当前位置:文档之家› linux 内核启动顺序修改

linux 内核启动顺序修改

linux 内核启动顺序修改
linux 内核启动顺序修改

linux 内核启动顺序修改

在一次安装linux系统后,服务器启动发现有两个内核,默认启动的第一个内核进不去系统并报错,第二个内核才是我们安装需要使用的内核,这样我们便需要更改内核的启动顺序。在手动进入linux系统后便可以查看相关文件修改内核启动顺序,并不是在启动内核选择界面直接修改。

可修改启动配置文件,更改系统默认加载的内核!

查看有两个grub.conf,分别是/etc/grub.conf,还有/boot/grub/grub.conf

两个文件应该是一样的

/etc/grub.conf: symbolic link to `../boot/grub/grub.conf'

#vi /etc/grub.conf

# grub.conf generated by anaconda

#

# Note that you do not have to rerun grub after making changes to this file

# NOTICE: You have a /boot partition. This means that

# all kernel and initrd paths are relative to /boot/, eg.

# root (hd0,0)

# kernel /vmlinuz-version ro root=/dev/sda2

# initrd /initrd-version.img

#boot=/dev/sda

default=1

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title Red Hat Enterprise Linux Server (2.6.18-53.el5PAE)

root (hd0,0)

kernel /vmlinuz-2.6.18-53.el5PAE ro root=LABEL=/1 3 rhgb quiet

initrd /initrd-2.6.18-53.el5PAE.img

title Red Hat Enterprise Linux Server-xen (2.6.18-53.el5xen)

root (hd0,0)

kernel /xen.gz-2.6.18-53.el5

module /vmlinuz-2.6.18-53.el5xen ro root=LABEL=/1 3 rhgb quiet

module /initrd-2.6.18-53.el5xen.img

title Red Hat Enterprise Linux Server-base (2.6.18-53.el5)

root (hd0,0)

kernel /vmlinuz-2.6.18-53.el5 ro root=LABEL=/1 3 rhgb quiet

initrd /initrd-2.6.18-53.el5.img

将其中的default =1就是内核的默认启动顺序,可以改为你需要的。(注:默认顺序是从0开始)。

linux启动过程

Linux系统启动过程分析 by 王斌斌 binbinwang118@https://www.doczj.com/doc/d014691629.html, Linux系统启动过程分析 操作系统的启动过程,实际上是控制权移交的过程。Linux 系统启动包含四个主要的阶段:BIOS initialization, boot loader, kernel initialization, and init startup.见下图: 阶段一、BIOS initialization,主要功能如下: 1.Peripherals detected 2.Boot device selected 3.First sector of boot device read and executed 系统上电开机后,主板BIOS(Basic Input / Output System)运行POST(Power on self test)代码,检测系统外围关键设备(如:CPU、内存、显卡、I/O、键盘鼠标等)。硬件配置信息及一些用户配置参数存储在主板的CMOS( Complementary Metal Oxide Semiconductor)上(一般64字节),实际上就是主板上一块可读写的RAM芯片,由主板上的电池供电,系统掉电后,信息不会丢失。 执行POST代码对系统外围关键设备检测通过后,系统启动自举程序,根据我们在BIOS中设置的启动顺序搜索启动驱动器(比如的硬盘、光驱、网络服务器等)。选择合适的启动器,比如通常情况下的硬盘设备,BIOS会读取硬盘设备的第一个扇区(MBR,512字节),并执行其中的代码。实际上这里BIOS并不关心启动设备第一个扇区中是什么内容,它只是负责读取该扇区内容、并执行,BIOS的任务就完成了。此后将系统启动的控制权移交到MBR部分的代码。 注:在我们的现行系统中,大多关键设备都是连在主板上的。因此主板BIOS提供了一个操作系统(软件)和系统外围关键设备(硬件)最底级别的接口,在这个阶段,检测系统外围关键设备是否准备好,以供操作系 “” 统使用。 阶段二、Boot Loader 关于Boot Loader,简单的说就是启动操作系统的程序,如grub,lilo,也可以将boot loader本身看成一个小系统。 The BIOS invokes the boot loader in one of two ways: 1.It pass control to an initial program loader (IPL) installed within a driver's Master Boot Record (MBR) 2.It passes control to another boot loader, which passes control to an IPL installed within a partition's boot sector. In either case, the IPL must exist within a very small space, no larger than 446 bytes. Therefore, the IPL for GRUB is merely a first stage, whose sole task is to locate and load a second stage boot loader, which does most of the work to boot the system. There are two possible ways to configure boot loaders: Primary boot loader: Install the first stage of your Linux boot loader into the MBR. The boot loader must be configure to pass control to any other desired operating systems. Secondary boot loader: Install the first stage of your Linux boot loader into the boot sector of some partition. Another boot loader must be installed into the MBR, and configured to pass control to your Linux boot loader. 假设Boot Loader 为grub (grub-0.97),其引导系统的过程如下: grub 分为stage1 (stage1_5) stage2两个阶段。stage1 可以看成是initial program loaderI(IPL),而stage2则实现了grub 的主要功能,包括对特定文件系统的支持(如ext2,ext3,reiserfs等),grub自己的shell,以及内部程序(如:kernrl,initrd,root )等。

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.doczj.com/doc/d014691629.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

内核参数的修改方法

Linux内核参数修改方法 由于Linux的内核参数信息都存在内存中,因此可以通过命令直接修改,并且修改后直接生效。但是,当系统重新启动后,原来设置的参数值就会丢失,而系统每次启动时都会自动去/etc/sysctl.conf文件中读取内核参数,因此将内核的参数配置写入这个文件中,是一个比较好的选择。 首先打开/etc/sysctl.conf文件,查看如下两行的设置值,这里是: kernel.shmall = 2097152 kernel.shmmax = 4294967295 如果系统默认的配置比这里给出的值大,就不要修改原有配置。同时在/etc/sysctl.conf文件最后,添加以下内容: fs.file-max = 6553600 kernel.shmmni = 4096 kernel.sem = 250 32000 100 128 net.ipv4.ip_local_port_range = 1024 65000 net.core.rmem_default = 4194304 net.core.rmem_max = 4194304 net.core.wmem_default = 262144 net.core.wmem_max = 262144 这里的“fs.file-max = 6553600”其实是由“fs.file-max = 512 * PROCESSES”得到的,我们指定PROCESSES的值为12800,即为“fs.file-max =512 *12800”。 sysctl.conf文件修改完毕后,接着执行“sysctl -p”使设置生效。 [root@localhost ~]# sysctl -p 常用的内核参数的含义如下。 kernel.shmmax:表示单个共享内存段的最大值,以字节为单位,此值一般为物理内存的一半,不过大一点也没关系,这里设定的为4GB,即 “4294967295/1024/1024/1024=4G”。 kernel.shmmni:表示单个共享内存段的最小值,一般为4kB,即4096bit. kernel.shmall:表示可用共享内存的总量,单位是页,在32位系统上一页等于4kB,也就是4096字节。 fs.file-max:表示文件句柄的最大数量。文件句柄表示在Linux系统中可以打开的文件数量。 ip_local_port_range:表示端口的范围,为指定的内容。 kernel.sem:表示设置的信号量,这4个参数内容大小固定。 net.core.rmem_default:表示接收套接字缓冲区大小的缺省值(以字节为单位)。 net.core.rmem_max :表示接收套接字缓冲区大小的最大值(以字节为单位) net.core.wmem_default:表示发送套接字缓冲区大小的缺省值(以字节为单位)。 net.core.wmem_max:表示发送套接字缓冲区大小的最大值(以字节为单位)。

linux系统脚本的常见启动顺序

由于相关变量定义不同, 所以以下启动顺序仅供参考 在Redhat Redflag centos fc linux系统里面脚本的启动 先后: 第一步:通过/boot/vm进行启动 vmlinuz 第二步:init /etc/inittab 第三步:启动相应的脚本,并且打开终端 rc.sysinit rc.d(里面的脚本) rc.local 第四步:启动login登录界面 login 第五步:在用户登录的时候执行sh脚本的顺序:每次登录的时候都会完全执行的/etc/profile.d/file /etc/profile /etc/bashrc /root/.bashrc /root/.bash_profile 在Suse Linux (sles server or Desktop 10) 第一步:通过/boot/vm进行启动 vmlinuz 第二步:init /etc/inittab 第三步:启动相应的脚本,并且打开终端 /etc/init.d/boot 里面包括: . /etc/rc.status ./etc/sysconfig/boot ./etc/init.d/boot.d下面的脚本 ./etc/init.d/boot.local rc X.d(里面的脚本) 第四步:启动login登录界面 login 第五步:在用户登录的时候执行sh脚本的顺序:每次登录的时候都会完全执行的/etc/profile.d/file /etc/profile /root/.bashrc /root/.profile 先后: 第一步:通过/boot/vm进行启动 vmlinuz 第二步:init /etc/inittab 第三步:启动相应的脚本,并且打开终端 rc.sysinit rc.d(里面的脚本) rc.local 第四步:启动login登录界面 login 第五步:在用户登录的时候执行sh脚本的顺序:每次登录的时候都会完全执行的/etc/profile.d/file

linux 内核参数修改

linux 内核参数修改 配置 Linux 内核参数(2种方法),修改后不用重启动更新: /sbin/sysctl -p 第一种:打开/etc/sysctl.conf 复制如下内容 kernel.shmall = 2097152 kernel.shmmax = 2147483648 kernel.shmmni = 4096 kernel.sem = 250 32000 100 128 fs.file-max = 65536 net.ipv4.ip_local_port_range = 1024 65000 net.core.rmem_default=262144 net.core.wmem_default=262144 net.core.rmem_max=262144 net.core.wmem_max=262144 第二种:打开终端 cat >> /etc/sysctl.conf< kernel.shmall = 2097152 kernel.shmmax = 2147483648 kernel.shmmni = 4096 kernel.sem = 250 32000 100 128 fs.file-max = 65536 net.ipv4.ip_local_port_range = 1024 65000 net.core.rmem_default=262144 net.core.wmem_default=262144 net.core.rmem_max=262144 net.core.wmem_max=262144 EOF 这里,对每个参数值做个简要的解释和说明。 (1)shmmax:该参数定义了共享内存段的最大尺寸(以字节为单位)。缺省为32M,对于oracle来说,该缺省值太低了,通常将其设置为2G。(2)shmmni:这个内核参数用于设置系统范围内共享内存段的最大数量。该参数的默认值是 4096 。通常不需要更改。 (3)shmall:该参数表示系统一次可以使用的共享内存总量(以页为单位)。缺省值就是2097152,通常不需要修改。(共享内存段的数量,以页为主,每个页是4K) (4)sem:该参数表示设置的信号量。一般大于maxproc的一点就行了。 (5)file-max:该参数表示文件句柄的最大数量。文件句柄设置表示在linux系统中可以打开的文件数量。 修改好内核以后,执行下面的命令使新的配置生效。 [root @linux1 /root]# /sbin/sysctl -p 以 root 用户身份运行以下命令来验证您的设置: /sbin/sysctl -a | grep shm /sbin/sysctl -a | grep sem /sbin/sysctl -a | grep file-max /sbin/sysctl -a | grep ip_local_port_range 例如: # /sbin/sysctl -a | grep shm kernel.shmmni = 4096 kernel.shmall = 2097152 kernel.shmmax = 2147483648

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

linux grub 引导启动过程详解

linux grub 引导启动过程详解 2008-01-08 17:18 这几天看了很多文档,算是对linux的启动过程有了比较细致的了解. 网上有很多文章谈到这方面的内容,但总觉得没有一篇完全的解析linux启动的 细节,下面是我小弟在学习的过程中总结出来的一些东东.这个是完整的linux启动过程, 不涉及内核,但是我觉得比较详细哦. (由于本人比较懒,这一段是从网上抄的) 机器加电启动后,BIOS开始检测系统参数,如内存的大小,日期和时间,磁盘 设备以及这些磁盘设备用来引导的顺序,通常情况下,BIOS都是被配置成首先检查 软驱或者光驱(或两者都检查),然后再尝试从硬盘引导。如果在这些可移动的设 备中,没有找到可引导的介质,那么BIOS通常是转向第一块硬盘最初的几个扇区, 寻找用于装载操作系统的指令。装载操作系统的这个程序就是boot loader. linux里面的boot loader通常是lilo或者grub,从Red Hat Linux 7.2起,GRUB( GRand Unified Bootloader)取代LILO成为了默认的启动装载程序。那么启动的时候grub是如何被载入的呢 grub有几个重要的文件,stage1,stage2,有的时候需要stage1.5.这些文件一般都 在/boot/grub文件夹下面.grub被载入通常包括以下几个步骤: 1. 装载基本的引导装载程序(stage1),stage1很小,网上说是512字节,但是在我的系统上用du -b /boot/grub/stage1 显示的是1024个字节,不知道是不是grub版本不同的缘故还是我理解有误.stage1通常位于主引导扇区里面,对于硬盘就是MBR了,stage1的主要功能就是装载第二引导程序(stage2).这主要是归结于在主引导扇区中没有足够的空间用于其他东西了,我用的是grub 0.93,stage2文件的大小是107520 bit. 2. 装载第二引导装载程序(stage2),这第二引导装载程序实际上是引出更高级的功能, 以允许用户装载入一个特定的操作系统。在GRUB中,这步是让用户显示一个菜单或是输入命令。由于stage2很大,所以它一般位于文件系统之中(通常是boot所在的根 分区). 上面还提到了stage1.5这个文件,它的作用是什么呢你到/boot/grub目录下看看, fat_stage_1.5 e2fs_stage_1.5 xfs_stage_1.5等等,很容易猜想stage1.5和文件系统 有关系.有时候基本引导装载程序(stage1)不能识别stage2所在的文件系统分区,那么这 时候就需要stage1.5来连接stage1和stage2了.因此对于不同的文件系统就会有不同的stage1.5.但是对于grub 0.93好像stage1.5并不是很重要,因为我试过了,在没有stage1.5 的情况下, 我把stage1安装在软盘的引导扇区内,然后把stage2放在格式化成ext2或者fat格式的软盘内,启动的时候照常引导,并不需要e2fs_stage_1.5或者fat_stage_1.5. 下面是我的试验: #mkfs.ext2 /dev/fd0 #mount -t ext2 /dev/fd0 /mnt/floppy #cd /mnt/floppy #mkdir boot #cd boot #mkdir grub (以上三步可用mkdir -p boot/grub命令完成) #cd grub #cp /boot/grub/{stage1,stage2,grub.conf} ./ #cd; umount /mnt/floppy

Linux之TCPIP内核参数优化

Linux之TCPIP内核参数优化 /proc/sys/net目录 所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的,任何修改在系统重启后都会丢失),例如下面这些重要的参数: 参数(路径+文件) 描述 默认值 优化值 /proc/sys/net/core/rmem_default 默认的TCP数据接收窗口大小(字节)。 229376 256960 /proc/sys/net/core/rmem_max 最大的TCP数据接收窗口(字节)。 131071 513920 /proc/sys/net/core/wmem_default 默认的TCP数据发送窗口大小(字节)。

229376 256960 /proc/sys/net/core/wmem_max 最大的TCP数据发送窗口(字节)。 131071 513920 /proc/sys/net/core/netdev_max_backlog 在每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目。 1000 2000 /proc/sys/net/core/somaxconn 定义了系统中每一个端口最大的监听队列的长度,这是个全局的参数。 128 2048 /proc/sys/net/core/optmem_max 表示每个套接字所允许的最大缓冲区的大小。

20480 81920 /proc/sys/net/ipv4/tcp_mem 确定TCP栈应该如何反映内存使用,每个值的单位都是内存页(通常是4KB)。第一个值是内存使用的下限;第二个值是内存压力模式开始对缓冲区使用应用压力的上限;第三个值是内存使用的上限。在这个层次上可以将报文丢弃,从而减少对内存的使用。对于较大的BDP 可以增大这些值(注意,其单位是内存页而不是字节)。 94011 125351 188022 131072 262144 524288 /proc/sys/net/ipv4/tcp_rmem 为自动调优定义socket使用的内存。第一个值是为socket接收缓冲区分配的最少字节数;第二个值是默认值(该值会被rmem_default覆盖),缓冲区在系统负载不重的情况下可以增长到这个值;第三个值是接收缓冲区空间的最大字节数(该值会被rmem_max覆盖)。 4096 87380 4011232 8760 256960 4088000 /proc/sys/net/ipv4/tcp_wmem 为自动调优定义socket使用的内存。第一个值是为socket发送缓冲区分配的最少字节数;第二个值是默认值(该值会被wmem_default覆盖),缓冲区在系统负载不重的情况下可以增长到这个值;第三个值是发送缓冲区空间的最大字节数(该值会被wmem_max覆盖)。 4096 16384 4011232

linux启动顺序讲解

一、简单介绍RHEL开机时的先后顺序 BIOS —> MBR —> Kernel —> init 1、当电脑一打开电源时电脑就会进入BIOS(BIOS的工作主要是检测一些硬件设备); 2、检测完后会进入MBR也就是boot loader(MBR位于硬盘的第一个扇区总共512bytes,其中前446bytes里面的编码是在选择引导分区也就是决定要由哪个分区来引导); 3、载入系统的Kernel(核心),在Kernel里主要是载入电脑设备的驱动程序,以便可以控制电脑上的设备,并且以只读方式来挂载根目录,也就是一开始只能读取到根目录所对应的那个分区,所以/etc、/bin、/sbin、/dev、/lib这五个目录必须同根目录在一个分区中; 4、最后启动init这个程序,所以init这个程序的进程编号为1,是Linux中第一个执行的程序; init这个程序会根据Run level来执行以下这些程序: ·/etc/rc.d/rc.sysinit; ·/etc/rc.d/rc 和etc/rc.d/rc?.d/ ·/etc/rc.d/rc.local ·如果有适当的图形界面管理程序 二、BIOS初始化时主要的三个任务 BIOS(B asic I nput/O utput S ystem) 1、电脑周边设备的检测,加电自检POST (Power on self test); 2、BIOS会选择要由哪一个设备来开机,例如:软盘启动、光盘启动、网络启动、最常见的从硬盘启动; 3、选择好由哪个设备开机后,就开始读取这个设备的MBR 引导扇区; 三、介绍Boot Loader中的主要工作 1、Boot Loader可以安装在两个地方: ·安装在硬盘的MBR中; ·当有时候MBR中被其他开机管理程序占用就可以将Boot Loader 安装在硬盘中的其中一个分区的引导扇区上,; 2、Boot Loader的程序码分为两个阶段: (1)Boot Loader第一阶段的程序码非常小,只有446bytes,可以存入在MBR或是某一个分区的引导扇区里, (2)Boot Loader第一阶段的程序码是从boot 分区来载入的,就是说Boot Loader 第二阶段程序码存放在/boot 这个分区中; 3、下面来看三个Boot Loader 的开机流程范例,如在一块硬盘中安装了两个系统分别为:windows 2003 和Red hat linux 当电脑开机后,会先载入MBR通过第一阶段程序码来载入第二阶段程序码,进入GRUB开机菜单这里选择哪个系统就会载入相应的核心;

Linux启动过程详解

深入浅出:Linux的启动流程刨析 Linux的启动过程,是一个Linuxer必须要熟练掌握的。通过系统的启动过程,可以更深入的理解Linux,假如Linux系统出问题的话,可以通过启动过程来分析原因,解决问题。而且,在掌握了Linux的启动流程后,还可以借助宿主机来打造自己的Linux。 下面是我画的一张简单的Linux启动流程图 在了解启动流程之前,我们应该先知道系统的几个重要脚本和配置文件,他们对应的路径为: 1、/sbin/init 2、/etc/inittab 3、/etc/rc.d/rc.sysinit 4、/etc/rc.d/rcN.d //这是几个文件夹N代表数字1,2,3,4.. 5、/etc/fstab 1、关于/sbin/init与/etc/inittab 关于/sbin/init ,它是一个二进制可执行文件,为系统的初始化程序,而/etc/inittab是它的配置文件,我们可以通过/etc/inittab来一睹它的功能,里面的内容是一种固定的文本格式,id:runlevels:action:process 我们来通过它的内容来学习它之前,先了解写运行级别的分类(0-6): 0:关机half

1:单用户模式singel user 2:多用户模式multi user ,不提供nfs服务without nfs 3:完全多用户字符模式full multiuser text mod 4:系统预留officially undefined 5:图形登录界面graphical login 6:重启reboot id:3:initdefault: //这里定义linux的启动时的运行级别,可以看到我的主机的启动级别是3 # System initialization. si::sysinit:/etc/rc.d/rc.sysinit //紧接着,运行系统第一个脚本/etc/rc.d/rc/sysinit //它的action:sysyinit指的是定义系统初始化过程 l0:0:wait:/etc/rc.d/rc 0 l1:1:wait:/etc/rc.d/rc 1 l2:2:wait:/etc/rc.d/rc 2 //然后就是加载服务了,他们被定义在/etc/rc.d/rcN.d l3:3:wait:/etc/rc.d/rc 3 //action:waite 这个进程在在对应级别启动一次,知道它结束为止,我的系统启动级别为3,所有执行rc 3对应的服务 l4:4:wait:/etc/rc.d/rc 4 l5:5:wait:/etc/rc.d/rc 5 l6:6:wait:/etc/rc.d/rc 6 ca::ctrlaltdel:/sbin/shutdown -t3 -r now //这里定义了一个组合快捷键,熟悉吧,没错就是重启,你可以把它注释掉不用 pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"//这里定义了ups电源,powerfail 指的是如果突然断电,它对应的process命令是,提示用户系统电源失效,将要关机,提醒用户把数据都存储好 pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"//这里的action,powerokwaite,指的是系统恢复供电,关机取消...

 1:2345:respawn:/sbin/mingetty tty1 //开启终端,在系统准备工作做好后,就会启动出6个终端,tty1~6 mingetyy就是终端的执行命令 2:2345:respawn:/sbin/mingetty tty2 //可以看到他们对应的级别是2345,你也可以注释

查看HP-UX内核参数命令

sysdef kmtune -l 仅供参考: acctresume 和acctsuspend 只在启用HP-UX 统计时使用。这些变量是统计日志文件所在文件系统(缺省情况下为/var/adm)的百分比。在文件系统自 由空间降到acctsuspend指定的百分比(绝对百分比)时,即终止统计;只有达到分配给acctresume的百分比时才能恢复。 例如: acctsuspend 分配0 (假定缺省的文件系统值)- 当自由空间低于minfree(缺省情况下为10%,在bdf输出中文件系统将显 示100%使用)时,统计将被终止。如果acctresume为80,当文件系统的利用率降到80%时(bdf显示),就会再次启用统 计。重新启用统计后,就会产生“Accounting resumed”信息。 欲了解其它信息,请参考/usr/share/doc/doc_map.txt中所列的统计白皮书以及统计帮助信息。bufpages 这个值以前用于定义为文件系统IO中使用的高速缓冲区分配的物理内存量(以4096字节页面为单位)。 以前的HP-UX版本一般将10% 的物理内存用于此任务,但是最近的版本已实现了内存的动态分配。在10.X版中,如果 bufpages是一个非零值,它就成为高速缓冲区可用内存页面的最大值,实质变成一个限制,尽管可能很少使用,但不会超过这个值。在10.X版中,bufpages经常设为0,它表示请求动态高速缓冲区,dbc_min_pct 和dbc_max_pct参数将设置一个高速缓冲区允许的可用内存的最小和最大百分比。 在9.X版中,高速缓冲区的内存用bufpages变量明确确定。如果/etc/conf/dfile (700系列)或/etc/conf/gen/S800(800系列)中缺少了这个变量,高速缓冲区就被设为可用内存的10%;否则该值以页面(4096字节)数填入。 create_fastlinks 允许在HFS文件系统内创建高速符号链接。版本注释中应当包含有关的附加信息。从根本上来说,高速符号链接减少了磁盘 块访问,从而略微减少磁盘IO。 * 注:在10.0以前的800系统或9.0以前的700系统上没有这个变量。 dbc_max_pct 和dbc_min_pct 这两个变量定义缓冲文件系统页(也叫做高速缓冲区)可用的内存百分比范围。适当取值一般可以产生以下效果: - 低于或等于95% 的读缓冲命中率- 低于或等于70% 的写缓冲命中率 用sar -b 5 5 (分别为%rcache 和%wcache)可以对该值进行监视。也许可以保证减少读缓冲命中。 为高速缓冲分配过多内存的另一个现象可能是用户响应时间中无法解释的偶然或间歇性停顿。dbc_min_pct的缺省值是5, dbc_max_pct的缺省值是50。在许多情况下,建议为高速缓冲区分配200mb或更少的内存空间。Dbc_max_pct是机器上一个 主要的减少对象,在其中可以观察到内存压力,以及刚才所描述的停顿。 default_disk_ir

linux内核启动时几个关键地址

linux内核启动时几个关键地址 1、名词解释 ZTEXTADDR 解压代码运行的开始地址。没有物理地址和虚拟地址之分,因为此时MMU处于关闭状态。这个地址不一定时RAM的地址,可以是支持读写寻址的flash等存储中介。 ZRELADDR 内核启动在RAM中的物理地址。压缩的内核映像被解压到这个地址,然后执行。 This is the address where the decompressed kernel will be written, and eventually executed. The following constraint must be valid: __virt_to_phys(TEXTADDR) == ZRELADDR The initial part of the kernel is carefully coded to be position independent. TEXTADDR 内核启动的虚拟地址,与ZRELADDR相对应。一般内核启动的虚拟地址为RAM的第一个bank地址加上0x8000。 TEXTADDR = PAGE_OFFSET + TEXTOFFST Virtual start address of kernel, normally PAGE_OFFSET + 0x8000.This is where the kernel image ends up. With the latest kernels, it must be located at 32768 bytes into a 128MB region. Previous kernels placed a restriction of 256MB here. TEXT_OFFSET 内核偏移地址,即内核起始位置相对于内存起始位置的偏移,对于相对于物理内存还是相对于虚拟内存都是一样的结果。在arch/arm/makefile中设定。 PHYS_OFFSET RAM第一个bank的物理起始地址,即物理内存的起始地址。 Physical start address of the first bank of RAM. PAGE_OFFSET RAM第一个bank的虚拟起始地址,即内核虚拟地址空间的起始地址。 2、小结 从上面分析可知道,linux内核被bootloader拷贝到RAM后,解压代码从ZTEXTADDR开始运行(这段代码是与位置无关的PIC)。内核被解压缩到ZREALADDR处,也就是内核启动的物理地址处。相应地,内核启动的虚拟地址被设定为TEXTADDR,满足如下条件: TEXTADDR = PAGE_OFFSET + TEXT_OFFSET 内核启动的物理地址和虚拟地址满足入下条件: ZRELADDR == virt_to_phys(PAGE_OFFSET + TEXT_OFFSET)= virt_to_phys(TEXTADDR) 假定开发板为smdk2410,则有: 内核启动的虚拟地址 TEXTADDR = 0xC0008000 内核启动的物理地址 ZRELADDR = 0x30008000 如果直接从flash中启动还需要设置ZTEXTADDR地址。

Linux引导与配置文件加载过程

Linux引导及配置文件加载过程解读 文章分类:操作系统 ?? 本文包括3部分内容 1、 Linux的引导过程 2、 Linux 的运行级别 3、 /etc/inittab与/etc/rc.d/ 与/etc/rc.d/init.d的关系 关键词:Linux引导过程、运行级别、inittab与 init.d 与 rc.d 一、 Linux的引导过程 系统加电之后,首先进行的硬件自检,然后是bootloader对系统的初始化,加载内核。 内核被加载到内存中之后,就开始执行我们的系统设置了。一旦内核启动运行,对硬件的检测就会决定需要对哪些设备驱动程序进行初始化。从这里开始,内核就能够挂装根文件系统(这个过程类似于Windows识别并存取C盘的过程)。内核挂装了根文件系统,并已初始化所有的设备驱动程序和数据结构等之后,就通过启动一个叫init的用户级程序,完成引导进程。 二、运行级别(run level) Init进程是系统启动之后的第一个用户进程,所以它的pid(进程编号)始终为1。init 进程上来首先做的事是去读取/etc/目录下 inittab文件中initdefault id值,这个值称为运行级别(run-level)。它决定了系统启动之后运行于什么级别。运行级别决定了系统启动的绝大部分行为和目的。这个级别从0到 6 ,具有不同的功能。不同的运行级定义如下:# 0 - 停机(千万别把initdefault设置为0,否则系统永远无法启动) # 1 - 单用户模式 # 2 - 多用户,没有 NFS # 3 - 完全多用户模式(标准的运行级) # 4 –系统保留的 # 5 - X11 (x window) # 6 - 重新启动(千万不要把initdefault 设置为6,否则将一直在重启) 三、 /etc/rc.d/与/etc/rc.d/init.d的关系 先解释一下init.d。这个目录存放的是一些脚本,一般是linux以rpm包安装时设定的一些服务的启动脚本。系统在安装时装了好多rpm包,这里面就有很多对应的脚本。执行这些脚本可以用来启动、停止、重启这些服务。 /etc/rc.d/init.d这个目录下的脚本就类似与windows中的注册表,在系统启动的时候执行。程序运行到这里(init进程读取了运行级别),就开始有选择地启动服务了,这时刚才说的运行级别就起作用了。在决定了系统启动的run level之后,/etc/rc.d/rc这个脚本先执行。在RH9的源码中它都是一上来就check_runlevel(),知道了运行级别之后,对于每一个运行级别,在rc.d下都有一个子目录分别是rc0.d,rc1.d ….. rc6.d。每个目录下都是到init.d目录的一部分脚本一些链接。每个级别要执行哪些服务就在相对应的目录下,比如级别5要启动的服务就都放在rc5.d下,但是放在这个rc5.d下的都是一些链接文

简析linux内核的内核执行流程图

简析linux核的执行流程 ----从bootsect.s到main.c(核版本0.11)Linux启动的第一阶段(从开机到main.c) 3个任务: A、启动BIOS,准备实模式下的中断向量表和中断服务程序。 B、从启动盘加载操作系统程序到存。 C、为执行32的main函数做过渡准备。 存变化如下: ①、0xFE000到0xFFFFF是BIOS启动块,其中上电后第一条指令在0xFFFF0。 ②、而后0x00000到0x003FF总共1KB存放中断向量表,而接下去的地址到0x004FF共256B存放BIOS数据,从0x0E05B 开始的约8KB的存中存放中断服务程序。 ③、利用BIOS中断0x19h把硬盘的第一扇区bootsect.s的代码加载到存中,即0x07c00处,后转到该处执行。 ④、将bootsect.s的代码复制到0x90000处。 ⑤、利用中断0x13h将setup.s程序加载到存0x90200处。 ⑥、再将剩余的约240个扇区的容加载到0x10000~0x2EFFF 处。 ⑦、开始转到setup.s处执行,第一件事就利用BIOS提供的中断服务程序从设备上获取核运行的所需系统数据并存在0x90000的地址处,这时将原来bootsect.s的代码覆盖得只剩2Byte的空间。

⑧、关中断并将系统代码复制到0x00000处,将原来放在这里的中断向量表与BIOS数据区覆盖掉,地址围是 0x00000~0x1EFFF。同时制作两表与两寄存器。 ⑨开地址线A20,寻址空间达到4GB,后对8259重新编程,改变中断号。 ⑩、转到head.s(大小是25K+184B)执行,执行该程序完后是这样的: 0x00000~0x04FFF:页目录与4个页表,每一项是4KB,共20KB;0x05000~0x05400:共1KB的空间是软盘缓冲区; 0x05401~0x054b8:共184B没用; 0x054b9~0x05cb8:共2KB的空间存中断描述符表; 0x05cb9~0x064b8:共2KB的空间存全局描述符表; 之后就是main函数的代码了! 第二阶段、从main.c函数到系统准备完毕阶段。 第一步:创建进程0,并让进程0具备在32位保护模式下载主机中的运算能力。流程是: 复制根设备和硬盘参数表(main.c中的102、110、111行) 物理存规划格局(main.c的112行~126行,其中有 rd_init函数定义在kernel/ramdisk.c中,此函数用于虚拟盘初始化;而mem_init函数是用于存管理结构初始化,定义在mem/memory.c中,该函数页面使用

相关主题
文本预览
相关文档 最新文档