PKPM计算参数
- 格式:doc
- 大小:453.00 KB
- 文档页数:32
PKPM参数定义PKPM,即Peking University People Model,是一种建筑结构性能计算软件,于20世纪90年代由北京大学土木工程系研发,目前已成为国内建筑工程设计领域中使用频率最高的软件之一、PKPM主要用于建筑结构设计、分析和验算,并对建筑结构的强度、刚度和稳定性等进行评估。
PKPM的参数定义是软件中所涉及到的各个计算参数的具体定义和取值范围。
以下将详细介绍PKPM中的几个主要参数。
1.材料参数:PKPM中的材料参数主要包括钢筋的抗拉强度、混凝土的抗压强度和连接件的强度等。
这些参数可以根据设计需要进行定义,并按照相应的规范进行取值。
-钢筋的抗拉强度:钢筋的抗拉强度是指钢筋材料在拉伸状态下能够承受的最大拉力。
根据不同钢筋等级的规范要求,这个数值可以在PKPM 中进行设置。
-混凝土的抗压强度:混凝土的抗压强度是指混凝土材料在受到压力时能够承受的最大压力。
根据混凝土强度等级的不同,这个数值也可以在PKPM中进行设置。
-连接件的强度:连接件的强度是指连接结构中使用的连接件(如螺栓、焊接接头等)能够承受的最大荷载。
不同类型和规格的连接件在PKPM中需要经过专门的计算和定义。
2.结构参数:PKPM中的结构参数主要包括截面尺寸、梁柱间距、楼层高度等。
这些参数是建筑结构中的重要设计参数,可以根据建筑设计的要求进行调整和定义。
-截面尺寸:截面尺寸指的是建筑结构中各个构件(如梁、柱、板等)的横断面尺寸。
可以通过PKPM中的图形界面进行设置和调整。
-梁柱间距:梁柱间距是指建筑结构中梁和柱之间的距离。
根据设计规范和结构布置要求,可以在PKPM中进行设置。
-楼层高度:楼层高度是指建筑结构中相邻楼层之间的距离。
这个参数主要用于计算结构在地震等荷载下的稳定性。
在PKPM中可以设置不同楼层的高度。
3.荷载参数:荷载参数是指建筑结构所受到的外部荷载,包括重力荷载、风荷载和地震荷载等。
PKPM可以根据不同的设计要求进行荷载计算,并对结构的安全性进行评估。
PKPM参数设置PKPM(鹏凯测定物性分析与计算程序)是一种广泛应用于土木工程结构设计中的计算程序,它能够对结构进行受力分析、变形计算以及稳定性分析等,并可以根据需要进行参数设置。
下面将介绍一些常见的PKPM参数设置。
1.结构类型设置:PKPM能够分析各种类型的结构,包括梁、柱、板、桁架等。
在进行计算之前,需要选择结构类型,并设定相关参数,如结构的材料属性、截面形状和尺寸等。
2.受力边界条件设置:在进行结构分析时,需要设定结构的受力边界条件,包括支座类型、受力方向和受力大小等。
支座类型可以选择固定支座、弹性支座或自由支座。
受力方向和大小应根据具体情况进行设置,一般需要根据结构的受力与约束情况进行考虑。
3.材料属性设置:PKPM可以对多种材料进行分析,如钢材、混凝土和木材等。
在进行计算之前,需要设定材料的物理性质,如弹性模量、抗弯强度和抗压强度等。
这些参数可以根据实际情况选择合适的数值,以保证计算结果的准确性。
4.截面参数设置:对于梁、柱等结构,需要设定截面的几何形状和尺寸。
常见的截面形状包括矩形、圆形、T形等,而尺寸可以通过设定宽度、高度、厚度等参数来确定。
在设定截面参数时,需要根据结构的实际形态和受力情况进行选择,以保证计算的准确性。
5.荷载设置:在进行结构分析时,需要考虑结构所受到的外部荷载,如重力荷载、活荷载以及风荷载等。
在设定荷载参数时,需要根据结构的使用要求和设计规范进行选择。
可以根据实际情况设置荷载的种类、大小和分布等。
6.稳定性分析参数设置:在进行结构稳定性分析时,需要设定相关参数,如屈曲长度系数、曲率半径等。
这些参数可以根据结构的几何形状和受力情况进行选择,以保证计算结果的准确性。
总之,PKPM参数设置是进行结构分析与计算的重要环节,合理的参数设定可以保证计算结果的准确性和可靠性。
不同的结构类型和受力条件需要设置不同的参数,设计人员应根据实际情况选择适当的参数值,并遵循相关的设计规范和标准,以保证结构的安全可靠性。
一、总信息1、水平力与整体坐标夹角:该参数为地震力、风荷载作用方向与结构整体坐标的夹角。
抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”.如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。
这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大. SATWE 可以自动计算出这个最不利方向角,并在WZQ。
OUT 文件中输出。
如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。
一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度"和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向.综上所述,建议用户将“最不利地震作用方向角"填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。
水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条2 款执行的。
对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。
只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷载的方向(说明两者方向是一致)将同时改变,但地震作用方向已经不是最不利的方向了,故需要在附加地震作用方向上输入一个相反的角度,使地震作用方向应按原坐标系计算,使地震力最大;如不需要改变风荷载的方向,只需考虑其它角度的地震作用时,则无需改变“水平力与整体坐标的夹角”,只增加附加地震作用方向即可。
PKPM设计参数PKPM(建筑结构模型分析与设计软件)是一款常用于建筑结构分析与设计的计算机辅助软件。
其设计参数包括以下几个方面:1.材料参数:PKPM中的材料参数主要包括混凝土、钢筋和钢结构的材料特性。
混凝土的参数包括弹性模量、泊松比、抗压强度和抗拉强度等;钢材的参数包括弹性模量、泊松比、屈服强度和强度等。
2.结构参数:PKPM中的结构参数包括梁、柱、板、墙等构件的几何尺寸和截面形状。
例如,梁的宽度、高度、长度和截面形状(矩形、T形、L形等);柱的截面尺寸和类型(矩形、圆形等)等。
3.荷载参数:PKPM中的荷载参数包括静荷载和动荷载。
静荷载包括自重荷载、活荷载和附加荷载等;动荷载一般包括地震荷载、风荷载和温差荷载等。
荷载参数的大小和施加位置对结构的分析和设计具有重要影响。
4.设计参数:PKPM中的设计参数主要包括结构的设计要求和设计目标。
例如,设计要求可包括结构的强度、刚度、稳定性和耐久性等;设计目标可以设置为满足国家相关建筑规范和标准。
5.分析方法:PKPM支持多种结构分析方法,包括弹性分析、非线性分析和动力分析等。
根据具体的设计要求和材料特性,选择合适的分析方法进行分析和设计。
6.输出参数:PKPM的输出参数主要包括结构的应力、应变、位移和内力等。
这些参数可以用于评估结构的安全性和性能。
7.备注参数:PKPM中还可以添加备注参数,用于记录和说明一些特殊情况或设计决策。
综上所述,PKPM的设计参数涵盖了材料、结构、荷载、设计要求、分析方法、输出参数和备注参数等方面,通过合理设置这些参数,可以进行有效的建筑结构分析与设计。
建筑结构(SATWE)的总信息建筑结构(SATWE)的总信息总信息 ..............................................结构材料信息: 钢砼结构..........按主体结构材料填写混凝土容重 (kN/m3): Gc = 28.00.....应考虑构件装修重量,建议取28kN/m3钢材容重 (kN/m3): Gs = 78.00.....一般取78kN/m3(没有计入构件装修重量)水平力的夹角 (Rad): ARF = 0.00.....一般取0(地震力.风力作用方向,逆时针为正);当结构分析所得的[地震作用最大的方向]>15度时, 宜将其角度输入补充验算地下室层数: MBASE= 0.....无地下室时填0竖向荷载计算信息: 按一次性加荷计算方式......多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2] 风荷载计算信息: 计算X,Y两个方向的风荷载....选[计算风荷载]地震力计算信息: 计算X,Y两个方向的地震力....选[计算水平地震力],《抗规》5.1.1条(强条)特殊荷载计算信息: 不计算............一般情况下不考虑结构类别: 框架结构..........按结构体系选择裙房层数: MANNEX= 0.....无裙房时填0转换层所在层号: MCHANGE= 0.....无转换层时填0墙元细分最大控制长度(m) DMAX= 2.00.....一般工程取2.0,框支剪力墙取1.5或1.0墙元侧向节点信息: 内部节点........…..剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》是否对全楼强制采用刚性楼板假定是.............计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否]风荷载信息 ..........................................修正后的基本风压 (kN/m2): WO = 0.30 ....取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录D.4附表D.4地面粗糙程度: B 类..............有密集建筑群的城市市区选类,乡村、乡镇、市郊等选类,详《荷规》7.2.1条结构基本周期(秒): T1 = 0.06.....宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T1=(0.08-0.10)n,n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;体形变化分段数: MPART= 1.....体形无变化填1各段最高层号: NSTi = 6.....按各分段内各层的最高层层号填写各段体形系数: USi = 1.30.....《荷规》7.3.1表7.3.1;高宽比不大于4的矩形、方形、十字形平面取1.3,详见《高规》3.2.5条地震信息 ............................................振型组合方法(CQC耦联;SRSS非耦联) CQC....…..《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联],规则结构用[非耦联]补充验算计算振型数: NMODE= 9.....《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;参见《手册》;[耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,参与计算振型的[有效质量系数]应≥90%地震烈度: NAF = 7.00.....《抗规》1.0.4条,1.0.5条,3.2.4条,附录A场地类别: KD = 2.....《抗规》4.1.6条表4.1.6(强条);见地勘报告设计地震分组: 二组........《抗规》3.2.4条,附录A特征周期 TG = 0.40.....II类场地一、二、三组分别取0.35s、0.40s、0.45s,《抗规》3.2.3条,5.1.4条表5.1.4-2(强条)多遇地震影响系数最大值 Rmax1 = 0.08.....7度取0.08,《抗规》5.1.4条表5.1.4-1(强条)《抗规》5.1.4罕遇地震影响系数最大值 Rmax2 = 0.50.....7度取0.50,条表5.1.4-1(强条)框架的抗震等级: NF = 3.....7度H≤30m取3,《抗规》6.1.2条表6.1.2(强条)剪力墙的抗震等级: NW = 2.....7度框剪取2,《抗规》6.1.2条表6.1.2 (强条)活荷质量折减系数: RMC = 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数周期折减系数: TC = 0.70.....框架砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条结构的阻尼比 (%): DAMP = 5.00.....砼结构一般取5.0;《抗规》5.1.5条1款;《高规》3.3.8条是否考虑偶然偏心: 否........单向地震力计算时选[是],多层规则结构可不考虑,《高规》3.3.3条;参见《手册》;是否考虑双向地震扭转效应: 是........一般工程选[是],此时可不考虑上条[偶然偏心];《抗规》5.1.1条3款(强条);《高规》3.3.2条2款(强条)斜交抗侧力构件方向的附加地震数 = 0.....无斜交构件时取0;《抗规》5.1.1条2款(强条);斜交角度>15应考虑;《高规》3.3.2条1款(强条)活荷载信息 ..........................................考虑活荷不利布置的层数从第 1 到6层.... 多层应取全部楼层;高层宜取全部楼层,《高规》5.1.8条柱、墙活荷载是否折减不折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)传到基础的活荷载是否折减折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)---------柱,墙,基础活荷载折减系数---------.....《荷规》4.1.2条表4.1.2(强条)计算截面以上的层号------折减系数1 1.00 《荷规》4.1.2条表4.1.2(强条)2---3 0.85 《荷规》4.1.2条表4.1.2(强条)4---5 0.70 《荷规》4.1.2条表4.1.2(强条)6---8 0.65 《荷规》4.1.2条表4.1.2(强条)9---20 0.60 《荷规》4.1.2条表4.1.2(强条)> 20 0.55 《荷规》4.1.2条表4.1.2(强条)调整信息 ........................................中梁刚度增大系数: BK = 2.00......《高规》5.2.2条;装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0梁端弯矩调幅系数: BT = 0.85......主梁弯矩调幅,《高规》5.2.3条;现浇框架梁0.8-0.9;装配整体式框架梁0.7-0.8梁设计弯矩增大系数: BM = 1.00......放大梁跨中弯矩,取值1.0-1.3;已考虑活荷载不利布置时,宜取1.0连梁刚度折减系数: BLZ = 0.70......一般工程取0.7,位移由风载控制时取≥0.8;《抗规》6.2.13条2款,《高规》5.2.1条梁扭矩折减系数: TB = 0.40......现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1.0;《高规》5.2.4条全楼地震力放大系数: RSF = 1.00......用于调整抗震安全度,取值0.85-1.50,一般取1.00.2Qo 调整起始层号: KQ1 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条0.2Qo 调整终止层号: KQ2 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条顶塔楼内力放大起算层号: NTL = 0......按突出屋面部分最低层号填写,无顶塔楼填0顶塔楼内力放大: RTL = 1.00......计算振型数为9-15及以上时,宜取1.0(不调整);计算振型数为3时,取1.5九度结构及一级框架梁柱超配筋系数 CPCOEF91 = 1.15.....取1.15,《抗规》6.2.4条是否按抗震规范5.2.5调整楼层地震力IAUTO525 = 1.....用于调整剪重比,《抗规》5.2.5条(强条)是否调整与框支柱相连的梁内力 IREGU_KZZB = 0.....一般不调整,《高规》10.2.7条剪力墙加强区起算层号 LEV_JLQJQ = 1.....《抗规》6.1.10条;《高规》7.1.9条强制指定的薄弱层个数 NWEAK = 0.....强制指定时选用,否则填0,《抗规》5.5.2条,《高规》4.6.4条TOP配筋信息 ........................................梁主筋强度 (N/mm2): IB = 300......设计值,HPB235取210N/mm2,HRB335取300N/mm2;《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱主筋强度 (N/mm2): IC = 300......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙主筋强度 (N/mm2): IW = 210 .....《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋强度 (N/mm2): JB = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱箍筋强度 (N/mm2): JC = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙分布筋强度 (N/mm2): JWH = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋最大间距 (mm): SB = 100.00......《砼规》10.2.10条表10.2.10;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.3条3款(强条)柱箍筋最大间距 (mm): SC = 100.00......《砼规》10.3.2条2款;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.8条2款(强条)墙水平分布筋最大间距 (mm): SWH = 200.00......《砼规》10.5.10条;可取100-300,《抗规》6.4.3条1款(强条)墙竖向筋分布最小配筋率 (%): RWV = 0.30......《砼规》10.5.9条;可取0.2-1.2;抗震设计时应≥0.25,《抗规》6.4.3条1款(强条)设计信息 ........................................结构重要性系数: RWO = 1.00......《砼规》3.2.2条,3.2.1条(强条);安全等级二级,设计使用年限50年,取1.00柱计算长度计算原则: 有侧移............一般按[有侧移],用于钢结构梁柱重叠部分简化: 不作为刚域........一般不简化,《高规》5.3.4条,参见《手册》是否考虑 P-Delt 效应:否................一般不考虑;《砼规》5.2.2条3款,7.3.12条;《抗规》3.6.3条;《高规》5.4.1条,5.4.2条柱配筋计算原则: 按单偏压计算......宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算钢构件截面净毛面积比: RN = 0.85.....用于钢结构梁保护层厚度 (mm): BCB = 25.00.....室内正常环境,砼强度>C20时取≥25mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1柱保护层厚度 (mm): ACA = 30.00.....室内正常环境取≥30mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1是否按砼规范(7.3.11-3)计算砼柱计算长度系数: 否...一般工程选[否],详见《砼规》7.3.11条3款,水平力设计弯矩占总设计弯矩75%以上时选[是]荷载组合信息 ........................................恒载分项系数: CDEAD= 1.20.....一般情况下取1.2,详《荷规》3.2.5条1款(强条)活载分项系数: CLIVE= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)风荷载分项系数: CWIND= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)水平地震力分项系数: CEA_H= 1.30.....取1.3,《抗规》5.1.1条1款(强条),《抗规》5.4.1条表5.4.1(强条)竖向地震力分项系数: CEA_V= 0.50.....取0.5,《抗规》5.1.1条4款(强条),《抗规》5.4.1条表5.4.1(强条)特殊荷载分项系数: CSPY = 0.00.....无则填0,《荷规》3.2.5条注(强条)活荷载的组合系数: CD_L = 0.70.....大多数情况下取0.7,详见《荷规》4.1.1条表4.1.1(强条)风荷载的组合系数: CD_W = 0.60.....取0.6,《荷规》7.1.4条活荷载的重力荷载代表值系数: CEA_L= 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数剪力墙底部加强区信息.................................剪力墙底部加强区层数 IWF= 1 .......取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条剪力墙底部加强区高度(m) Z_STRENGTHEN= 7.00.....取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条写在前面:关于pkpm计算是否选取偶然偏心一项,有友对此存疑,近作此详解,以解诸惑!**规范:高规3.3.3条规定,计算单向地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。
2024版PKPM参数的介绍PKPM(Paragraph and Keypoints of Hand Calculation ofBuilding Structures,建筑结构手算段落和关键点)是一种常用的建筑结构设计计算方法,用于计算和分析建筑结构的各种参数和特性。
2024版PKPM参数是指该方法在2024年进行了一次更新和改进后所使用的参数,本文将对其进行详细介绍。
2024版PKPM参数包括了结构设计中各种重要的力学参数、几何参数和材料参数等,下面将逐一进行介绍。
首先是力学参数。
力学参数包括结构中的荷载参数和结构反力参数。
荷载参数是指结构在使用过程中受到的各种荷载,如自重、活载、风载等。
结构设计需要合理估计这些荷载的大小和作用方式,以确保结构的安全可靠。
结构反力参数是指在荷载作用下,结构各个部分产生的反力大小和分布。
这些反力是计算和分析结构各个部分的强度和稳定性所必需的。
其次是几何参数。
几何参数指结构的尺寸和形状参数。
在进行结构计算和分析时,需要准确的尺寸和形状参数作为计算的基础。
这些参数包括结构的长度、宽度、高度以及各种截面的面积、惯性矩等。
通过合理估计和测量这些参数,可以更准确地分析结构的力学特性。
然后是材料参数。
材料参数包括结构所使用的各种材料的特性参数,如混凝土的强度、钢筋的强度、木材的强度等。
这些参数是根据相关的材料试验和经验确定的,可以用于计算和分析结构的强度和稳定性。
为了保证结构的安全可靠,设计中需要根据实际情况选择合适的材料参数。
除了上述的力学参数、几何参数和材料参数外,2024版PKPM还包括了其他一些重要的参数。
比如,计算参数是指进行计算和分析时所使用的一些细节参数,如计算方法、分析模型等。
这些参数对于计算和分析结果的准确性和可靠性有着重要的影响。
此外,界面参数还包括了与其他设计软件或分析软件的接口参数,用于实现不同软件之间的数据交换和共享。
总的来说,2024版PKPM参数是一种用于计算和分析建筑结构的方法,包含了力学参数、几何参数、材料参数、计算参数和界面参数。
PKPM如何能调整全参数和选用PKPM(“平面空间结构系统计算程序”)是一种结构分析与设计软件,被广泛应用于建筑和土木工程领域。
它可以用于计算各种类型的结构,包括框架结构、砖混结构、钢结构等。
在进行结构分析和设计时,PKPM提供了一系列的参数和选项,可以根据具体的工程要求进行调整和选用。
下面将介绍如何完整调整全参数和选用PKPM。
1.在PKPM中进行结构建模首先,在PKPM中需要进行结构建模,包括输入结构的几何尺寸、材料性质和荷载情况等。
这些参数可以通过人工输入或者导入其他软件生成的模型来完成。
2.调整分析参数PKPM提供了多种不同的分析方法和选项,可以根据具体的分析需求进行调整。
例如,可以选择静力分析方法或者动力分析方法,选择不同的加载工况等。
3.选用合适的材料性质在进行结构分析和设计时,需要选用相应的材料性质,如混凝土的强度等。
这些参数可以根据具体工程的要求进行选择。
4.调整截面参数PKPM中可以设置结构截面的参数,包括截面的几何形状和截面的惯性矩等。
这些参数可以影响到结构的强度和刚度等性能。
5.输入荷载情况在进行结构分析和设计时,需要输入具体的荷载情况,包括静载荷和动载荷等。
这些荷载参数需根据工程实际情况进行选取和调整。
6.进行结构分析在完成上述参数的设置后,可以进行结构分析,得出结构的内力、位移等结果。
7.进行结构设计根据结构分析的结果,可以进行结构设计,如钢筋布置、截面尺寸等。
需要注意的是,PKPM是一种计算工具,其结果需要结构工程师进行合理的判断和调整。
在实际应用中,还需同时考虑结构的可靠性、经济性以及施工的可行性等因素。
总之,PKPM是一款功能强大的结构计算软件,通过调整全参数和选用合适的参数和选项,可以帮助工程师进行结构分析和设计。
然而,对于普通用户来说,由于其复杂性和专业性,可能需要具备一定的结构工程知识和经验才能正确使用。
PKPM参数设置及应用PKPM(Peking University People's Republic of China Method)是由北京大学研发的一种结构设计软件,广泛应用于建筑、桥梁、隧道等工程结构的力学计算和结构分析中。
PKPM软件具有功能强大、计算准确、使用方便等特点,广受工程师和设计师的认可和使用。
PKPM软件的参数设置与应用非常重要,可以影响计算结果的准确性和设计的经济性。
以下是一些常用的PKPM参数设置及其应用:1.材料参数设置:在PKPM中,需要设置材料的弹性模量、泊松比、材料密度等参数。
通过合理设置这些参数,可以准确计算结构在静力作用下的受力情况。
为了保证计算结果的准确性,需要根据材料的实际性能和实验数据进行合理的选择。
2.截面属性设置:在PKPM中,需要设置截面的几何参数,如截面形状、截面尺寸、截面面积等。
这些参数的设置影响着结构在受力时的抗弯、抗剪性能。
通过合理设置截面属性参数,可以保证结构的安全性和经济性。
3.荷载参数设置:在PKPM中,需要设置结构所受的荷载类型、大小、作用位置等参数。
荷载参数的设置直接影响结构在受力时的应力和变形情况。
为了准确计算结构的受力情况,需要根据设计要求和实际情况合理设置荷载参数。
4.边界条件设置:在PKPM中,需要设置结构的边界条件,包括约束条件和加载条件。
边界条件的设置影响结构在受力时的位移和变形情况。
为了准确计算结构的变形和应力分布,需要根据结构的实际支承情况和受力形式合理设置边界条件。
5.分析方法设置:在PKPM中,有多种不同的分析方法可供选择,如弹性分析、强度分析、稳定性分析等。
不同的分析方法适用于不同的结构类型和问题,通过合理设置分析方法,可以高效准确地分析结构的力学性能。
除了参数设置外1.结构建模:在PKPM中,需要进行结构的建模,即将实际结构进行适当简化和描述,以便进行力学分析。
建模过程需要根据结构的实际情况和要求进行合理抽象和选择,以确保计算结果的准确性。
【关键字】结构1.1.1水平力与整体坐标夹角(度)规范规定:《抗震规范》,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进形抗震验算”。
程序实现:该参数为地震作用力方向或风荷载作用方向与结构整体坐标的夹角,逆时针方向为正,如地震沿着不同方向作用,结构地震反映的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向称为最不利地震作用方向,从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线,当结构不规则时,地震作用的主轴方向就不一定时0°或90°,如最大地震力方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。
操作要点:由于设计人员事先很难估算结构最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出结构最不利方向角,如果这个角度与主轴夹角大于±15。
,应将该角度重新计算,以考虑最不利地震作用方向的影响。
注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。
(2)本参数不是规范要求的,供设计人员选用。
(3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。
1.1.2混凝土容重(kN/m3)规范规定:参看《荷载规范》附录A常用材料和构件的自重表。
容重是用来计算梁、柱、墙、板重力荷载用的。
操作要点:初始值钢筋混凝土容重为25.0kN/m3,这适合于一般工程情况,若采用轻只混凝土或需要考虑构件装饰层重量时,应按实际情况修改此参数。
注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。
1.1.3对所有楼层强制采用刚性楼板假定规范规定:《高规》,“进行高层建筑内力与位移计算时,可假定楼板在其自身平面内均无限刚性”程序实现:选择该项后,程序可以将用户设定的弹性楼板强制为刚性楼板参与计算。
pkpm平面内计算长度系数(原创实用版)目录1.PKPM 平面内计算长度系数的概念2.PKPM 平面内计算长度系数的公式3.PKPM 平面内计算长度系数的应用实例4.PKPM 平面内计算长度系数的注意事项正文1.PKPM 平面内计算长度系数的概念PKPM 是一种建筑结构设计软件,其中的平面内计算长度系数是指在PKPM 软件中,用于计算平面内构件长度的系数。
这个系数主要用于计算钢筋的长度,以确保钢筋在混凝土构件中的正确长度。
在实际工程中,这个系数可以帮助工程师减少计算错误,提高设计效率。
2.PKPM 平面内计算长度系数的公式PKPM 平面内计算长度系数的计算公式如下:长度系数 = 实际长度 / 理论长度其中,实际长度是指在 PKPM 软件中计算出的长度,理论长度是指根据设计图纸计算出的长度。
这个系数可以帮助工程师在设计过程中,更准确地计算出钢筋的长度。
3.PKPM 平面内计算长度系数的应用实例例如,在设计一个混凝土梁时,根据设计图纸,梁的长度为 10 米。
在 PKPM 软件中,通过计算,得出实际长度为 10.5 米。
那么,长度系数就是 1.05。
这个系数可以帮助工程师更准确地计算出钢筋的长度,以确保梁的稳定性和安全性。
4.PKPM 平面内计算长度系数的注意事项在使用 PKPM 平面内计算长度系数时,需要注意以下几点:(1)长度系数只是一个系数,不能代替实际长度。
在设计过程中,还需要根据实际长度进行计算。
(2)长度系数受到许多因素的影响,包括软件版本、计算方法、设计参数等。
因此,在使用长度系数时,需要根据实际情况进行调整。
(3)在使用长度系数时,需要确保软件的准确性和可靠性。
PKPM参数大全1.建筑设计参数:-建筑结构类型:包括钢结构、框架结构、混凝土结构等不同类型。
-建筑材料:包括钢材、混凝土、木材等材料的物理和力学特性。
-建筑尺寸:包括建筑的高度、宽度、长度等尺寸参数。
-建筑用途:包括住宅、商业、工业等不同用途的建筑参数要求。
-建筑环境:包括建筑所处地理位置、气候特点、地质条件等参数。
2.结构设计参数:-荷载参数:包括风荷载、地震荷载、雪荷载等各种荷载的大小和方向。
-材料特性:包括材料的强度、刚度、韧性等参数。
-结构形式:包括框架结构、悬臂梁结构等不同结构形式的参数。
-断面形状:包括矩形、圆形、T形等不同断面形状的参数。
-结构细节:包括梁端部、柱节部等不同细节的几何参数。
3.机电设计参数:-电气参数:包括电力负荷、电压、电流等参数。
-照明参数:包括照明设备数量、照明强度等参数。
-通风参数:包括通风量、通风设备数等参数。
-暖通参数:包括供暖能力、供水温度等参数。
-管道参数:包括管道直径、管道材质等参数。
4.土木工程参数:-土壤参数:包括土壤类型、土壤含水量等参数。
-地基参数:包括地基承载力、地基沉降等参数。
-地质参数:包括地层岩性、地层稳定性等参数。
-施工参数:包括混凝土强度、施工工序等参数。
-施工设备参数:包括起重机、钻机等设备的数量和性能。
5.建筑节能参数:-建筑材料热导率:包括墙体、屋顶、地板等建筑材料的导热性能。
-窗户性能:包括窗户的传热系数、太阳能透过系数等指标。
-建筑隔热性:包括建筑外墙、楼板等部位的隔热性能。
-通风循环参数:包括通风系统的风量、效率等参数。
-建筑自然采光系数:指标反映建筑室内自然光照的效果。
这些参数对于PKPM的使用非常重要,工程师在使用PKPM进行建筑设计和结构分析时,需要准确地输入这些参数,以保证设计结果的准确性和可靠性。
当然,以上只是PKPM参数的一部分,PKPM还包括了很多其他的参数和功能,能够满足各种不同类型的工程需求。
PKPM结构设计参数本文介绍PKPM计算软件TAT, SATWE和PMSAP的新、旧规范版本之间的变化,这同时也是新旧规范(抗震规范、高层规程、荷载规范、混凝土规范〉的条文变化。
1,.风荷载风压标准值计算公式为:WK= 3 z u s u Z肌共I21 : 3 z=l+ & v 4)z/ uz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数U E、脉动增大系数"» 影响系数u都存在减小的情况。
所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。
具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3. 2. 2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。
2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。
C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。
3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。
新增加的D类对应的风压高度变化系数最小,比C类小20%到50%4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。
新增加的D类对应脉动增大系数比89规范小,约小5%到10%。
与结构的材料和形式有关。
5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0. 48、0. 53和0. 63o在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。
如C类、高度为50m、高宽比为3的建筑,u =0. 46,比89高规小28%,若为D类,则小37%o6)、结构的基本周期:脉动增大系数&与结构的基本周期有关(WoT12) o结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0. 08-1. 00)N:框剪结构、框筒结构T=(0. 06-0. 08)N:剪力墙结构、筒中筒结构T=(0. 05-0. 06)No其中N为结构层数。
PKPM参数取值问题一、PM参数输入1、在计算底板时,注意梁、板保护层厚度取50mm;与土直接接触的梁板保护层厚度取50mm;关于保护层厚度取值问题,可参见二类a环境下,结构构件保护层厚度和裂缝控制的感想2、在计算底板抗浮,按倒楼盖配筋时,注意混凝土容重取0KN/M3;3、一般情况下混凝土容重取26KN/M3;4、上部楼层梁柱混凝土保护层厚度统一取30mm,不再区分25mm和30mm;5、楼面恒活荷载输入时,按自动计算现浇楼板自重,且普通住宅装修层荷载按1.6KN/M2考虑,其它按实际情况取;6、梁间墙体线荷载,240墙体统一按4.2KN/M2,120墙体统一按3.0KN/M2,注意考虑门窗洞口折减和挑板自重;7、地下室外墙按混凝土墙建模,如遇到剪力墙和混凝土墙相临情况,可局部用深梁替代,这样便于JCCAD导荷布桩.二、结构楼面布置信息:1、板厚一般按板短跨1/35取值;普通楼层板厚不小于100mm,屋面板厚不小于120mm,对局部露台,当板跨较小时,板厚也可以取100mm;2、楼梯间板厚取0,电梯间全房间开洞,且注意楼板错层;三、楼面荷载传导计算:1、一般楼面和屋面活荷载按荷载规范取,楼梯间恒载取8.0KN/M2,活载对普通多层住宅楼梯取2.5KN/M2,对高层住宅或者消防楼梯取3.5KN/M2,当梯板为较大跨度或者较厚板厚时,按实际情况取恒载;2、应注意楼梯间实际的导荷方式,如板式楼梯,为两边楼梯梁受力,应选择单向导荷方式;四、画结构平面图:1、一般情况下,普通楼层考虑0.3mm裂缝控制,底板考虑0.2mm裂缝控制,地下车库顶板可根据覆土厚度,先按0.3mm控制,可做一定放大,如按0.25mm裂缝控制,这个具体工程自己把握,对车库顶板上有消防车情况,可按0.3mm进行裂缝控制;2、对与剪力墙相连的板边界,按固端考虑,对与较大边梁相连的板边界,可考虑边梁的约束作用,适当放大板支座配筋,其余板边界边支座按简支考虑;五、平面荷载校核:1、在布桩时,该项导荷作为参考条件,以JCCAD为主,如框架剪力墙结构,JCCAD里面墙体分担的荷载较多,柱分担的荷载较少;反之,PM导核里面,墙体分担的荷载较少,柱分担的荷载较多;六、分析与设计参数补充定义:1、混凝土容重取26KN/M2;在计算底板抗浮,按倒楼盖配筋时,注意混凝土容重取0KN/M3;2、在进行整体计算时,对所有楼层强制采用刚性楼板假定,来查看位移比和位移角,其中计算位移角时,不考虑偶然偏心;对高层位移比应≤1.4;对构件进行配筋时,对所有楼层强制采用刚性楼板假定不选;3、模拟施工加载选加载3;4、风荷载信息栏中,对结构基本周期,按SATWE整体计算周期结果,将振型1周期进行返输入;注意体型分段数,对有地下室,裙房结构,应分别分段;5、同时选考虑偶然偏心和考虑双向地震;6、对有斜交抗侧力构件,应注意该项取值;7、对计算振型数,应按实际情况取,且使有效质量系数大于90%;8、应注意周期折减系数,对不同结构类型取不同值,对框架结构取0.7,框架剪力墙结构取0.8,剪力墙结构取0.9;9、柱墙设计时活荷载不折减,传给基础的活荷载折减,考虑梁活荷不利布置,并填写最高层号;10、应注意对非住宅办公教室等建筑,设计墙、柱和基础时的折减系数,应按荷载规范取;11、普通搂层梁梁端负弯距调幅系数取0.85;12、梁设计弯距放大系数取1.0,考虑0.3mm裂缝控制;中梁刚度放大系数取1.5,其余按默认值;注意对基础拉梁,无底板的情况,中梁刚度放大系数取1.0;13、框架-剪力墙结构,0.2Q0调整应从底层到屋顶(主要楼层,一旦结构内收则不往上调整);14、一般不考虑梁柱重叠部分简化为刚域,选混凝土柱的计算长度系数执行混凝土规范;一般楼层梁柱混凝土保护层厚度取30mm,地梁混凝土保护层厚度取50mm;与土直接接触的梁板保护层厚度取50mm;15、柱配筋计算原则,按单偏压计算,再按双偏压校核角柱;一般柱轴压比控制在0.85以内;16、一般多层不考虑P-Δ效应,高层考虑P-Δ效应;且应查看建筑结构的总信息一栏,结构刚重比EJd/GH**2是否大于2.7,然后判断是否考虑P-Δ效应;17、其余按默认值;七、特殊构件补充定义:1、除支撑在梯柱上的梯梁外,一般无需点梁铰接;2、注意标高不在同一标高处的梁,当两边高差大于梁高时,如支座不连续,可以考虑铰接;3、注意指定转换梁;选取角柱;4、注意多塔信息的输入,在该步修改混凝土等级和多塔的层高,各塔一层以上的配筋可按单塔计算来配筋;5、执行第7步生成SATWE数据文件及数据检查后,如有人防地下室顶板,点取第10步人防荷载修改,对地下室非人防区,人防荷载取0;如再需运行第7步时,选择保留用户自定义的人防荷载;八、结构内力配筋计算:1、一般情况层刚度比计算按地震剪力与地震层间位移的比;多层和规则的小高层,地震作用分析方法可选择侧刚分析法,并按LDLT侧刚分解;对高层和不规则小高层地震作用分析方法按总刚分析法;线形方程组解法按VSS向量稀疏求解器;2、其余按默认;九、画图:指导思想:出图应规范化,讲究效率,避免个性,对同一小区的类似住宅,应保持统一;批量生产,既安全又要兼顾节省.注意与建筑,电气,暖通,给排水专业的密切配合.1、桩(包括抗压和抗拔),对一个小区由一个人计算完成,提供承载力,标记符号应统一;2、底板厚度,抗浮水位,配筋指导方向.裂缝控制,挡土墙配筋等,应由一个人来协调,具体图纸设计由各设计人完成;3、一个小区不同幢楼的竖向构件,如户型相同,应尽量保持一致,且竖向构件(主要指柱),考虑10~20%的安全系数;4、原则上楼梯、节点全部由一个人来完成,楼梯平面、剖面、节点全部拷贝建筑,节点不能随意拆分,把建筑索引全部照搬过来,去掉建筑填充和粉刷线,再标注板厚(尤其是悬挑板),标配钢筋.二类a环境下,结构构件保护层厚度和裂缝控制的感想2007-11-0816:251、<<混凝土结构设计规范>>3.3.4条表3.3.4中规定,环境类别为二类,钢筋混凝土裂缝控制等级为三级时,最大裂缝宽度限值为0.2mm;2、<<混凝土结构设计规范>>3.4.1条表3.4.1中规定,室内潮湿环境;非严寒和非寒冷地区的露天环境;与无侵蚀性的水或土壤直接接触的环境,环境类别为二类a。
pkpm参数选取(一)总信息1)水平力与整体坐标夹角(度)一般情况下取默认值0度,当结构平面比较复杂,L型或Y型或结构平面不规则时,可按0,45度分别输入计算,再看程序算出的最大地震力方向(周期振型地震力输出文件第一项),输入该角度重新计算,按三个角度计算结果的最大值配筋。
2)混凝土容重(KN/m3)一般情况下取混凝土容重25 KN/m3,考虑墙体抹灰、装修等荷载,应大于25 KN/m3,不同结构形式取值不同,可按如下参考,框架结构:26 KN/m3,框剪结构:27 KN/m3,剪力墙结构:28 KN/m3。
3)钢材容重(KN/m3)一般采用默认值78 KN/m3,如考虑装修饰面荷载可酌情增加。
4)裙房层数按实际情况取,无裙房时取0。
此项必须填写,以便确定剪力墙底部加强区高度及裙房的抗震等级。
层数可按建筑图所画层数填写,包含地下室层数。
5)转换层所在层号按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层,转换层所在层号应填入5。
6)嵌固端所在层号这里的嵌固端指上部结构的计算嵌固端,注意嵌固端和嵌固端所在层号的区别,当地下室顶板作为嵌固部位时,那么嵌固端所在层为地上一层,即地下室层数+1;而如果在基础顶面嵌固时,嵌固端所在层号为1。
程序缺省的嵌固端所在层号为“地下室层数+1”,如果地下室层数修改了,注意嵌固端所在层号是否需相应修改,判断嵌固端位置应由设计人自行完成。
7)地下室层数一般按实际情况填写,此参数对计算时回填土对结构的约束作用,风荷载计算,内力组合控制高度,底层内力调整,剪力墙底部加强区高度及地下室外墙设计等均有影响。
8)墙元细分控制最大长度(m)一般可取1.0,结构分析时,墙元细分为一系列的小壳元,为保证分析精度而给的限值。
9)对所有楼板采用刚性楼板假定为避免由于局部振动的存在而影响结构位移比等参数的计算,所以在计算周期位移等指标时勾选此项,在计算内力和配筋时不选用,特别是错层结构,有跃层柱或定义了弹性板和弹性模的结构,都不勾选。
pkpm抗风柱设计参数摘要:一、PKPM 抗风柱设计参数简介1.PKPM 抗风柱的概念2.PKPM 抗风柱的作用二、PKPM 抗风柱设计参数的确定1.建筑物的类型和高度2.风荷载的计算3.抗风柱的材料选择4.抗风柱的截面形状和尺寸三、PKPM 抗风柱设计参数的优化1.抗风柱的布置方式2.抗风柱的连接方式3.抗风柱的构造细节四、PKPM 抗风柱设计参数的应用1.实际工程案例分析2.抗风柱设计的注意事项正文:一、PKPM 抗风柱设计参数简介PKPM 抗风柱是一种用于抵抗风力的建筑构件,其主要作用是在建筑物的外部形成一个保护壳,降低风荷载对建筑物的影响,保证建筑物的稳定性和安全性。
在设计PKPM 抗风柱时,需要考虑多种设计参数,以保证其在实际应用中的效果。
二、PKPM 抗风柱设计参数的确定1.建筑物的类型和高度:建筑物的类型和高度直接影响风荷载的大小,因此在设计PKPM 抗风柱时,需要首先确定建筑物的类型和高度。
2.风荷载的计算:风荷载是设计PKPM 抗风柱的重要参数,需要根据建筑物的类型、高度和地理位置等因素,进行精确的计算。
3.抗风柱的材料选择:抗风柱的材料选择需要考虑材料的抗弯强度、抗压强度、耐腐蚀性等因素,以保证抗风柱的稳定性和安全性。
4.抗风柱的截面形状和尺寸:抗风柱的截面形状和尺寸需要根据风荷载的大小和抗风柱的材料类型进行设计,以保证抗风柱的抗风能力。
三、PKPM 抗风柱设计参数的优化1.抗风柱的布置方式:抗风柱的布置方式会影响抗风柱的抗风能力和视觉效果,需要根据建筑物的类型和高度等因素进行优化设计。
2.抗风柱的连接方式:抗风柱的连接方式需要考虑连接的稳定性、安全性和施工的便捷性等因素,以保证抗风柱的整体稳定性。
3.抗风柱的构造细节:抗风柱的构造细节,如柱脚的设计、柱身的修饰等,需要根据建筑物的风格和周围环境进行优化设计。
四、PKPM 抗风柱设计参数的应用1.实际工程案例分析:通过实际工程案例分析,可以了解PKPM 抗风柱设计参数在实际工程中的应用效果,为设计提供参考。
PKPM相关参数汇总PKPM(建筑结构设计软件)是中国建筑企业中广泛使用的一款计算机辅助设计软件,它具有强大的功能和广泛的适用性。
在进行建筑结构设计时,PKPM可以帮助工程师进行各种计算和分析,如静力、动力、抗震、结构检验等,从而提高工程质量和效率。
下面是一些与PKPM相关的参数的汇总。
1.基本参数:-工程名称:记录工程的名称,便于识别和区分。
-工程地址:记录工程所在的地址信息。
-图纸编号:记录绘制的图纸编号。
-设计标准:选择适用的设计标准,如《建筑结构设计规范》等。
2.结构类型:-结构形式:选择适用的结构形式,如框架结构、剪力墙结构、桁架结构等。
-结构高度:记录建筑的整体高度。
-层数:记录建筑的总层数。
-柱网:记录主体结构的柱网。
-梁网:记录主体结构的梁网。
-工程等级:选择适用的工程等级,如一般等级、较高等级、特别重要等级等。
3.荷载参数:-建筑物自重:记录建筑物自身的重量。
-活载:记录建筑物使用过程中产生的活动荷载。
-雪载:记录建筑物承受的雪的荷载。
-风载:记录建筑物承受的风的荷载。
-地震作用:记录地震荷载的参数,如场地类别、设计地震分组等。
4.材料参数:-混凝土强度等级:选择适用的混凝土强度等级。
-钢筋强度等级:选择适用的钢筋强度等级。
-混凝土抗震设防等级:选择适用的混凝土抗震设防等级。
-钢材抗震设防等级:选择适用的钢材抗震设防等级。
5.分析参数:-槽形截面计算:用于槽形截面的设计和计算。
-T型截面计算:用于T型截面的设计和计算。
-等效框架计算:用于框架结构的等效框架计算。
-自动分析:用于自动进行结构的静力、动力和抗震分析。
-局部缺陷分析:用于分析结构的局部缺陷,如脆性破坏等。
6.设计结果:-抗震设防烈度:记录结构的抗震设防烈度。
-应力分析结果:记录结构各个部位的应力分析结果。
-位移分析结果:记录结构各个部位的变形和位移分析结果。
-稳定性分析结果:记录结构的稳定性分析结果。
以上只是一些与PKPM相关的参数的汇总,实际使用时可能还有其他参数和功能。
2024版PKPM参数的介绍PKPM(Parallel-Key Primitive Matrix)是一种专门为分布式计算而设计的矩阵计算模型。
它是由中国科学院计算技术研究所于2024年发布的,并被广泛用于高性能计算和大规模数据处理领域。
以下是对2024版PKPM参数的详细介绍:1. 数据分布参数(Data Distribution Parameters):(1)块大小(Block Size):决定了数据在分布式系统中的划分方式。
块大小越小,划分得越细,有利于提高并行计算的粒度,但也会增加通信和计算开销。
(2)划分策略(Partitioning Strategy):指定了将数据划分到各个计算节点上的方式。
常见的划分策略包括按行划分、按列划分以及按块划分。
2. 任务调度参数(Task Scheduling Parameters):(1)任务粒度(Task Granularity):指定了在分布式系统中一个任务(如矩阵乘法)被划分为多个子任务的粒度大小。
任务粒度越小,可以提高并行度,但也会增加调度和通信开销。
(2)调度策略(Scheduling Policy):决定了如何将子任务分配给空闲的计算节点。
例如,可以采用负载均衡的策略,将子任务分配给负载最轻的计算节点。
4. 存储参数(Storage Parameters):(1)数据布局(Data Layout):指定了矩阵数据在内存中的存储方式,主要有行存储和列存储两种方式。
行存储适用于以行为单位进行计算的情况,而列存储适用于以列为单位进行计算的情况。
5. 算法参数(Algorithm Parameters):(1)并行算法选用(Parallel Algorithm Selection):指定了在分布式系统中使用的具体算法。
不同的算法在性能和精度等方面存在差异,可以根据问题的特点和要求进行选择。
总之,2024版PKPM参数是为分布式计算而设计的矩阵计算模型的关键参数,包括数据分布参数、任务调度参数、通信参数、存储参数和算法参数等。
PKPM计算参数 2013-06-05 | 阅:1 转:202 | 分享
修改
一、总信息
1.水平力与整体坐标夹角: 一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。
根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用。当计算出来的角度大于15度时,应返填入此项。 2.砼容重:25 结构类型 框架结构 框剪结构 剪力墙结构 重度 25 26 27 3.钢材容重:一般取78,如果考虑饰面设计者可以适量增加。 4.裙房层数: 高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施,因此该层数必须给定。
层数是计算层数,等同于裙房屋面层层号。 5.转换层所在层号: 该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。(层号为计算层号)
6.地下室层数: 程序据此信息决定底部加强区范围和内力调整。 当地下室局部层数不同时,以主楼地下室层数输入。 地下室一般与上部共同作用分析; 地下室刚度大于上部层刚度的2倍,可不采用共同分析; 地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。当相对刚度为负值,地下室完全嵌固。
7.墙元细分最大控制长度: 可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或1.5。 8.墙元侧向节点信息: 内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。对于多层结构,应选此项。
外部节点:按外部节点处理时,耗机时和内存资源较多。对于高层结构,可选此项。 9.恒活荷载计算信息: 一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。
模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。于是就有了下一种竖向荷载加载法。
模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算。采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。
但是我认为这种方法人为的扩大了竖向构件与水平构件的线刚度比,所以它的计算方式值得探讨。所以,专家建议:在进行上部结构计算时采用“模拟施工方法1”;在基础计算时,用“模拟施工方法2”的计算结果。这样得出的基础结果比较合理。(高层建筑)
10.结构体系: 规范规定不同结构体系的内力调整及配筋要求不同;同时,不同结构体系的风振系数不同;结构基本周期也不同,影响风荷计算。宜在给出的多种体系中选最接近实际的一种,当结构体系定义为短肢剪力墙时,对墙肢高度和厚度之比小于8的短肢剪力墙,其抗震等级自动提高一级。
11.对所有楼层强制采用刚性楼板假定 当计算结构位移比时,需要选择此项。应该注意的是,除了位移比计算,其他的结构分析、设计不应选择此项。故在计算过程中必须进行2次计算,一次来在假定楼板全刚性的情况下算得控制位移比,第二次在真实的环境来算得构件的配筋。
12.地震作用计算信息 一般应计算水平地震作用,8、9度时的大跨度和长悬臂结构及9度时的高层建筑(如结构转换层中的转换构件、跨度大于24m的楼盖或屋盖、悬挑大于2m的水平悬臂构件等),应计算竖向地震作用。
二、风荷载信息 1.地面粗糙度类别: A类:近海海面,海岛、海岸、湖岸及沙漠地区。(0.12) B类:指田野、乡村、丛林、丘陵及中小城镇和大城市郊区。(0.16) C类:指有密集建筑群的城市市区。(0.22) D类:指有密集建筑群且房屋较高的城市市区。(0.30) 2.修正后的基本风压: 对于高层建筑应按基本风压乘以系数1.1采用。 风荷载作用面的宽度,多数程序是按计算简图的外边线的投影距离计算的,因此,当结构顶层带多个小塔楼而没有设置多塔楼时,应注意修改风荷载文件,从风荷载中减去计算简图的外边线间无建筑面的空面面积上的风载,否则会造成风载过大,特别是风载产生的弯矩过大。
顶层女儿墙高度大于1米时应修正顶层风载,在程序给出的风荷上加上女儿墙风荷。 当计算坐标旋转时,应注意风荷计算是否相应作了旋转处理。 大多数程序风载从嵌固端算起,当计算嵌固端在地下室时,应将风荷载修正为从正负零算起。
用SATWE进行多塔楼分析时,程序能自动对每个塔楼取为一独立刚性块分析,但风荷载按整体投影面计算,因此一定要进行多塔楼定义,否则风荷载会出现错误。
3.结构的基本周期:宜取程序默认值(按《高规》附录B公式B.0.2); 规则框架T=(0.08-0.10)N;框剪结构、框筒结构T=(0.06~0.08)N;剪力墙、筒中筒结构T=(0.05~0.06)N,N为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;程序中给出的基本周期是采用近似方法计算得到的,建议计算出结构的基本周期后,再代回重新计算。
4.体型系数: a)圆形和椭圆形平面,Us=0.8 b)正多边形及三角形平面,Us=0.8+1.2/(n的平方根),其中n为正多边形边数 c)矩形、鼓形、十字形平面Us=1.3 d)下列建筑的风荷载体形系数Us=1.4 i:V形、Y形、弧形、双十字形、井字形平面;ii:L形和槽形平面;iii:高宽比H/Bmax大于4、长宽比L/Bmax不大于1.5的矩形、鼓形平面。
三、地震信息 由于抗震设防烈度为6度时,某些房屋可不进行地震作用计算,但仍应采取抗震构造措施,
因此,若在第一页参数中选择了不计算地震作用,本页中地震烈度、框架抗震等级和剪力墙抗震等级仍应按实际情况填写,其他参数可不必考虑。
1.结构规则性信息: 平面不规则的类型 扭转不规则:楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。
凹凸不规则:结构平面凹进的一侧尺寸,大于相应投影方向总尺寸的30%。 楼板局部不连续:楼板的尺寸和平面刚度急剧变化,例如,不效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,或较大的楼层错层。
竖向不规则的类型 侧向刚度不规则:该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平向尺寸大于相邻下一层的25%。
竖向抗侧力构件不连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、桁架等)向下传递。 楼层承载力突变:抗侧力结构的层间受剪承载力小于相邻上一楼层的80%。 2.扭转耦联信息: 对于耦联选项,建议总是采用; 质量和刚度分布明显不对称的结构,楼层位移比或层间位移比超过1.2时,应计入双向水平地震作用下的扭转影响。
偶然偏心:验算结构位移比时,总是考虑偶然偏心 位移比超过1.2时,则考虑双向地震作用,不考虑偶然偏心。 位移比不超过1.2时,则考虑偶然偏心,不考虑双向地震作用 例:一31层框支结构,考虑双向水平地震力作用时,其计算剪重比增量平均为12.35%; 规则框架考虑双向水平地震作用时,角柱配筋增大10%左右,其他柱变化不大; 对于不规则框架,角、中、边柱配筋考虑双向地震后均有明显的增大; 通过双向地震力、柱按单偏压计算和双向地震力、双偏压计算比较可知,后者计算柱的配筋较前者有明显的增大。建议:若同时勾选双向地震力、柱双向配筋,程序自动取二者之间的大值,而不是二者的叠加。
3.设计地震分组、设防烈度、场地类别,按规范及地质报告。 4.框架、剪力墙抗震等级: 5.考虑偶然偏心及双向地震作用: 计算单向地震力,应考虑偶然偏心的影响。5%的偶然偏心,是从施工角度考虑的。 计算考虑偶然偏心,使构件的内力增大5%~10%,使构件的位移有显著的增大,平均为18.47%。
注:对于不规则的结构,应采用双向地震作用,并注意不要与“偶然偏心”同时作用。“偶然偏心”和“双向地震力”应是两者取其一,不要都选。
建议的选用方法: 当为多层(≤8层,≤30m),考虑扭转耦联与非扭转耦联均可; 当为一般高层,可选用耦联+偶然偏心; 当为不规则高层、满足抗规2条以上不规则性时,或在刚性板假定下,位移比大于1.2, 考虑双向地震作用。
6.计算振型个数: