11-12) 2.9.3 回转水平惯性力……………………………… (12-13) 2.9.4 起升绳牵引力产生的轴心压力 (13) 2.9.5 小车轮压产生下弦局部弯矩 (14) 第三章吊臂截面的选择计算………………………

3.0 吊臂的几何特征尺寸计算…………………… (14-19)

3.1 整体稳定性的计算……………………………(19-23) 3.2 单肢(上、下弦杆)验算………………………(23-26) 3.3 缀条的计算……………………………………(26-28) 3.4 整体强度计算…………………………………(28-29) 参考文献……………………………………………………… 致谢……………………………………………………………

塔式起重机设计说明书讲解

设计题目:QTZ40塔式起重机总体及塔身的优化设计设计人: 设计项目计算与说明结果 前言 塔式起重机概述 塔式起重机发展情况 第1章前言 1.1 塔式起重机概述 塔式起重机是一种塔身竖立起重臂回转的起重机械。在工业与民用建筑施工中塔式起重机是完成预制构件及其他建筑材料与工具等吊装工作的主要设备。在高层建筑施工中其幅度利用率比其他类型起重机高。由于塔式起重机能靠近建筑物,其幅度利用率可达全幅度的80%,普通履带式、轮胎式起重机幅度利用率不超过50%,而且随着建筑物高度的增加还会急剧地减小。因此,塔式起重机在高层工业和民用建筑施工的使用中一直处于领先地位。应用塔式起重机对于加快施工进度、缩短工期、降低工程造价起着重要的作用。同时,为了适应建筑物结构件的预制装配化、工厂化等新工艺、新技术应用的不断扩大,现在的塔式起重机必须具备下列特点: 1.起升高度和工作幅度较大,起重力矩大。 2.工作速度高,具有安装微动性能及良好的调速性能。 3.要求装拆、运输方便迅速,以适应频繁转移工地的需要。 QTZ40型自升式塔式起重机,其吊臂长40米,最大起重量4吨,额定起重力矩40吨米。是一种结构合理、性能比较优异的产品,比较目前国内外同规格同类型的塔机具有更多的优点,能满足高层建筑施工的需要,可用于建筑材料和构件的调运和安装,并能在市内狭窄地区和丘陵地带建筑施工。整机结构不算太大,可满足中小型施工的要求。 本机以基本高度(独立式)30米。用户需高层附着施工,只需提出另行订货要求,即可增加某些部件实现本机的最大设计高度100米,也就是附着高层施工可建高楼32层以上。 1.2 塔式起重机发展情况 塔式起重机是在二次世界大战后才真正获得发展的。战后各国面临着重建家园的艰巨任务,浩大的建筑工程量迫切需要大量性能良好的塔式起重机。欧洲率先成功,1923年成

毕业设计 桥式起重机小车设计计算

摘要 本次设计课题为32/5t通用桥式起重机机械部分设计,我在参观,实习和借鉴各种文献资料的基础上,同时在老师的精心指导下及本组成员的共同努力下完成的。 通用桥式起由于该机械的设计过程中,主要需要设计两大机构:起升机构、运行机构能将我们所学的知识最大限度的贯穿起来,使我们学以至用。因此,以此机型作为研究对象,具有一定的现实意义,又能便于我们理论联系实际。全面考察我们的设计能力及理论联系实际过程中分析问题、解决问题的能力。由于我们的设计是一种初步尝试,而且知识水平有限,在设计中难免会有错误和不足之处,敬请各位老师给予批评指正,在此表示感谢。 关键词: 桥式起重机小车起升机构。

摘要………………………………………………………………………..…..…………….. - 1 -概述 ......................................................................................................................................... - 2 - 第一章主起升机构计算.......................................................................................................... - 5 - 1.1 确定传动方案,选择滑轮组和吊钩组....................................................................... - 5 - 1.2 选择钢丝绳................................................................................................................... - 5 - 1.3 确定卷筒尺寸,转速及滑轮直径.................................................................................. - 5 - 1.4 计算起升静功率........................................................................................................... - 6 - 1.5 初选电动机................................................................................................................... - 7 - 1.6 选用减速器................................................................................................................... - 7 - 1.7 电动机过载验算和发热验算....................................................................................... - 8 - 1.8 选择制动器................................................................................................................... - 8 - 1.9 选择联轴器................................................................................................................... - 9 - 1.10 验算起动时间............................................................................................................. - 9 - 1.11 验算制动时间........................................................................................................... - 10 - 1.12高速轴计算................................................................................................................ - 11 - 第二章小车副起升机构计算.................................................................................................. - 13 - 2.1 确定传动方案,选择滑轮组和吊钩组........................................................................ - 13 - 2.2 选择钢丝绳................................................................................................................. - 13 - 2.3 确定卷筒尺寸并验算强度......................................................................................... - 13 - 2.4 计算起升静功率......................................................................................................... - 14 - 2.5 初选电动机................................................................................................................. - 14 - 2.6 选用减速器................................................................................................................. - 15 - 2.7 电动机过载验算和发热验算..................................................................................... - 15 - 2.8 选择制动器................................................................................................................. - 16 - 2.9 选择联轴器................................................................................................................. - 16 - 2.10 验算起动时间........................................................................................................... - 17 - 2.11 验算制动时间........................................................................................................... - 17 - 2.12 高速轴计算............................................................................................................... - 18 - 第三章小车运行机构计算.................................................................................................... - 21 - 3.1 确定机构传动方案..................................................................................................... - 21 - 3.2 选择车轮与轨道并验算其强度................................................................................. - 21 - 3.3 运行阻力计算............................................................................................................. - 22 - 3.4 选电动机..................................................................................................................... - 23 - 3.5验算电动机发热条件.................................................................................................. - 23 - 3.6 选择减速器................................................................................................................. - 24 - 3.7 验算运行速度和实际所需功率................................................................................. - 24 - 3.8 验算起动条件............................................................................................................. - 24 - 3.9 按起动工况校核减速器功率..................................................................................... - 25 - 第四章小车安全装置计算...................................................................................................... - 29 - 设计小结.................................................................................................................................... - 31 - 致谢 ....................................................................................................................................... - 32 - 参考文献.................................................................................................................................... - 33 -

桥式起重机设计毕业设计分解

新鄉学院 2012届 毕业论文(设计) 题目:桥式起重机设计(小车运行机构设计) 学位申请人姓名陈金龙 学号0905031067 所在学院名称机电工程学院 专业名称数控技术 指导教师姓名唐军 指导教师职称 完成时间:2012年5月9日

目录 内容摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1. 绪论 (2) 1.1起重机发展展望 (2) 1.2现状及国内外发展趋势 (4) 1.3起重机设计的总体方案 (4) 2.起重机的种类 (4) 2.1轻小型起重机设备 (4) 2.2桥式起重机 (4) 2.3门式起重机 (5) 2.4其它类型起重机 (6) 3.小车运行机构的计 (7) 3.1主要参数和机构布置简图 (7) 3.2轮压的计算 (7) 3.3电动机的选择 (8) 3.4制动器的选择 (11) 3.5减速器强度验算 (12) 3.6联轴器的计算 (12) 3.7车轮计算 (13) 3.8车轮轴的计算 (14) 4.小车架的计算 (15) 4.1小车架设计要求,计算说明及布置简图 (15) 4.2小车架的计算 (16) 参考文献 (27)

内容摘要 起重机械用来对物料作起重、运输、装卸和安装等作业的机械设备,它可以减轻体力劳动、提高劳动生产率和在生产过程中进行某些特殊的工艺操作,实现机械化和自动化。 本设计通过对桥式起重机的小车运行机构的总体设计计算,以及电动机、联轴器、缓冲器、制动器的选用;运行机构减速器的设计计算和零件的校核计算及结构设计,完成了桥式起重机的回转小车运行机构机械部分的设计。通过本次设计,完成了一台30t起重量、桥跨度为31米的设计要求,并且整个传动过程比较平稳,且小车运行机构结构简单,拆装方便,维修容易,价格低廉。 关键词桥式起重机;小车运行机构;小车架 Abstract Crane is a kind of mechanical equipments used for lifting, moving, loading/unloading, and installing. It can low the manual workload and upgrade productivity. It can be operated in some special environment, and work with high automatic level. This paper is main deal with mechanical design for crab of crane, including all design calculation selection of electrical motors, clutch, buffer, and brakes, the design and calculation of the reducer, calibration and verification of the calculation for the parts, and structure designs. Through a series of work, the design is satisfied with the functional requirements, 30 t lifting power and 31 meter bridge span. The course of drive is quite smooth. The mechanical structure of crab of crane is simple, easy to install/disassemble, and to be maintain. And it has low cost. Key words Bridge crane;crab of crane;trolley frame

双梁桥式起重机设计毕业设计说明书

设计题目 12.5/3.2T双梁桥式起重机设计计算主要设计参数: 小车主钩副钩 起重量50t 10t 起升高度12m 16m 起升速度9m/min 16m/min 起升机构工作级别M5 小车自重15.5t~18.5t 运行机构工作级别M5 小车运行速度40-45m/min 轨距2500mm 轮距3400mm 大车 跨度31.5m 运行速度80m/min 运行机构工作级别M5

桥式起重机概述 桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,起重小车沿铺设在桥架上的轨道横向运行,构成一矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。 桥式起重机广泛地应用在室内外仓库、厂房、码头和露天贮料场等处。桥式起重机可分为普通桥式起重机、简易粱桥式起重机和冶金专用桥式起重机三种。 普通桥式起重机一般由起重小车、桥架运行机构、桥架金属结构组成。起重小车又由起升机构、小车运行机构和小车架三部分组成。 起升机构包括电动机、制动器、减速器、卷筒和滑轮组。电动机通过减速器,带动卷筒转动,使钢丝绳绕上卷筒或从卷筒放下,以升降重物。小车架是支托和安装起升机构和小车运行机构等部件的机架,通常为焊接结构。 起重机运行机构的驱动方式可分为两大类:一类为集中驱动,即用一台电动机带动长传动轴驱动两边的主动车轮;另一类为分别驱动、即两边的主动车轮各用一台电动机驱动。中、小型桥式起重机较多采用制动器、减速器和电动机组合成一体的“三合一”驱动方式,大起重量的普通桥式起重机为便于安装和调整,驱动装置常采用万向联轴器。 起重机运行机构一般只用四个主动和从动车轮,如果起重量很大,常用增加车轮的办法来降低轮压。当车轮超过四个时,必须采用铰接均衡车架装置,使起重机的载荷均匀地分布在各车轮上。 桥架的金属结构由主粱和端粱组成,分为单主粱桥架和双粱桥架两类。单主粱桥架由单根主粱和位于跨度两边的端粱组成,双粱桥架由两根主粱和端粱组成。主粱与端粱刚性连接,端粱两端装有车轮,用以支承桥架在高架上运行。主粱上焊有轨道,供起重小车运行。桥架主粱的结构类型较多比较典型的有箱形结构、四桁架结构和空腹桁架结构。 箱形结构又可分为正轨箱形双粱、偏轨箱形双粱、偏轨箱形单主粱等几种。正轨箱形双粱是广泛采用的一种基本形式,主粱由上、下翼缘板和两侧的垂直腹板组成,小车钢轨布置在上翼缘板的中心线上,它的结构简单,制造方便,适于成批生产,但自重较大。 偏轨箱形双粱和偏轨箱形单主粱的截面都是由上、下翼缘板和不等厚的主副腹板组成,小车钢轨布置在主腹板上方,箱体内的短加劲板可以省去,其中偏轨箱形单主粱是由一根宽翼缘箱形主粱代替两根主粱,自重较小,但制造较复杂。

塔式起重机课程设计说明书

目录 摘要-------------------------------------------------------- 3 1.绪论------------------------------------------------------- 5 1.1 动臂塔式起重机发展状况---------------------------------------------- 5 1.2 动臂塔机发展趋势---------------------------------------------------- 5 2.整机方案设计----------------------------------------------- 7 2.1 设计原则和参数------------------------------------------------------ 7 2.1.1工作级别-------------------------------------------------------- 7 2.2部件方案的确定------------------------------------------------------ 8 3.整体稳定性校核-------------------------------------------- 13 3.1 钢筋混凝土基础的选择----------------------------------------------- 13 3.2 钢筋混凝土基础的计算----------------------------------------------- 15 3.2.1 计算理论------------------------------------------------------- 15 3.2.2 15°固定式基础计算-------------------------------------------- 16 4.起重臂的稳定性计算---------------------------------------- 36 4.1 起重臂材料的选择与截面特性的计算----------------------------------- 36 4.2:拉杆拉力计算------------------------------------------------------- 40 4.3起重臂自重引起的载荷计算------------------------------------------- 42 4.4风载荷计算--------------------------------------------------------- 43 4.5起升时拉杆拉力产生的弯矩------------------------------------------- 45 4.6回转时的臂节离心力和回转惯性力和回转惯性力力矩的计算--------------- 46 4.7起升钢丝绳拉力,水平惯性力等的计算--------------------------------- 51

相关主题
文本预览
相关文档 最新文档